General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
Maintaining a Local Data Integration System in Support of Weather Forecast Operations

Leela R. Watson
NASA Applied Meteorology Unit / ENSCO, Inc. / Cape Canaveral Air Force Station, Florida

Peter F. Blottman and David W. Sharp
NOAA/NWS / Melbourne, Florida

Brian Hoeth
NOAA/NWS Spaceflight Meteorology Group / Houston, Texas

Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LDIS) as part of their forecast and warning operations. Each has benefited from 3-dimensional analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive and complete understanding of evolving fine-scale weather features.

Recent efforts have been undertaken to update the LDIS through the formal tasking process of NASA’s Applied Meteorology Unit. The goals include upgrading LDIS with the latest version of ADAS, incorporating new sources of observational data, and making adjustments to shell scripts written to govern the system. A series of scripts run a complete modeling system consisting of the preprocessing step, the main model integration, and the post-processing step. The preprocessing step prepares the terrain, surface characteristics data sets, and the objective analysis for model initialization. Data ingested through ADAS include (but are not limited to) Level II Weather Surveillance Radar-1988 Doppler (WSR-88D) data from six Florida radars, Geostationary Operational Environmental Satellites (GOES) visible and infrared satellite imagery, surface and upper air observations throughout Florida from NOAA’s Earth System Research Laboratory/Global Systems Division/Meteorological Assimilation Data Ingest System (MADIS), as well as the Kennedy Space Center/Cape Canaveral Air Force Station wind tower network. The scripts provide NWS MLB and SMG with several options for setting a desirable runtime configuration of the LDIS to account for adjustments in grid spacing, domain location, choice of observational data sources, and selection of background model fields, among others. The utility of an improved LDIS will be demonstrated through post-analysis warm and cool season case studies that compare high-resolution model output with and without the ADAS analyses.

Operationally, these upgrades will result in more accurate depictions of the current local environment to help with short-range weather forecasting applications, while also offering an improved initialization for local versions of the Weather Research and Forecasting model.
This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in updating the current local data integration system (LDIS) in use at both the National Weather Service (NWS) in Melbourne, FL (MLB) and the Spaceflight Meteorology Group (SMG) in Houston, TX. The goal for running LDIS is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national and local-scale observational data. It incorporates all data operationally available in east central Florida and the surrounding areas and is run at a finer spatial and temporal resolution than current national-scale operational models. This project will update the LDIS with the latest version of ADAS, incorporate new sources of observational data, and upgrade and modify early-developed shell scripts written to govern the system. These upgrades will result in more accurate depictions of the current local environment to help with short-term hazardous weather applications, will aid in initializing the NWS MLB local Weather Research and Forecasting (WRF) model, and will lead to a more robust LDIS.