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Abstract 

The concept of effective jet properties introduced by the author (AIAA-2007-3 645) has been extended to the 

estimation of broadband shock noise reduction by water injection in supersonic jets. Comparison of the predictions 

with the test data for cold underexpanded supersonic nozzles shows a satisfactory agreement. The results also reveal 

the range of water mass flow rates over which saturation of mixing noise reduction and existence of parasitic noise 

are manifest. 
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1. Introduction 

Three distinct components of noise are present in supersonic jets: turbulent mixing noise, Mach wave radiation, 

and broadband shock associated noise [I]. Generally the shock-associated noise includes both broadband shock 

noise and discrete screech tones [2,3], see Figs. 1-2. Both the broadband shock noise and screech tones are 

associated with imperfectly expanded jets. The high noise levels (160 to 180 dB) radiated by launch vehicles at lift-
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off induce severe vibration on the launch vehicle structure and payload, and ground support equipment. 

Consequently the need to reduce acoustic levels from jet exhausts is paramount. 

Water injection has been traditionally considered for the suppression of high noise levels from rocket exhausts in 

launch vehicle environments. For example, large amounts of water (of the order of 300,000 gpm) are used for the 

suppression of ignition overpressure (lOP) and lift-off noise during Space Shuttle launches. The water mass flow 

rate to the SRB exhaust mass flow rate ratio is maintained around one to two in order to meet payload design 

requirements of 145 dB [4,5]. Water injection could reduce noise by as much as 8-12 dB. Such a high level of 

reduction includes reductions in the turbulent mixing noise and shock-associated noise, the latter constituting the 

predominant component of noise reduction. 

Water injection mitigates all the three components ofjet noise: the turbulent mixing noise, the screech, and 

broadband shock noise. Two principal mechanisms leading to the diminution ofjet noise by water injection are the 

reduction ofjet velocity and jet temperature [6]. The decrease ofjet velocity is occasioned through momentum 

transfer between the liquid and the gaseous phases, and the reduction of the jet temperature is achieved due to partial 

vaporization of the injected water [7]. The effect of water may also be regarded as effectively increasing the jet 

density (Jones 5). Important velocity reductions are achieved within a few diameters of the nozzle exit. Noise 

reductions of the order of 10 dB are realized for both cold and hot jets [7,8]. 

Several design parameters influence the effectiveness of noise reduction by water injection. These include water 

to jet mass flow rate ratio, axial injection location, water injection angle, number of injectors, method of injection 

(jet type or spray type), droplet size, water pressure, and water temperature. Optimal injection parameters need to be 

determined for the design of efficient water deluge system. Data of Zoppellari & Juve [5] and of Norum [9] suggest 

that best noise reductions of the order of 10 to 12 dB are obtained at injection angles of 45 to 60 deg., injection near 

the nozzle exit (especially for shock-containing jets), and high mass flow rates. Also the optimum number of 

injectors appears to be around eight. Experiments by Krothappalli et al. [10] and Greska & Krothapalli [11] and 

Arakeri et al. [12] at reduced water mass flow rate ratios (about 0.1) through the use of microjets show sizable noise 

reduction for application to aircraft jet engines. 

Experiments with water injection suggest that the mass flow rate ratio appears to be an important parameter. 

Tests conducted with water to jet mass flow rate ratios up to four [7] reveal that significant noise reductions can be 

achieved at high water flow rate ratio. In the case of cold jets, beyond a critical mass flow rate ratio, the velocity 
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reduction and thus the noise reduction is small. For hot jets, only a fraction of the liquid is effective in reducing the 

air jet velocity due to drop evaporation. At low water flow rates, it is possible to reduce the shock associated noise 

significantly. At higher mass flow rates, momentum transfer principally affects the mixing noise over a broad range 

of frequency. 

At considerably high mass flow rates, the benefit of velocity reduction of the airjet by momentum transfer 

between the two phases is partly opposed by the emergence of new parasitic sources linked to water injection, which 

include the impact noise of air on the water jets, fragmentation of these water jets, and unsteady movement of the 

droplets. A compromise can be found between significant penetration of water jet into the air jet and low impact 

noise. A significant parameter is the velocity component of water jets that is perpendicular to the air jet. If this 

component is high, water penetrates deeply into the air jet and mixing takes place rapidly. If this component is 

small, water does not produce significant drag and impact noise. 

In view of the importance of water injection in jet noise suppression, a theoretical understanding of the 

mechanism of noise reduction is useful in the design and optimization of water deluge systems for launch acoustics 

application. Based on control volume formulation a simple one-dimensional analytical model has been recently 

reported by Kandula and Lonergan [13] for estimating jet mixing noise suppression due to water injection. The 

method is based on the conception of effective jet properties in conjunction with the scaling laws developed by 

Kandula' 4 for shock-free jet noise. The predictions are found to yield satisfactory agreement with the test data for 

hot perfectly expanded supersonic jets with regard to turbulent mixing noise reduction with water injection over a 

wide range of water to jet mass flow rate ratios. 

