General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

Carlos Alberto Armada
Kennedy Space Center
August 5™ 2008

Reviewed by:
James Stanley
Electromagnetic Compatibility Analysis Group VA-H3

/25

(Signatur

Abstract
Armada, Carlos A.
Title of Project:
NASA/INSPIRE
NASA Center: Kennedy Space Center
Intern’s Mentor: James Stanley
Internship Dates: June 16™ — August 8®

During the eight weeks working at NASA, I was fortunate enough to work with the
Expendable Launch Vehicle’s (ELV) Electromagnetic Compatibility (EMC) Team, who is
responsible for the evaluation and analysis of any EMI risk an ELV mission might face. This
group of people concern themselves with practically any form of electromagnetic interference
that may risk the safety of a rocket, a mission, or even people. Taking this into consideration, the
group investigates natural forms of interference, such as lightning, to manmade interferences,
such as antennas.

James Stanley, one of the members of the EMC Team, was assigned as my mentor for the
eight weeks. To briefly explain what he does for NASA, Mr. Stanley creates simulations that can
test the vulnerability and susceptibility of a device or material. For instance, at the moment Mr.
Stanley is working on the Taurus II Certification and he has modeled a portion of the rocket in
order to test its RF vulnerability, the obvious benefits from his simulations are cost-effectiveness
and safety. Fortunately, Mr. Stanley was able to expose me to a bit of everything the EMC group
does, research, software development, and even hands-on work.

The first project that I worked on was the investigation and then creation a small database
for the electrical properties of about five materials. My mentor, James Stanley, creates
electromagnetic simulations, and for each material that he tests he must have its properties.
However, since the electrical properties of materials such as, epoxies and carbon fibers are so
difficult to find, it simply is not practical and efficient for my mentor to look for the properties
himself. For that reason, I was to look up properties such as permittivity, permeability, and
electrical conductivity, so that James Stanley could effectively create his simulations. In addition
to the electrical properties research I did, I also collected the thermal data for the same materials.
Soon after I had started the research for Mr. Stanley, I realized how common the thermal
properties were to come by. As a result, I approached Gary O’Neil, the thermal group lead, and
proposed the idea of adding these properties to his existing database. Thrilled with the idea, I
also began to collect data for Mr. O’Neil. Even though I spent many weeks talking to different
companies and searching within NASA databases, it is difficult to summarize this type of
research, however, some of the final products from the research can be seen in Appendix A.

Of the eight weeks, the development of software consumed the most amount of time. I
was given an objective, and was told to solve it through the use of Matlab. Short for Matrix
Laboratory, Matlab is a technical computing environment for high-performance computation and
visualization. Best known for its ability to manipulate and use matrices, Matlab is able to create a
multitude of visual representations ranging from bar graphs to 3D models. This summer, through
the use of Matlab, three scripts where developed to meet specific objectives; two of which
analyzed and manipulated data, and the other a 3D model.

Like mentioned above, the first two programs were developed to manipulate and analyze
data; however, each very distinct in its purpose. The first program was assigned by James
Stanley, and its objective was to analyze and plot the data produced by his Electromagnetic

-2-

Simulations. Although, before understanding how the program functions in depth, one must also
have a general understanding on how Electromagnetic simulations work, and most importantly,
how they output their data.

Although not a popular field of study, Electromagnetic modeling is an efficient and cost-
effective way of testing the RF vulnerability/susceptibility of hardware and materials.
Essentially, a simulation takes the work that must be done in the lab and converts it to the
computer, which in-turn factors out the risk that could be encountered in the lab. Nonetheless,
the program concerns itself mostly with the output file that the simulation creates, and not as
much the process of the simulation. The data produced from running a simulation is documented
into an out file, which has a format similar to a Notepad/WordPad document (Appendix B Figure
1). Difficult to explain without a computer, the file produced from running a simulation includes
all the information, from the radiation pattern created from the antenna, to the values of the
electric field strength. Within all this information of about two thousand lines, the program
created only needs to manipulate and analyze one hundred lines of electric field values.
Therefore, since the program must search for its data, rather than analyzing the entire document,
it makes the commands more difficult to code and execute. After identifying the data that must
be uploaded, the programs next objective is to define each column from a list of variables: x, y,
z, Ex, Ey, Ez. Once identified, the program is to solve for the Electric field by using a
combination of the Ex, Ey, and Ez variables and an equation resembling the Euclidean Norm:

