General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
An Empirical Model for Estimating the Probability of Electrical Short Circuits from Tin Whiskers – Part II

Presented at the
Kennedy Engineering Academy
KEA-48
September 29, 2009

Presenters
Dr. Karim Courey, NASA-Johnson Space Center
Clara Wright, NASA-Kennedy Space Center

Co-Authors
Dr. Shihab Asfour, University of Miami
Dr. Arzu Onar, St. Jude Children’s Hospital
Jon Bayliss, NASA-Kennedy Space Center
Larry Ludwig, NASA-Kennedy Space Center
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Notice</td>
</tr>
<tr>
<td>• Publication</td>
</tr>
<tr>
<td>• Tin Whisker Phenomenon</td>
</tr>
<tr>
<td>• Risk Models</td>
</tr>
<tr>
<td>• Contact Resistance</td>
</tr>
<tr>
<td>• Objective</td>
</tr>
<tr>
<td>• Methodology</td>
</tr>
<tr>
<td>• The First Experiment</td>
</tr>
<tr>
<td>• The Second Experiment</td>
</tr>
<tr>
<td>• Comparison of Results</td>
</tr>
<tr>
<td>• Materials Analysis</td>
</tr>
<tr>
<td>• Limitations</td>
</tr>
<tr>
<td>• Conclusion</td>
</tr>
<tr>
<td>• Future Work</td>
</tr>
<tr>
<td>• Acknowledgments</td>
</tr>
<tr>
<td>• References</td>
</tr>
</tbody>
</table>
This document was prepared under the sponsorship of the National Aeronautics and Space Administration. Neither the United States government nor any person acting on behalf of the United States government assumes any liability resulting from the use of the information contained in this document, or warrants that such use will be free from privately owned rights.
This presentation summarizes the research presented in the articles titled:

• Metal Whiskers are crystal structures that can grow from plated surfaces, most commonly Tin, Zinc or Cadmium [Leidecker & Brusse]

• Length - Typically Less Than 1mm, some longer than 10mm [Leidecker & Brusse]

• Diameter - Between 0.006μm and 10μm, typical ~ 1μm

• Shapes - Straight, Kinked, Curved [Leidecker & Brusse]

• Failure modes - Permanent and Temporary Electrical Short Circuits, Debris/Contamination, Metal Vapor Arcing [Leidecker & Brusse]
Card Guide 22 from Ascent Thrust Vector Controller (ATVC) 31
• In the published simulations it is assumed that physical contact between a whisker and an exposed contact results in an electrical short

• This conservative assumption was made because the probability of an electrical short circuit from free tin whiskers had not yet been determined
• Contact resistance is the sum of the constriction resistance and the film resistance [R. Holm & Holm]

• When two surfaces touch, only a small portion of the area actually makes contact due to unevenness in the surfaces [R. Holm & Holm]

• Current flow is constricted through the smaller area resulting in a constriction resistance [R. Holm & Holm]

• Film resistance is due to the build up of tarnish films (oxides, etc.) on the contact surfaces that act in a nearly insulating manner [R. Holm & Holm]
• To develop an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers bridging adjacent contacts as a function of voltage
• To determine when a tin whisker's contact resistance breaks down, the voltage level at the transition to metallic conduction current must be recorded

• To determine the breakdown voltage of a tin whisker a micromanipulator probe was brought into contact with the side of the tin whisker growing from a tin-plated beryllium copper card guide
Methodology - Micromanipulator probe touching tin whisker growing from the card guide

tin whisker

gold plated micromanipulator tip

card guide
• Data Acquisition (DAQ) software was written using LabVIEW® to automate both the incrementing of power supply voltage changes as well as the gathering and recording of the voltage and current data for each of the tin whiskers.

• Once contact was established, as determined with an optical microscope, the power supply voltage was increased from 0 to 45 volts direct current (vdc) in 0.1 vdc increments.

• Validation of the automated test station was performed by substituting a calibrated resistor decade box for the micromanipulator, whisker and card guide.
Automated Tin Whisker Test Fixture

PXI Instrumentation Running a Labview Program

- PXI Power Supply
- PXI Currentmeter
- PXI Voltmeter
- 10 K Ohms
- Card Guide
- Micromanipulator Probe
Methodology – Tin Whisker Test Station
The breakdown voltage for each whisker was determined from the graphs of recorded current and voltage data.

Although the software had originally been written to stop recording data after the film resistance broke down as determined by the change in whisker current, it was decided to run the whiskers to the full range of the test, 0 – 45 vdc, to observe their behavior.

An interesting benefit of running the test from 0 - 45 vdc for all of the whiskers was the opportunity to witness the difference in transitions.