In the presence of water injection, broadband shock noise reductions are considerably higher than those due to 

turbulent mixing noise. Thus an accurate estimation of the broadband shock noise reduction is important in the 

design of the water deluge systems for jet noise mitigation at launch sites. In this paper, the method of effective jet 

properties will be applied (extended) to the prediction of broadband shock noise reduction with water injection in 

imperfectly expanded supersonic jets.



2. Analysis 

2.1. Broadband Shock Noise Reduction 

The intensity of broadband shock noise is primarily a function of the nozzle pressure ratio and largely 

independent of the temperature ratio [10]. Harper-Bourne and Fisher [14] found that for a given radiation direction 

the measured mean square sound pressure due to shock-associated noise scales with the Prandtl-Glauert parameter 

fi as:

(la) 

where 

/3=.jM—1	 (ib) 

and M is the fully expanded jet Mach number. The parameter fi characterizes the pressure jump across a normal 

shock with an n upstream Mach number M. 

In the presence of water injection, the effective jet properties (jet velocity, temperature, Mach number, etc.) near 

the exit are obtained from the theoiy proposed in Kandula and Lonergan [13] In the present context, the effective jet 

Mach number is obtained as a function of the water to jet mass flow rate ratio. Thus the reduction in the overall 

sound pressure level (OASPL) can be estimated as 

M —1 
AOASPL 20 log

	

	 (2a) 
M 2 —1 

where the subscripts 1 and 2 respectively refer to the original and effective jet exit conditions. 

Eq. (2a) yields the noise reduction due to water injection as applied to a single isolated shock in the jet. The 

consideration of noise reduction in the multiple shock system (which is usually the case; typically with 5 or 6 shock 

cells) is very complex. Thus it is assumed in the present analysis that the overall noise reduction is proportional to 

the number of shock cells downstream of the water injection station, 5d• That is, 

LOASPL 01 =
	 (2b) 

where the quantity AOASPL is provided by Eq. (2a).
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2.2. Effective Jet Exit Conditions 

a. Effective Jet Mach Number 

In the following, we briefly review the results for the effective jet properties derived in Kandula and Lonergan 

[13] on the basis of a control volume fonnulation (Fig. 3). An expression for the effective jet Mach number is given 

by

\1/2
(3) 

M 1	 ujiJpjiJ 

where the effective jet velocity and jet density are obtained as follows. 

b. Effective Jet Velocity 

From the momentum equation in conjunction with the continuity equation, an expression of the jet velocity ratio 

can be obtained as: 

1 

ujl	 +,7-i') 
thJ 

In the above, the quantity i represents the fraction of water flow rate that is evaporated. The quantity 0, related to 

the particle drag force, can be expressed as 

=. Fd	 =	 /thi )(l - 71)	 (5a) 
p 1 u 1 A1 

where

3(p 1 Yd 1 '\ 1	 1Re 
\2 

v=—I—II—I n—CDI----I	 (5b)

2 p, A d) 2 ( Rei) 

Here the quantity n denotes the length of the control volume in terms of the jet exit diameters (n = L / d 1 ). The 

nonlinear drag law for CD is obtained from a correlation [15]. 

The quantity a , representing the effect of droplet evaporation, can be written as 

7lwUp 	 d1l 

p1u1A1	 )L	
(6) 

(4) 
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where Re i is the jet Reynolds number, and Re the droplet Reynolds number defined by 

Rei =
	

Re = 
Pi (u31 - u 

lull	 hi1 

and	 is the droplet diameter. 

c. Effective Jet Density 

The density ratio is evaluated from 

P2'P1 =T 1 IT12 

where

(7)

(8) 

Tj2 - _________ 
1 +
	 - FDUP - uJ22 

1"ii 1	 "	 2c1,,T,i c 1 T 1	 2cT3i 
I 1+77 
I\	 mi 

2cTji	 2

2 
Uj2 =	 (L!J 

2cT 1 	 U11 J 

An expression for the evaporation fraction i as 

1	 Pr Rei	 1	 [	 hjg 
—=1+—

Nu (d11 
2 

31 Pi [cpj (ie- Tsat)] 

	

;J	 ;) 
where Pr is the Prandtl number of the gas (taken as 0.7). Eq. (11) suggests that the evaporation factor 77 is

(9) 

(lOa) 

(1 Ob 

(11) 

independent of the water to jet mass flow rate ratio. Ranz-Marshall correlation [171 for heat transfer to a sphere in 

convective flow is considered for the Nusselt number Nu in eq. (11). 

d. Effective JetCross Sectional Area 

The effective jet exit cross sectional area becomes 

=	 +	 (12) 
A 1	 pji Juj2 J 	 mdi) 
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2.3. Droplet Diameter and Droplet Reynolds Number 

In the foregoing equations, the droplet diameter d and the droplet Reynolds number Re remain as unknowns. 

A direct calculation of these quantities is veiy complex, requiring extensive simulations. On the basis of the 

postulate of invariant groups, the droplet diameter and droplet Reynolds number are shown to be given by 

1/2 

LL1I
_Re11 1 

d	 Lci	 ip)]	
(l3a) 

Re1 
Re = C2 

(d 1 /d)	
(13b) 

Thus the unknown quantities Re and d 1 / d are determined in terms of the adjustable constants c1 and c2 . In 

view of the complexity with regard to the knowledge of droplet diameter and drop Reynolds number, it is postulated 

that the constants c1 and c2 are invariant [13]. These constants may be established by a correlation with available 

test data. 

