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Abstract	 - 
Numerous tests of various multilayer insulation systems have indicated that there are 
optimal densities for these systems. However, the only method of calculating this 
optimal density was by a complex physics based algorithm developed by McIntosh. In 
the 1970's much data were collected on the performance of these insulation systems with 
many different variables analyzed. All formulas generated included number of layers and 
layer density as geometric variables in solving for the heat flux, none of them was in a 
differentiable form for a single geometric variable. It was recently discovered that by 
converting the equations from heat flux to thermal conductivity using Fourier's Law, the 
equations became functions of layer density, temperatures, and material properties only. 
The thickness and number of layers of the blanket were merged into a layer density. 
These equations were then differentiated with respect to layer density. By setting the first 
derivative equal to zero, and solving for the layer density, the critical layer density was 
determined. Taking a second derivative showed that the critical layer density is a 
minimum in the function and thus the optimum density for minimal heat leak, this is 
confirmed by plotting the original function. This method was checked and validated 
using test data from the Multipurpose Hydrogen Testbed which was designed using 
McIntosh' s algorithm. 

Introduction 
Multilayered insulation (MU) was first experimentally tested by Sir James Dewar in 
1900 when he experimented with three layers of aluminum foil. However, it was not 
until the late 1940s when Cornell described his layered radiation shield system that MLI 
was born.' Black, Fredrickson, Kropshot, and many others continued to research ML! 
mostly for applications involving long duration lunar and martian missions. 24 Their 
research often focused on trying to define the best insulation system for a specific 
mission. In the late 1960s and early 70s, Keller and Cunnington delivered the most 
complete set of data on several different types of MLI systems. 5 '6 Their tests were 
completed both on flat plate calorimeters and small tanks. Since the mid-1970's 
aerospace cryogenic engineering has seen a sharp decline in the quantity of research. The 
subject of variable densit' multilayer insulation (VD-MLI) was pioneered and patented 
by Dr. Glen McIntosh. 7' Many others studied the effects of layer density on ML! 
throughout the years preceding and following Dr. McIntosh's innovation. 912 While 
NASA claims that VD-MLI is the ultimate superinsulation others disagree.13'4 
There has been a long chain of research on optimizing MU systems, however none has 
focused on optimizing the layer density analytically. While several have shown that there



is an optimum density, none have shown an equation or method for determining such a 
density. 

The Basics of ML! Heat Transfer 
Heat transfer through multilayer insulation systems are assumed to be dominated by 
radiation. For this assumption to be true, the insulation system is usually operated in a 
high vacuum environment. The ideal MU system is made of floating shields that do not 
touch each other, however due to gravitational limitations this is not feasible and a low 
conductivity material is placed between the radiation shields so that they do not touch. 
The heat conduction through these spacers must be accounted for. Finally, even at high 
vacuum, gas molecules exist between the layers of radiation shields and spacers. All 
three modes of heat transfer are accounted for in equation 1. A more complete discussion 
of these modes is presented by McIntosh.8 
As noted by Hyde and Stuckey9, for every MLI system there is a layer density where heat 
transfer is minimized. This layer density is independent of thickness; it will be the same 
for all thicknesses given that the boundary temperatures and material stay the same, it is 
the balance point in a real MLI system between the conduction between layers and the 
number of radiation shields within a certain thickness. This can be generalized to state 
that for every layer within an MU system there is an optimal layer density, this is the 
basic premise of VD-MLI carried out to its logical conclusion. 
A few points of clarification are needed before proceeding further. First, it is well 
understood that decreasing the layer density while maintaining a constant number of 
radiation shields/layers will asymptotically decrease the heat flux through a flat plate, 
when the test chamber is at high vacuum. This is due to the effects of decreasing thermal 
contact of the radiation shields and increasing thickness of the spacers (an effect 
predicted by Fourier's law) between layers. Figure 1 shows heat flux for ML! with a 
constant number of layers for various published data sets for varying layer densities. It is 
important to notice that in theory, simple radiation models do not care about the layer 
density. They model floating shields that never touch and are separated by vacuum only.
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Figure 1: Heat flux as a function of layer density with a constant number of layers.24 

As can be seen from Figure 1, it appears that the lower the density of the MLI, the lower 
the heat leak is. However, this is offset by the increasing thickness of the blanket as the 
space between the layers increases. Seeing how every MLI blanket has a finite thickness, 
this thickness treated as such. Figure 2 shows the heat flux for MU with a constant 
thickness for the same data sets. Figure 2 shows that for the same conditions as in Figure 
1 with the exception of holding the thickness constant instead of the number of layers, for 
each of the published data curve fits, there is a minimum point. That minimum point is 
generally where conduction begins to take over as the dominant heat transfer mode and 
the curve breaks from the theoretical radiation lines. Again, it should be noticed that the 
blue and gold lines that represent theoretical radiation heat transfer only (the floating 
shield concept) are independent of layer density (at a constant thickness, increasing the 
layer density increases the number of shields, so the downward slope is due to the 
increased number of shields). 
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Figure 2: Heat Flux as a function of layer density for a constant thickness (1 inch). 

