Inter-comparison and Assessment of AIRS Version-5 and Version-6 Temperature, Water Vapor, Surface Emissivity, and Cloud Products

Joel Susskind, John Blaisdell, Lena Iredell, Gyula Molnar

NASA GSFC Sounder Research Team (SRT)

AIRS Sounder Science Team Meeting
Greenbelt, MD

November 15, 2012
Comparisons of V6.07, V6.07 AO, and V5.0

Two types of evaluation

- 9 focus days, September 6, 2002 through September 14, 2012, validated against ECMWF truth
 Evaluated T_s^*, surface spectral emissivity ε_v^*, $T(p)^*$, $q(p)^*$
 Mean* and trends** of yields, RMS differences, and biases

- 12 monthly means for 4 different months in 3 different years
 Evaluated biases as well as trends of V6.07 T_{500}, q_{500}, W_A, $\alpha \varepsilon$, OLR and OLR$_{CLR}$ compared to V.5

Joel Susskind, John Blaisdell, Lena Iredell, Gyula Molnar
Surface Skin Temperature Difference
9-Day Average Daytime and Nighttime combined
50 N to 50 S Non-Frozen Ocean

<table>
<thead>
<tr>
<th>Version</th>
<th>QC=0, 1</th>
<th>Mean</th>
<th>STD</th>
<th>% Cases</th>
<th>Percent greater than [3] from mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version-6.07</td>
<td>-0.32</td>
<td>0.95</td>
<td>53.39</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>Version-6.07</td>
<td>-0.27</td>
<td>0.84</td>
<td>41.59</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>Version-6.07 Airs Only</td>
<td>-0.34</td>
<td>0.95</td>
<td>50.18</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>Version-6.07 Airs Only</td>
<td>-0.30</td>
<td>0.87</td>
<td>41.54</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>Version-5</td>
<td>-0.58</td>
<td>0.63</td>
<td>20.19</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>Version-5</td>
<td>-0.49</td>
<td>0.56</td>
<td>10.20</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

NASA
Version-6 accepts many more cases than Version-5, especially at moderate to high cloud fraction. RMS errors of both Version-5 and Version-6 SST grow slowly with increasing cloud fraction.
Version-6 Level-3 SST product has much better accuracy and spatial coverage than Version-5
Ocean Surface Emissivity vs. Zenith Angle

Mean 950 cm⁻¹ Emissivity minus Masuda
50 North to 50 South Ocean
9-Day

STD 950 cm⁻¹ Emissivity
50 North to 50 South Ocean
9-Day

Mean 2400 cm⁻¹ Emissivity minus Masuda
50 North to 50 South Ocean
9-Day

STD 2400 cm⁻¹ Emissivity
50 North to 50 South Ocean
9-Day
Day/night differences of land surface emissivity are much smaller in Version-6 compared to Version-5.
Version-6 T(p) retrievals with Data Assimilation QC have RMS errors \leq1K throughout troposphere.

Version-6 T(p) retrievals with Climate QC have much greater yield than Version-5 with small biases.

Differences between V6.07 and V6.07 AO are small.
Version-6 errors are smaller than Version-5, and Version-6 yields are higher than Version-5, especially at larger cloud fractions.
Global Temperature 9-Day Two Common Ensembles

Percent of All Cases
Accepted

Layer Mean RMS (°K)
Differences from ECMWF

[Graphs showing temperature and RMS differences for two ensembles, labeled with versions and QC criteria.]
Cases in Common Using the Version-5 Tight Ensemble

<table>
<thead>
<tr>
<th></th>
<th>Global TTM</th>
<th>BLM</th>
<th>Land ±50° TTM</th>
<th>BLM</th>
<th>Ocean ±50° TTM</th>
<th>BLM</th>
<th>Poleward of 50°N TTM</th>
<th>BLM</th>
<th>Poleward of 50°S TTM</th>
<th>BLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version-5</td>
<td>1.14</td>
<td>1.54</td>
<td>1.22</td>
<td>1.78</td>
<td>1.06</td>
<td>1.21</td>
<td>1.18</td>
<td>1.74</td>
<td>1.43</td>
<td>2.01</td>
</tr>
<tr>
<td>Version-6.07</td>
<td>0.94</td>
<td>1.35</td>
<td>0.94</td>
<td>1.49</td>
<td>0.86</td>
<td>1.00</td>
<td>0.98</td>
<td>1.54</td>
<td>1.28</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Cases in Common Using the Version-6.07 Climate Ensemble

<table>
<thead>
<tr>
<th></th>
<th>Global TTM</th>
<th>BLM</th>
<th>Land ±50° TTM</th>
<th>BLM</th>
<th>Ocean ±50° TTM</th>
<th>BLM</th>
<th>Poleward of 50°N TTM</th>
<th>BLM</th>
<th>Poleward of 50°S TTM</th>
<th>BLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version-5</td>
<td>1.56</td>
<td>2.84</td>
<td>1.75</td>
<td>2.92</td>
<td>1.43</td>
<td>2.70</td>
<td>1.51</td>
<td>2.95</td>
<td>1.70</td>
<td>2.96</td>
</tr>
<tr>
<td>Version-6.07</td>
<td>1.11</td>
<td>1.69</td>
<td>1.05</td>
<td>1.72</td>
<td>1.02</td>
<td>1.35</td>
<td>1.11</td>
<td>1.92</td>
<td>1.33</td>
<td>2.09</td>
</tr>
</tbody>
</table>

