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Solar Flares Could Cripple Earth's Tech
Infrastructure in 2013

By Eric Mack, PCWorld  Jun 9, 2011 746 AM

This week's solar flare will likely go unnoticed by most people on Earth, but NASA says that might not
be the case two years from now, when a peak in solar activity could cause trillions of dollars in damage
to our high-tech infrastructure.
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Outline

 Cycle 24’s Long, Deep Minimum
e Cycle 24’s Wimpy Maximum
 How did this happen?




Cycle 24’s Long, Deep Minimum
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Spotless Days

Sunspot Numbers

The number of days without any sunspots was the highest we’ve seen in
100 years (true for both the peak number and the integrated number).
The smoothed sunspot number reached its lowest value in 100 years.

Smoothed Spotless Days per Month
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Cycle Length (Period)

The Length (Period from Minimum to Minimum) of Cycle 23 was longer
(147 months) than any other cycle in the last 150 years.

Sunspot Cycle Periods
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Cycle Overlap

Cycles usually overlap by 2-3 years. The first sunspot group of Cycle 24
appeared in January of 2008. The last sunspot group of Cycle 23 appeared
in March of 2009 — 14 months of overlap — the smallest on record (130 yrs).

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS
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Geomagnetic Activity and
Cosmic Rays

Geomagnetic activity reached its lowest level in 100 years while the
Cosmic-Ray flux measured by ground-based Neutron Monitors reach its
highest level on record (since 1953).

Smoothed Geomagnetic aa index
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Polar Fields

The strength of the polar field at cycle minimum was nearly half what it
was at the previous minima.

Wilcox Solar Observatory Polar Fields

-100

—
|—
=,
S
i o
e
(@)
c
QO
15
)
7p)
K
2
LL
1
£
o]
o

-200

-300
1970 1990 2000 2010




Solar Wind

The solar wind speed, density, and temperature and the interplanetary
magnetic field dropped to record low values during this minimum.

Solar Cycle 20 Solar Cycle 21 Solar Cycle 22 Solar Cycle 23
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Jian, Russell, & Luhmann (2011)

This was an exceptionally deep minimum by virtually all modern standards!




Cycle 24’s Wimpy Maximum




Geomagnetic Prediction

The level of the minimum in geomagnetic activity has been one of the
best predictors for the size of the next sunspot cycle. First used by
Ohl (1966), this is thought to be an indicator of polar field strength.
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The low geomagnetic activity levels indicated a peak smoothed sunspot
number of only 7018 for Cycle 24 — well below the average of ~114.




Polar Fields Prediction

The strength of the Sun’s polar fields near the time of sunspot cycle
minimum is expected to be a good predictor based on our
understanding of the Sun’s magnetic dynamo. This has worked very
well for the three observed sunspot cycles.

Wilcox Solar Observatory Polar Fields
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The weak polar fields indicated a Cycle 24 peak of 758 (Svalgaard,
Cliver, & Kamide 2005).




Polar Faculae as Proxy
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Munoz-Jaramillo et al. (2012) recently
showed that the number of polar faculae
seen on Mt. Wilson photographs by Neil
Sheeley is a good proxy for polar field
strength and flux. Furthermore, this polar
flux at minimum is well correlated with
the amplitude of the next cycle.
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Cycle 24 Rise to (Mini) Max

Fitting a parametric curve (Hathaway et al. 1994) to the monthly sunspot
numbers indicates peak sunspot number for Cycle 24 of ~70 in the Fall of
2013 — a Wimpy Cycle on all counts.

Cycle 24 Sunspot Number Prediction (February 2013)
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Flares and Sunspot Area

The number of flares (M-Class and X-Class) and the total sunspot areas
are both within the ordinary range relative to the sunspot number — e.g.
just what we would expect for a wimpy cycle.
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North-South Asymmetry

A fairly uniform measure of the asymmetry is the ratio of the difference
to the square-root of the sum - a good measure of expected variability.

The South dominated the decline of Cycle 23 while the North has
dominated the rise of Cycle 24 — but nothing really out of the ordinary.
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Halftime Conclusions

d The deep minimum and delayed start of Cycle 24
was due to the small size of Cycle 24 — small cycles
start late and leave behind low minima.

 The small size of Cycle 24 is a consequence of the
weak polar fields produced during Cycle 23.

» Why were the polar fields produced during Cycle 23
so weak?




How Did This Happen?




Flux Transport and the
Polar Fields - |

The mechanisms that produce the polar fields are clearly evident at the
surface. Magnetic flux emerges in the low-latitude active regions with
Joy’s Law tilt — leading polarity closer to the equator than the opposite,
following polarity.
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Flux Transport and the
Polar Fields - I

The magnetic flux is then transported across the surface in a random-walk
fashion by the non-axisymmetric convective motions (supergranules).

Four days from HMI.




Flux Transport and the
Polar Fields - lli

The supergranules are carried along with the axisymmetric flows —
Differential Rotation and the poleward Meridional Flow — and they carry
the magnetic elements with them.




Flux Transport and the
Polar Fields - IV

The strength of the polar fields depends upon:
1. The active region sources (how much flux and how much tilt)
2. The flux transport (Diffusion and Meridional Flow)
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Characterizing Diffusion

Hathaway et al. (2010) analyzed and simulated Doppler velocity data from
MDI. The simulated velocity pattern reproduces (with an evolving
spectrum of spherical harmonics) the velocity spectrum, the cell
lifetimes, and the cell motions in longitude and latitude.
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Characterizing Axisymmetric Flows

Hathaway & Rightmire (2010, 2011) measured the axisymmetric
transport of magnetic flux by cross-correlating 11x600 pixel strips
at 860 latitude positions between *75° from 60,000 magnetic images
acquired at 96-minute intervals by MDI on SOHO.
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Axisymmetric Flow Profiles

Rightmire-Upton, Hathaway, & Kosak (2012) extended the measurements
to HMI data and compared the results to the MDI measurements. The
flow profiles are in good agreement but with small, significant,
differences — DR is faster in HMI, MF is slower in HMI.

CR2096-2107

Northward Velocity (m s™)

Latitude Latitude

Average Differential Rotation Average Meridional Flow profile
profile with 20 error limits for with 20 error limits for MDI/HMI
MDI/HMI overlap interval. overlap interval.

These profiles can be well fit with polynomials to 4" order in sin(latitude).



Differential Rotation changes slightly. Meridional Flow changes significantly!
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Flow Profile Histories
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Synchronic Maps

We are constructing Synchronic Maps at a 15™ cadence using evolving
supergranules and the observed axisymmetric flows to transport flux with
data assimilated from MDI and HMI magnetograms at 96™ and 60™ intervals.
These maps can be used to determine the importance of the MF variations.




Final Conclusions

O Cycle 24 Minimum and the length of Cycle 23 were exceptional in
modern memory but similar to behavior seen ~100 years ago.

U The cause of this low minimum and long cycle can be attributed to
the wimpy size of Cycle 24 itself.

U The cause of this wimpy cycle was the weak polar fields produced
during Cycle 23.

O The likely cause of the weak polar fields in Cycle 23 was the fast
Meridional Flow late in the cycle (this still needs to be confirmed).

O The likely causes of the changes in Meridional Flow speed are the
thermal structures associated with active regions.
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