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Applications and Transformations 

Abstract: 

Traditional sensors are too big and heavy for installation in space vehicles, including 
the Space Shuttle Orbiter as well as future manned and unmanned vehicles currently 
in the early design phase. Advances in nanotechnology have led to the availability of 
smaller and more accurate sensors. Multiple and redundant nanosensors can be used 
to conduct more accurate and comprehensive measurements in a space vehicle. 
Early planning can lead to the relatively easy incorporation of miniature sensors 
sharing power and communication lines, thus reducing the requirement for large 
amount of electrical and/or optical cabling. 

Introduction 

It is expected that with the advances in nanotechnology, significant improvements will be 
achieved in the real-time monitoring of the health of space vehicles. Engineers will be able 
to place miniature sensors in locations where cost analysis had previously deemed 
unfeasible because of the large weight, volume, and power requirements of early generation 
monitoring devices. It is the responsibility of the developer of new sensors and devices to 
prove that the new technology can perform reliably in a relevant environment, especially 
when important decisions are based on the output of the nanosensors. The involvement of 
the developer does not end with the completion of the design phase. The technology 
provider has to remain involved with the user through installation, acceptance testing, and 
acclimation of the new technology. 

Because of the complexity of spacecraft, and the need for extremely high reliability, multiple 
steps are required before a new family of sensors can be accepted for use in these vehicles. 
Proper planning and understanding of these steps is critical for the timely delivery and 
implementation of nanosensor-based systems. Costs associated with wiring and sensor 
installation are important parameters that are considered when performing cost-benefit 
analysis for a space vehicle. When multiple sensors are involved, some level of intelligence 
can be embedded at the sensor level to limit the flow of nonessential information and to 
reduce wiring and signal bandwidth requirements. 

The application of nanosensors to the space programs is not limited to the space vehicles, 
but also to the ground support equipment. A multitude of ground-based sensors are utilized 
to sense gas leaks, pressure, temperature, vibration, etc. on the launch pads. The use of 
multiple identical sensors in a single substrate, or different types of sensors also in a single 
substrate, provides the capability to perform redundant and complementary measurements 
which can result in extended calibration cycles, thus reducing operating and maintenance 
costs. 

ASRC Aerospace, a NASA prime contractor at the Kennedy Space Center in Florida, is 
working on the development of nanosensors for use at the launch pads and possibly on 
future space vehicles.



Requirements: 

Traditional sensors are too big and heavy for deployment in space vehicles, including the 
Space Shuttle and the new ARES vehicles. The additional cost incurred by increased weight 
and power requirements, often is a deciding factor on weather certain sensors are used or 
not. There is a need in the market for small, low power, smart sensors with increased 
reliability and better performance than traditional sensors. 

With the advances in nanotechnology and circuit miniaturization, multiple sensors can be 
integrated into a single substrate to combine different measurements in a single chip and at 
the same time, to add redundancy. The capability to perform redundant and complementary 
measurements can result in extended calibration cycles, thus reducing operating and 
maintenance costs by reducing the need for periodic recalibration of the sensors. 

Costs associated with wiring, weight, power requirements, and sensor installation are 
important parameters that are considered when conducting the cost-benefit analysis of new 
measurements. When multiple sensors are involved, embedded intelligence at the sensor 
level can be used to limit the flow of non-essential information and to reduce wiring and 
signal bandwidth requirements. This is accomplished by pre-processing the signals at the 
sensor level and transmitting only the relevant information. The health of the sensors can be 
monitored and measurements validated by applying process knowledge rules embedded in 
the sensors. Simultaneously, the amount of data transferred can be minimized by 
emphasizing transfer of process information instead of the transfer of raw data. 

Process: 

For the successful commercialization and implementation of nanosensors for a space-based 
application, it is important to properly define certain parameters very early in the design 
process: 

• Sensor Specifications: accuracy, sensitivity, selectivity, power consumption, 
response time, recovery time, bandwidth, dynamic range, stability, noise behavior, 
EMI susceptibility, etc. 