There were three different transition categories: Single, Multiple, and Multiple with intermittent contact.
Tin Whisker No. 137 Graph of Current VS. Time (Single Transition)
Tin Whisker No. 137 Graph of Voltage VS. Time (Single Transition)
• The breakdown voltages for all 35 whiskers were recorded and analyzed
• Probability-Probability (P-P) plots were used to determine how well a specific model fits the observed data
• The Kolmogorov-Smirnov test was used to further analyze the best fit
• The EasyFit® distribution fitting software tested over 40 different distributions before the 3-Parameter Inverse Gaussian was selected as the best fit
• The values for the Three Parameter Inverse Gaussian Distribution are $\lambda = 31.977$, $\mu = 17.571$, $\gamma = -1.9716$, and x = the applied voltage

• The Probability Density Function for the Three Parameter Inverse Gaussian Distribution is shown in the following equation:

\[
f(x) = \frac{\lambda}{\sqrt{2\pi(x-\gamma)^3}} \exp\left(-\frac{\lambda(x-\gamma-\mu)^2}{2\mu^2(x-\gamma)} \right)
\]
Probability Density Function and Cumulative Distribution Function for the Three Parameter Inverse Gaussian Distribution

\[f(x) \]
\[F(x) \]

\(x = \text{applied voltage} \)
The following improvements were added to the second experiment:

- A larger sample size of 200 whiskers
- Random card guide selection
- Improved grounding
- Added shielding to wires
- Gold plated tungsten micromanipulator tips
- Software was written to select the breakdown voltages to ensure consistency
- Fabricated a card guide holder for solderer's helper
The breakdown voltages for all 200 whiskers were recorded and analyzed.
Minitab was used instead of EasyFit because Minitab contained a feature to address censored data.
Probability-Probability (P-P) plots were used to determine how well a specific model fits the observed data.
The Anderson-Darling test and the Correlation Coefficient were used to further analyze the best fit.
The Minitab software tested 11 different distributions before the lognormal was selected as the best fit.
• The values for the Lognormal distribution are the location parameter = $\mu = 1.77895$, and the scale parameter = $\sigma = 0.776320$, and $x =$ the applied voltage

• The Probability Density Function for the Lognormal distribution is shown in the following equation:

$$f(x) = \frac{1}{\sigma x \sqrt{2\pi}} \exp \left(-\frac{(\ln(x) - \mu)^2}{2\sigma^2} \right)$$
Probability Density Function and Cumulative Distribution Function for the Lognormal Distribution

Histogram of Tin Whisker Breakdown Voltage

Lognormal

Breakdown Voltage

Frequency

Probabilty Density Function

Cumulative Distribution Function

Parametric Cumulative Failure Plot for Breakdown Voltage

Lognormal

Censoring Column in Censor - LSXY Estimates

Table of Statistics
Loc 1.77995
Scale 0.779320
Mean 8.00673
StDev 7.28127
Median 5.92361
IQR 6.49083
Failure 198
Censor 2
AD+ 5.361
Correlation 0.943
• First Experiment - mean voltage were a short will occur is 15.59 vdc

• Second Experiment - mean voltage were a short will occur is 8.01 vdc

• The shift in the mean can be explained partially by the change to a gold-plated probe tip in the second experiment, thus eliminating the effect of oxides on the probe tip

• Inverse Gaussian and lognormal are similar in shape

• Analyzed data from first experiment using Minitab and lognormal was best fit - both experiments are consistent

• First Experiment - 33 of the 35 tin whiskers tested (~94%) conducted up to 4.5 mA

• Second Experiment - 158 of the 200 tin whiskers tested (~79%) conducted up to 4.5 mA
• One of the factors that contributes to film resistance is the oxide layer that forms on the tin whisker
• To study the oxide layer, it was necessary to section a few tin whiskers
• FIB image of tin whisker removed from card guide shows a fluted outer surface
• Platinum was deposited on the surface prior to sectioning in order to preserve the region of interest

FIB image (NASA/UCF)
<table>
<thead>
<tr>
<th>Materials Analysis - Focused Ion Beam (FIB) Analysis</th>
</tr>
</thead>
</table>

- The gallium ion beam was used to mill away sufficient whisker material to obtain a cross section normal to the whisker's growth direction.
- The FIB cross section facilitated the examination of the crystallographic orientations.

![FIB image (NASA/UCF)](image-url)

- Tin whisker
- Deposited platinum
- Material milled away

5 μm
• One of the three tin whiskers studied here was found with what appeared to be grains with varying crystallographic orientations

• While polycrystalline tin whiskers have been seen before, in the majority of literature tin whiskers were described as single crystals

FIB Image was taken 52° from horizontal (NASA/UCF)
- FIB image of two as-sectioned tin whiskers that exhibited the expected single-crystal cross section.