The above analysis suggest that the effective jet conditions in the presence of water injection are dependent 

primarily on the water-to-gas mass flow rate ratio, and independent of momentum flux ratio, the latter being 

governed primarily the penetration depth of the injected water normal to the jet. A correlation of the analysis with 

the test data of Norum [9] for hot supersonic turbulent mixing noise reduction at M =1.45 yields the values of the 

invariants c1 and c2 as [13] 

= 5, c2 = 0.05	 (14)


These values for the constants c1 and c2 are considered here. The ratio of water jet mass flow rate to the jet mass 

flow rate (m /th i ) is varied to a maximum value of about 0.825. 

2.4. Typical Distributions of Effective Jet Properties 

Some typical results for the effective jet properties as presented in [13] are shown here. Illustrated in Fig. 4a is 

the dependence of the effective jet Mach number as a function of the water mass flow rate at Re 1 = 1 The trend 

is similar to that indicated for the effective jet temperature. The results suggest that below a water flow rate ratio of 

one, the effective jet temperature is almost independent of the jet exit Mach number. The jet Reynolds number effect



on the effective jet Mach number is illustrated in Fig. 4b. The change in effective jet Mach number is relatively less 

sensitive to jet Reynolds number. 

The results show that the effective jet density increases with the flow rate, and with an increase in the jet exit 

Mach number. Calculations suggest that the jet cross sectional area increases with the water flow rate. At a fixed 

flow rate ratio, the effective jet area decreases with an increase in the jet exit Mach number. 

3. Results and Discussion 

3.1. Comparisons with Experimental Data 

For comparison purposes, we consider here the test data of Norum [9] or cold over-expanded jet broadband 

shock noise reduction with water injection (case D). The jet issues from a convergent-divergent (CD) nozzle. For the 

cold operation of the Mach 1.5 CD nozzle, the highest nozzle pressure ratio (NPR) that can be achieved prior to the 

onset of dominant screech is about 2.27, corresponding to M = 1.15 at which broadband shock noise is measured. 

Acoustic data are obtained with injection angles of 45 deg and 60 deg, with the injection at 60 deg yielding a 

somewhat higher noise reduction. The axial injection location is adjusted by varying the injector ring corresponding 

to known positions of the shocks in the over-expanded jet plume. 

Fig. 5a shows the dependence of SPL reduction with the water mass flow rate with the injection station upstream 

of shock cell-i. A total of five shock cells are considered here. The theory shows a nearly linear dependence of SPL 

reduction with the mass flow rate, while the data suggests a saturation trend after an initially linear increase. In the 

linearrange of the data (abscissa of 0 to 0.22), the theory suffers a maximum error of about 2.5 dB. 

A comparison for the injection upstream of shock cell-2 is presented in Fig. 5b. The trend is similar to that shown 

in Fig. 4a. However, the maximum error in the linear range (abscissa of 0 to 0.22) is about 1.5 dB. Results of 

comparison for injection upstream of shock cell-3 are exhibited in Fig. Sc. Again the trend is similar to that 

discussed with regard to Fig. 4a, but the theory agrees much closer to the data in the linear range (abscissa of 0 to 

0.22), with a maximum error of 0.5 dB. 

3.2. Deduction ofParasitic Noise 

Fig. 6 shows a composite plot for the case of water injection upstream of shock cell-i. In this plot, the original 

data are resolved (extrapolated) into two linear segments - curve-1 and curve-2. Curve-i extrapolates the second 

linear segment of the data, and curve-2 extrapolates the third linear segment of the data. It is interesting to note that



the slope of curve-2 is very close to that predicted by the theory for the broadband shock noise. We are inclined to 

believe that the difference between curve-i and curve-2 represents the parasitic noise, whose magnitude is reflected 

by a separate curve. With this conjecture, the parasitic noise seems to commence (manifest itself) at a mass flow rate 

ratio beyond 0.22, and increases linearly with the mass flow rate thereafter. The parasitic noise increases to as high 

as 7 dB for a mass flow rate ratio of 0.5. 

4. Conclusion 

An approximate formulation has been developed for the prediction of broadband shock noise reduction by water 

injection. The proposed formulation agrees satisfactorily with the test data for water injection into an over-expanded 

supersonic jet. The results suggest that beyond certain mass flow rate, parasitic noise due to water impact becomes 

manifest. This result points to the possibility of the existence of an optimum injected water mass flow rate for shock 

noise reduction purposes.
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Fig. 1 A typical narrowband farfield shock noise spectrum (adapted from Seiner [2]. 
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Fig. 2 Representation of shock-associated noise (adapted from Pao and Seiner [3]. 

12



nozzle exit
potential core 

water 
injection —t:!::-z 

1	 2
shear layer 

Fig. 3 Schematic of the jet configuration with water injection (shocks not shown). 
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Fig. 4a Variation of effective jet Mach number with the water mass flow rate. 
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