VEx? + Ey? + Ez2 = E . This equation defines the Electric field values, which in the program
is assigned and plotted on the y-axis. The x-axis, although requiring less manipulation of the
data, is far more complicated. Being one of the programs major features, the x-axis can vary in
its values, and meaning. To explain this one must go back to how the data is outputted, for each x
and y there is a corresponding E field value, however without going three dimensional there is no
way to graph all three variables, therefore the program graphs the electric field values with
relation to a constant and set of values. This still may be difficult to understand, but basically
there are one hundred lines and for the x values the same ten values are repeated ten times,
making one hundred lines. The y values are different in that the every ten lines the value
changes, and there are ten values, also making one hundred lines. Now if that explanation made
the manipulation process any clearer, one can see how each graph will have ten data points. For
example, imagine that the user selects the x-values to be graphed in relation to the E-values with
a y-constant of “-0.85”, the program will only plot those x-values which correspond with the y-
value of “-0.85”, and like mentioned before each y-value is repeated ten times, which allows for
twenty graphs per simulation (Appendix B Figure 2).

After programming this process, the next step was to create a user-interface window that
would allow anyone to run the program, even without prior experience in Matlab. This is made
possible through the use of Matlab’s GUI add-on, which is very similar to a more familiar
programming language like Visual Basic. Essentially the window runs the program as it would in
the Matlab command window, but has more user-friendly buttons such as scroll menus and pop-
up menus instead of typing the inputs into the command window. Another feature to the user-
interface is that the graphs are plotted immediately onto the window, requiring no other program
or pop-up window to run the program effectively and efficiently (Appendix B Figure 3).

Similar to the Electric Field script described above, the second program also manipulates
and analyzes data but for a different purpose. This program, or as I call it “LDS Script”, scans
the data recorded from the lightning detection system and manipulates the data to solve for its
minimum, maximum and peak-to-peak; once it completes those actions, it is up to the user on

-3

what he would like to do, whether it be plotting the data or recording it into a file. This program
has proven to be useful since the previous process of reading data from the EMC’s lightning
detection system was time consuming and horribly inefficient. As stated early in the paper, in the
description of the EMC group, their field of analysis is highly concerned with all types of natural
and manmade forms of interference and since Kennedy Space Center is located in the lightning
capital of the Unites States, it is inevitable that lightning be looked at further in depth. Which
leads to the lightning detection system located on Complex 17 Pad B, being just one of the many
lightning detection systems on Kennedy Space Center, this specific unit is under the control of
the EMC group and therefore, it is the responsibility of the group to monitor for lightning strikes
in the area and record it for research purposes.

How this Lightning Detection System, LDS for short, works, is that it has two sensors, an
electric field sensor, and a Pearson coil which work together to record the induced current from a
lightning strike. Now when there is a lightning strike within the area of Complex 17 the
lightning’s electric field triggers the electric field sensor, which in-turn tells the LDS to begin
recording. During this short interval, the LDS will take in all the data in microseconds that the
Pearson coil is reading, which comes from the induced current running through T-0 umbilical.
The Pearson coil is capable of reading a current because the lightning strike creates a magnetic
field, and as learned in Physics class, can create an induced current on a closed circuit. It is
through this data that the group can measure the intensity of the strike (Appendix C Figure 1).

Comparable to the .out file produced by the electromagnetic simulations, the LDS when
recording will insert all the data into an .in file. Fortunately, unlike the first program, the
information in the file is solely the numerical data, requiring no command to locate the data.
Therefore by simply selecting the file to analyze, the program will immediately begin to
manipulate and crunch the numbers. This script begins by identifying each column as a variable
in the following order, time (in seconds), current, vertical electric field, horizontal electric field,
and external electric field. The program then averages the first hundred values in order to create
a value for the noise in the recording. Next, the program factors out the noise level in the
recording and then average every ten data points together, converting a one by two thousand
matrix to a one by two hundred matrix. This process clears up the graphs, that otherwise would
be too messy for any user to read/analyze. After writing the code to manipulate the data, as
explained above, the final step, like before, was to create a user interface window through GUI
so that anyone could effectively use the program. As a result, I created a simple window that has
a scroll menu with all the files that a user can analyze and two buttons, the first to trigger the
program to analyze the data and write it into an .out file, and the second button to open another
window displaying the selected files current v. time graph. Specifically, the first button writes
the analyzed file’s minimum, maximum, and peak-to-peak for later analysis, and the second
button would do the same, but instead of saving the data to a file, it was for a quick analysis in
real-time (Appendix C Figure 2).