Figure 3 shows the heat flux, thermal conductivity, and estimated mass as a function of 
layer density for a constant number of layers. As previously shown in Figure 1, the heat 
flux decreases exponentially with the number of layers, however, when that is normalized 
to thickness (thermal conductivity) there is a minimum. Interestingly in comparison is 
the mass. The mass decreases exponentially as the layer density increases; this is because 
the surface area for every individual layer is decreased when the distance between the 
layers is decreased. In the later derivations, the mass of the blanket is not taken into 
account, though it could be through a complex set of equations to relate MU blanket 
area! density to layer density with a known tank surface area. A FORTRAN program has 
been developed by NASA which is capable of performing such analysis.15 

Equation Generation 
Quasi-empirical equations such as those from references 2 and 6, contain both layer 
density (N) and the number of layers (N) in them. In order to make the equations a 
function of layer density only, the equations for heat flux (QIA) are converted to thermal 
conductivity, k. As shown in Figure 4, the first derivative can then be taken with respect 
to layer density and set equal to zero. Solving for layer density yields an equation for the 
minimum heat flux normalized to thickness. 
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Figure 3: Heat Flux, Thermal Conductivity, and Estimated Mass for MU as a function of 
Layer Density with 40 shields. 

For example, the process will be demonstrated on the Lockheed equation for double 
aluminized mylar and Dacron net, where the mylar is 0.55% open due to perforations. 
First the heat flux is demonstrated by the following equation: 

c * AT 263 (i - r ) * (i + T ) C * * (i67 - T467) c * p * (T052 - 70.52)
q= s	 c	 R	 c	 + G	 (1) 

2*(N+1)	 N	 N 

Using Forier's law (equation 2), and assuming that the number of layers is sufficiently 
large (equation 3), the equation for heat flux can be transformed into a thermal 
conductivity (equation 4).

k=q*	 (2) 

NN+1
	

(3) 

k = 
c,, * AT 263 (T _T)*(Th +T )*& C *g*(7'4.67 T4.67)*& 
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This equation for thermal conductivity can then be simplified using equation 5 and 
algebra to get equation 6.
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Taking the first derivative yields: 

CR * * (T: 67 - T4•67 ) - CG * p * (T o.52 - TO.52)	
(7) 

	

=0.815C *0.63 *(T +)-	 (Th _T)*N2	 2 *(T —Ta) 

In order to solve for a critical point for the equation, the first derivative should be set to 
zero (equation 8), then solve for the critical point, the optimal layer density. 
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(8) 

E C * * (T: 67 - T67 ) + CG * p * (T:.52 - T°52 )ji-	
(9) N0 = L_R

	

0.81 5C5 * (Th2 - T2) 

Taking the second derivative (equation 10) shows that when all coefficients, Cr, Cs, and 
Cg are positive, that the second derivative will always be positive. This means that the 
critical point solved for in equation 9 is indeed a minimum according to the second 
derivative rule.

- 0.513C 2*{C *e*fr4.67 _TC467)+CG *p*fro.52 _T052)j 
+	 R (10) _9__	 o.37	 (Th_TC)*T3 

The equations derived in this manner are functions only of the materials (Cs, Cg, Cr, c) 
and environment (T2 , T 1 , P). Where Cs, Cg, and Cr are the coefficients of solid 
conduction, gas conduction, and radiation heat transfer, c is the emissivity of the radiation 
shields, T 1 and T2 are the cold and warm boundary temperatures respectively, and P is the 
environmental pressure (for P 1 0 Ton, or in the free molecular flow regime). 

C *2.63(T _TC )*(Th +Tc ) CR *e * fr 4.67 _T4.67) C *p*fr0.52 _TO.52) s	 Opt 

	

______________________	 c + G	 (11) q11=	
2*(N+1)	 N	 N 

Since the layer density is an input for these equations, the optimized density can be 
plugged back into the equations to solve for the heat flux as shown in equation 11. 
Similar equations can be derived for other equations, such as the Modified Lockheed 
Equation, developed at MSFC, with different coefficients.'6
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Validation of Theory 
In reference 6, three different sections are assumed for the variable density MLI, and each 
section has a separate layer density. Thus there is the opportunity to solve for three 
different optimized layer densities, one at each section. This was previously done by 
both Dr. Glen McIntosh and in designing the system defined in reference 7. The results 
of the above derivation (Figure 4) closely agree with the design parameters from 
reference 7. Dr. McIntosh's work was completed by hand calculations in a much 
different method than is presented here. No derivates were taken as his equations cannot 
be differentiated with respect to layer density.8 
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Figure 4: Optimal Layer Densities for Perforated Double Aluminized Mylar and Dacron 
Net ML! configurations as a function of boundary temperatures for P = 1 0 Ton. 