• Physical Characteristics: Size, weight, volume, mechanical and electrical 
interfaces. 

• Environmental constraints determined by mission to be performed: vibration, 
shock, corrosion, radiation, thermal management, etc. 

• Safety and Reliability: as established by the end user, including the assessment of 

materials compatibility and intrinsically safe designs for hazardous environments. 

The process involves developing a detailed set of requirements, including performance, 
physical, environmental, safety, reliability, and maintainability concerns. It is also important 
to establish and understand the qualification process that the sensor will be subject to in 
order to certify the product for use in a space environment. The developer of the sensor 
must define the documentation requirements for the qualification process so proper 
traceability can be maintained. Another important process is the establishment of a quality 
control process to monitor the design, fabrication, testing, and integration of the product into 
the vehicle or the ground support system. 

The selection of materials for the sensors and the associated instrumentation is critical 
because certain materials can cause hazards in the space environment that are not apparent 
in the ground environment. Materials should be selected early, and their use approved by 
the user. The safety community should be involved early in the design process, even during 
the conceptual design phase to ensure that no unexpected constraints appear later in the 
design process. Certification and safety problems that are often found late in the design



cycle can be avoided easily and less expensively if they are addressed early in the design 
process. 

Design Stage: 

Multiple sensors are being integrated in a single substrate in order to obtain redundant 
measurements and extend the calibration cycles. This involves processing signals and 
applying the proper algorithms to evaluate the performance of the individual sensors within a 
module. The embedded intelligence at the sensor level limits the flow of non-essential 
information between the sensor and the data processing equipment. The combination of 
different measurements in a single module results in smaller and lighter sensors, and simpler 
and less expensive installation. 

There is always the need to establish a tradeoff between costs and benefits, thus the need to 
minimize installation and maintenance costs. The qualification process for flight in an 
expendable space vehicle is time consuming and expensive, and even more for a manned 
vehicle. Wiring and sensor installation can significantly add to the cost, especially when 
multiple sensors are involved. 

Figure 1. The Space Shuttle Orbiter has over 200 miles of wiring. 

As the sensors and associated circuits get smaller, means have to be provided to interface 
these very small sensors to wires and connectors. Wiring systems are being designed for 
self-reconfiguring to intelligently re-route signals "on the fly" as mission needs change, or to 
compensate for wiring failure— which is especially vital for unmanned craft or inaccessible 
vehicle areas.



Conductive polymers, metalized organic polymers, and carbon nanotubes that are tough, 
flexible, and light weight with conductivity approaching that of copper are in development to 
be used to replace traditional copper wire. 

Gas Detectors: 

Personnel living in a space environment as well as technicians and engineers preparing 
spacecraft for launch can potentially be exposed to small amounts of hazardous gases. It is 
important to be able to detect, identify, and quantify the presence of a gas, especially when 
its presence could lead to a fatal situation. 

ASRC Aerospace and its partners: the University of Central Florida and the Center for 
Nanotechnology Research at NASA Ames Research Center are developing nano sensors for 
the detection of various types of gases. We are providing technical expertise in the transition 
of sensors developed at NASA Ames Research Center into units suitable for aerospace 
application and we are currently performing all the required environmental testing and 
materials compatibility analysis. 

Summary: 

The successful integration of micro and nanotechnology into space vehicles requires a 
coordinated effort between the developers and the users throughout the design, 
development, installation, and integration process. The selection of materials for sensors 
and associated instrumentation should be done jointly between designers and users since 
certain materials can cause hazards in the space environment that are not apparent in the 
ground environment. 

ASRC Aerospace is continuing with the development of micro and nano sensors, and 
instrumentation for space applications. The design of these devices is being conducted 
taking into consideration possible applications not only in the Space Shuttle Orbiter, but more 
importantly in the next generation vehicles scheduled to replace the Orbiter starting in the 
year 2010.
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