The third and final script written with Matlab has no similarities what so ever to the first
two programs, rather than being logic based, this script revolves around mathematics, due to the
nature of the project. The objective of the program was to as accurately as possible create a 3D
model of the Catenary System found on Space Launch Complex 41. Unfortunately, resources
were limited and the only aids used were Google Earth and one image of the catenary system
(Appendix D Figure 1, 2). So, to begin the project, I used Google Earth to calculate the distance
between each tower. I then imported the image of the catenary system into Matlab and solved for
the amount of pixels per foot, consequently, this allowed for the solving of the vertex. Once the

-4-

vertex and two points were known, the first cable’s parabolic function was solved for, and the
rest of the model was solved through the use of proportions. Possibly not being the best way to
solve for each cable’s function, proportions were the only feasible way of creating the 3D model,
especially due to the lack of recourses. Regardless of the limitations, the model’s functions were
then graphed onto one plot, and eventually resembled the system found on SLC-41 with about 2
feet of marginal error. Hard to put into words, the images justify the model more than the
description does (Appendix D Figure 3).

The final project that I was fortunate enough to work on was the 1/5™ Scaled Fairing
Experiment. Inherited from a previous thermal experiment, this project involved taking a 1/5™
Scaled Fairing experiment and testing its RF vulnerability/susceptibility. Similar to how a
simulation works on the computer, this experiment uses two dual-horn antennas, which are
located on the inside of the fairing, and they emit a specified frequency. By comparing the values
inputted to the data outputted, the EMC team can gauge how the fairing responds to different
amplitudes of RF energy. The results from this experiment depend on what is located inside of
the fairing, and this is where I was able to contribute to the experiment. Even though the
experiment had been started previous to my arrival, I was able to assist by adding a thin layer of
Kapton, a thermal blanket, to the interior of the fairing. This is useful because the point of this
experiment is to replicate, as close as possible, a real Fairing. Within an actual fairing there are a
multitude of materials that layer the inside cavity, and therefore, in our experiment, one by one,
we have been adding a new layer of material. At this point our replica has a layer of aluminum
foil and Kapton, but eventually it will have four layers: aluminum foil, Kapton, melamine foam,
and another layer of Kapton. Through this experiment, the EMC group hopes to expand their
current understanding of the fairing, as well as compare their computer simulations to an actual
test.

Throughout my experience here at NASA, I was lucky enough to have a wonderful
mentor and work with great and knowledgeable people. After working here for eight weeks,
have learned valuable researching techniques, I have learned how to develop programs, and most
importantly, I have been learned about and been exposed to a various amount of technical fields.
I would like to acknowledge: Fred Becker, Ron Brewer, Laura Brumm, TD Doan, Rick
Iacabucci, Andrew Lash, David Piryk, Linda Read-Ross, Steve Chance, Kevin Clinton, John
Giles, Priscilla Moore, Gary O’Neil, Dawn Trout, Lisa Valencia, Roger Spears, Richard Adams,
Jim Gerard, and most importantly, my mentor, James Stanley.

Appendix A

No, Nomenciature or
w7350 /51 Cloth (woven)
7/3501-6/T/51 Tape (UN)
eos3195- 20 £oam, Syntactic (100 TvK)
Aohacel 51 Foam, Rigis
EDB3195- MU)2 PER CO006
2216 B/A Grey Adheire M Corp

e s -

jostec Commang L2800 o 77 1 G sn
forasncon: Commna 0000 s i ¢) e
rtoce remat o 308 s ot 77 27 ot S

fron semserg 30 et e 77158 e L
Jowcares comvarmar® 38 voms e 7 G) S

D it B e et b i s Do

S TR Y T — | e " .
| BB —Swienswwew
LT fuim e jeoe | o =9
Semane i iwas hees hmus hecs jaeos] T
v Y ETT I T TN VT T T (7T
Steenp owt hens Deos L prean [sow

Uinear Thermal Expansion of Rohecet!