TTM is the average T(p) RMS difference from ECMWF over all 1 km layers from surface to 100 mb
BLM is the average T(p) RMS difference from ECMWF over the lowest 6 0.25 km layers
All Version-6 metrics are much better than Version-5, especially for the difficult climate ensemble
Version-5 had significant negative yield and tropospheric T(p) bias trends. These are significantly improved on in Version-6 and Version-6 AO.
Global Water Vapor 9-Day Statistics use their own QC

Version-6 has higher yield than Version-5 and performs better in the lower troposphere
Version-6 Level-3 total precipitable water is more accurate than Version-5
Global Water Vapor Trends (%/yr) 9-Day Statistics use their own Climate QC

1 Km Layer Mean

Percent Yield

Precipitable Water Bias vs. ECMWF

Negative yield and tropospheric water vapor trends are improved in Version-6 compared to Version-5

Joel Susskind, John Blaisdell, Lena Iredell, Gyula Molnar
Version-5 Level-3 products are known to have some spurious trends. We have compared global mean Level-3 Version-5 and Version-6.07 products to see how much Level-3 trends might improve in Version-6.

The following plots show monthly mean global mean time series of select Version-5 products and Version-6.07 products for the 12 months January, April, July, and October 2003, 2007, and 2011 which have been run.

We also show the “trendline” of Version-5 and Version-6.07 products defined as the linear least squares fit of the time series passing through the 12 months sampled by Version-6.

What is most important is the difference between Version-6 and Version-5 trendline slopes.

These results are shown for:

\[T_{500}, \ q_{500}, \ W_{TOT}, \ \alpha \varepsilon, \ OLR, \] and \[OLR_{CLR} \]
Global Time Series January 2003 through October 2011

500 mb Temperature (K/yr) 500 mb Water Vapor Mixing Ratio (g/kg) Total Precipitable Water (mm)

Effective Cloud Fraction (%) OLR (W/m²) Clear Sky OLR (W/m²)

AIRS V5 January 2003 through October 2011 AIRS V6.07 12 Months
AIRS V5 12 Months AIRS V5 minus AIRS V6.07
V5 trendline V6.07 trendline V5-V6.07 trendline

Joel Susskind, John Blaisdell, Lena Iredell, Gyula Molnar
Trendline slopes of Global Mean Time Series
January 2003 through October 2011

<table>
<thead>
<tr>
<th></th>
<th>OLR W/m²/yr</th>
<th>Clear Sky OLR W/m²/yr</th>
<th>Cloud Fraction %/yr</th>
<th>500 mb Temp K/yr</th>
<th>W_{TOT} mm/yr</th>
<th>q_{500} g/kg/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRS V5</td>
<td>-0.104</td>
<td>-0.040</td>
<td>0.260</td>
<td>-0.058</td>
<td>-0.039</td>
<td>-0.00325</td>
</tr>
<tr>
<td>AIRS V6.07</td>
<td>-0.038</td>
<td>-0.054</td>
<td>0.049</td>
<td>-0.006</td>
<td>0.012</td>
<td>0.00001</td>
</tr>
<tr>
<td>AIRS V5 minus AIRS V6.07</td>
<td>-0.066</td>
<td>0.014</td>
<td>0.211</td>
<td>-0.052</td>
<td>-0.050</td>
<td>-0.00326</td>
</tr>
</tbody>
</table>

V6.07 trendline slopes are closer to zero than those of V5
Comparison Summary

Version-6 is significantly improved with regard to Version-5 in every way with regard to T_s, ε_v, $T(p)$, $q(p)$, $\alpha\varepsilon$

OLR, OLR_{CLR} both agree better with CERES (not shown today)

Version-6 AO is roughly comparable to Version-5

Version-6 gets my blessing for release

Congratulations to the entire AIRS Science Team and supporting cast!
Short Term SRT Plans for Version-7

• Implement Neural-Net start-up option at SRT
 John expects to complete this by the end of November
 This is critical for optimal development and testing of further improvements

• Improve water vapor retrieval using Neural-Net start-up:
 channels, functions, damping parameters

• Improve temperature profile retrieval by using tropospheric 15 μm CO$_2$ channels that do not see clouds.
 Theory says that 15 μm CO$_2$ channels that see clouds should not be used in T(p) retrieval. Version-6 assures this by using only stratospheric sounding CO$_2$ channels in T(p) retrieval
 Many tropospheric 15 μm do not see clouds depending on the scene and can (should) be used in T(p) retrieval for that case
Longer term SRT Plans for Version-7

• Implement 1 (cross track) x 3 (along track) FOV retrieval system
 This triples the spatial resolution and density of the AIRS soundings
 Approach was previously attempted for Version-6 before Neural-Net implementation, but dropped because 1x3 soundings had degraded in harder cloud cases
 New Version-6 Neural-Net start-up allows for much better soundings under cloudier cases

• Perform cloud spectral emissivity retrievals
 Important for OLR calculation and radiance computation closure

• Attempt to include absorption by dust in the retrieval process
 This should improve retrievals in dusty scenes rather than (hopefully) rejecting them as done now

• Any other ideas that come up by us or other team members

Joel Susskind, John Blaisdell, Lena Iredell, Gyula Molnar