For boundary temperatures of 90 and 300 K, the optimal boundary layer densities for a 
three segment blanket in ratio of 10:15:20 layers are: 8:12:15 layers/cm. For a similar 
blanket with the cold boundary temperature of 20 K, the layer densities are: 6:12:15 
layers/cm. The current MHTB blanket, which was designed in that layer ratio was 
designed for layer densities of 8:12:16 layers/cm. 7 A simple excel routine has been 
developed to verify this calculation. This insulation system has been shown to be the 
most efficient and lightest cryogenic thermal insulation system designed.'2 

Conclusions 



A method for the determination of the optimal layer density for each individual MU 
blanket has been developed. This method uses existing semi-empirical equations based 
on large quantities of test data as the basis for the method. While it is often hard to 
physically match a desired layer density, various companies are working on methods of 
developing the low density MLI that is optimal for a majority of applications. 
Once an optimal layer density has been calculated, a simple trade can be run to determine 
the optimal thickness of the insulation blanket by calculating the heat flux verses number 
of layers at a constant layer density. 
This process of optimally designing MU blankets has been programmed to work in 
several cryogenic thermal insulation design tools. 

Acknowledgements 
The author would like to acknowledge both Dr. Glen McIntosh and Eric Hyde for sharing 
parts of their large knowledge base on multilayer insulation systems. 

References: 
1. W.D. Cornell, Radiation shield supports in vacuum insulated containers, US 

Patent No. 2,643,022, 1947. 
2. Black 
3. Fredrickson 
4. Kropschot 
5. "High-Performance Thermal Protection Systems, Final Report" Vol. I, Contract 

NAS8-20758. Lockheed Missile and Space Company, Sunnyvale, CA. Dec. 31, 
1969. 

6. Keller, C.W., Cunnington,G .R., and Glassford,A.P., "Thermal Performance of 
Multi-Layer Insulations," Final Report, Contract NAS3-14377, Lockheed 
Missiles & Space Company, 1974. 

7. McIntosh, G. E., "Layer by Layer MLI Calculation Using a Separated Mode 
Equation," Cryogenic Technical Services Inc., Boulder, CO. US Patent 5590054 

8. McIntosh, G.E. "Layer by Layer MU Calculation Using a Separated Mode 
Equation" Advances in Cryogenic Engineering, Vol. 39, Plenum Press, NY 

9. "Cryogenic Research at MSFC" Research Achievements Volume IV Report No. 2 
NASA TM X-64561, 1971. 

10. Fredrickson, Special Report #1 
11. Spradley, I.E., Nast, T.C., Frank, D.J. "Experimental Studies of Multilayer 

Insulation at Very Low Temperatures" Advances in Cryogenic Engineering. Vol. 
35A. 1990. Pg. 477-486 

12. Stochl, R.J., Dempsey, P.J., Leonard, K.R., and G.E. McIntosh, "Variable Density 
MU Test Results" Advances in Cryogenic Engineering Vol. 41, Plenum 

• Publishers, NY, 1996. pg. 101-107. 
13. Martin, J. J. and Hastings,L. J, "Large-scale Liquid Hydrogen Testing of a 

Variable Density Multilayer Insulation With a Foam Substrate," NASA-TM-
2001-211089, June, 2001. 

14. Mills, G.L. and



15. Johnson, W.L., Sutherlin, S.G., and S.P. Tucker, "Mass Optimization of 
Cryogenic Thermal Insulation Systems for Launch Vehicles" presented at AIAA 
Space 2008, San Deigo, CA. Sept. 9-11, 2008. 

16. Hedayat, A.; Hastings, L. J.; Brown, T. "Analytical Models for Variable Density 
Multilayer Insulation Used in Cryogenic Storage " Advances in Cryogenic 
Engineering (2002), 47B, 1557-1564. 

17. Chorowski, M., Grzegory, P., Parente, Cl., and G. Riddone, "Optimisation of 
Multilayer Insulation - an Engineering Approach" Presented at the 6th hR 
International Conference "Cryogenics 2000", October 10-13, 2000, Praha, Czech 
Republic.


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