——————
‘
‘
\
i
:

Figure 2. Portion of Thermal Properties
Database.

SO e Nt

DS SR A 1 hE- & SR g e e EiE = |

Master process 0 on machine: freedom '
Server process 1 on machine: freedom
Server process 2 on machizme: freedom
Server process 3 on machize: freedom
Server process 4 on machize: freedom
Server process 5 on machine: freedom
Server process € on machine: freedom
Server process 7 on machize: freedom
Server process © oo machine: freedom
Server process 9 on machine: freedom
Server process 10 on machine: freedom
Server process 11 on machine: freedom
Server process 12 on machise: freedom
Sezver process 13 on machinme; freedom
Server process 14 on machime: freedom
Server process 15 on machine: freedom
Surface of all triangles iz mm: 22.4600

FAST MULTIPOLE METMOD (PWOM)

Multilevel MMM is used
Storage of some elements with single precision (saves memory)

Mumber of metallic triangles: 2604016 max. triangles:MAXNDR = 2604016

Fumber of dielectric triangles: 0

Number of diel. GO triangles: °

Nusber of FEM surface triangles: °

Nuwber of metallic t L] max. segments: MAXNSEG = °

Sumber dielectr./magmet. cuboids: ° max. cubcids: MAXNQUA = 0

Mumber of tetrabedral elements: 0 max. tetrah.: MAXNTETRA= o

Foaber of edges ia PO regionm: 2 max. edages: MMxPoEA - °

Sumber of wedges iz PO regiom: ° max. wedges: MAXPOKL - °

Nusber of Fock regions ° max. Fock reg. i MAXFOGE = o

Fumber of polygonal surfaces: ° max. surfaces: MAXPOLYT = °
Bax. cormer p.iMAXPOLYP = °

Nusber of UTD cylinders: 0

Number of metallic edges (MoM): 3906024 unkmown: 3906024 max. eages: MAOIFA - qe2e878
0 unkmown: 0 (magnet.) q
e b e 81 -

Figure 1. Output from Electromagnetic Simulation in .out file, very similar to Notepad/WordPad
document.

B0ES80

-

|
= o = o
e —————

Figure 2. The Matlab program before implementation of GUI Output of the program shown on
the left in Matlab Command Window. The purple lines denote the inputs a user can make to
manipulate the x-axis.

Vien Layout Tooks Help

inmo- ABBS DN >

o#
L)

ol

Figure 3. GUI Window Interface Construction. In addition to the code, this window constructer
allows the final product to function. As displayed, there are scroll menus, pop-up menus, and
even a graph.

50
a0
380
300
%0
200
"0
we

0

el o8 44 a4 2

Figure 4. End result of
Electromagnetic Modeling Analyzer
Program.

BEIRCLEAEERRYRRR2BNEBRBNRN

un-
F101824. IN

Hinimum: -0.855540
Baximum:1.653260

Peak to Peak: 2.508800

*2/2000/ .00019/10-Jun-2008/04:37:
F10192B. IN

Ninimum: -0.762440
Baximum:1.334760

Peak to Peak: 2.087200

*3/2000/ .00019/10-Jun-2008/04:37:
710182C. IN

Minimum: -1.021160
Baximum:0.674240

Peak to Peak: 1.695400

*4/2000/ .00019/10-Jun-2008/04:
F10192D.IN

Ninimum: -0.855540
Naximum:0.S77060

Peak to Peak: 1.832800

*5/2000/ .00018/ 10-Jun-2008/04:
F101S2E.IN

Ninimwum: -4.336500
Baximum:0.377300

Peak to Peak: 4.713800

*&/2000/ .00019/ 10-Jun-2008/04:
F10182r.1IN

Ninimum: -0.553700
Baximum:1.269100

Peak to Peak: 1.822800

*7/2000/ .00019/ 10-Jun-2008/04:
¥101926G.IN

Hinimum: -1.165220
Baximum: 0. 686980

Peak to Peak: 1.852200

*8/2000/ .00019/ 10-Jun-2008/04:
F101S3B. IN

Ninimwe: -1.282820

Bax imum: 1.823780

Peak to Peak: 3.106600

*9/2000/ .00019/10-Jun-2008/04:38:

Appendix C

Figure 2. End Result of the program. Both GUI Windows and the end
product of running analysis (Text on the left of the min/max/peak-to-peak).

9-

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