FIB Image was taken 52° from horizontal (NASA/UCF)
Materials Analysis - Focused Ion Beam (FIB) Analysis

- A scanning electron microscope (SEM) was used for higher-magnification imaging and elemental analysis.
- We were not able to identify the oxide layer as originally planned with the techniques and equipment that were used.
- However, we were able to find what appeared to be a rare polycrystalline tin whisker.
- A focused ion beam (FIB) was used to prepare a sample for Transmission Electron Microscopy (TEM) examination.
• FIB image showing how the tin whisker is prepared by ion beam milling for TEM analysis
• FIB image showing removal of tin whisker section using the in-situ needle

FIB image of tin whisker (NASA/UCF)
• FIB image of tin whisker section mounted on copper grid for TEM

FIB image (NASA/UCF)
• High-resolution TEM image of the amorphous region in the polycrystalline tin whisker between the uniform crystal lattices of regions A and B
• The Selected Area Diffraction Patterns (SADPs) were taken at four site specific regions, labeled A, B, C and D as shown on the next page.

• The SADPs obtained from regions A, B, C and D indexed to the tetragonal crystal structure of tin in the beam direction (refer to figure on the next page).

• Region D was misoriented approximately 2 degrees with respect to region A in the (121) direction.

• Regions A, B and C were nearly identical with one another.
Bright field TEM image of the polycrystalline tin whisker and nomenclature used to identify the various regions (A-D)

TEM and SADP images (NASA/UCF)
The polycrystalline structure of the studied whisker is shown by the contrast in regions A, B, C, and D in the bright field TEM image, the misorientation of region D with respect to region A shown in the SADPs, and the amorphous region between the uniform crystal lattices of regions A and B, which delineates a grain boundary between the crystals in the high-resolution TEM image.
The purpose of measuring the grain size was to quantitatively determine the finish of the tin plating. Large grain matte finish has been classified as having a grain size between 3-8 μm, fine grain matte finish as having a grain size between 1-2 μm, and bright finish as having a grain size < 1 μm [Shetty]

Using a modified line-intercept method, the average grain size for the card guide from ATVC S/N 31 was estimated to be 0.350 μm (350 nm), and the average grain size for the card guide from ATVC S/N 33 was estimated to be 0.290 μm (290 nm)

Based on the aforementioned criteria, the tin plating used in both ATVC S/N 31 and 33 can be classified as bright finish

While tin finish was not a variable in this experiment, it is a point of interest because bright tin finishes have been associated with greater tin whisker growth than matte tin finishes [Smetana] [Osterman]
• FIB ion channeling image of card guide 16 (ATVC S/N 31) cross section showing the distinct layers studied

FIB image (NASA/UCF)
Limitations of the this experiment included:

- The number of conducting surfaces
- The difference and variation between force applied by gravity and the force applied by the micromanipulator probe
- Power supply range 0-45 vdc
- Sample size
- Whisker characteristics (thickness, length, shape)
- Oxide layer thickness
- Contact area
In this experiment, an empirical model to quantify the probability of occurrence of an electrical short circuit from tin whiskers as a function of voltage was developed.

This empirical model can be used to improve existing risk simulation models.

FIB and TEM images of a tin whisker confirm the rare polycrystalline structure on one of the three whiskers studied.

FIB cross-section of the card guides verified that the tin finish was bright tin.
Future Work

- Effect of the following variables on tin whisker shorting:
 - Applied Pressure
 - Acceleration
 - Whisker Shape
 - Oxidation Layer Thickness
- Free Whisker Test
- Metal Vapor Arcing
- Fusing Current
• W. McArthur, S. Stich, S. Poulos, W. Ordway, E. Mango, A. Oliu, J. Cowart and Dr. L. Keller of the NASA Johnson Space Center

• M. Spates, L. Batterson, S. McDanels, P. Marciniak, S. Loucks, J. Neihoff, P. Richiuso, R. King and Dr. J. Lomness of the NASA Kennedy Space Center

• Dr. S. Smith of NASA and Dr. R. N. Shenoy of Lockheed Martin at NASA Langley Research Center

• Dr. H. Leidecker of NASA and J. Brusse of Perot Systems at Goddard Space Flight Center

• Z. Rahman, with the Materials Characterization Facility, AMPAC, University of Central Florida (UCF)

• S. Nerolich and M. Madden of United Space Alliance

• R. Schetty, "Electrodeposited tin properties & their effect on component finish reliability," in 2004 International Conference on Business of Electronic Product Reliability and Liability, pp. 29-34, 2004