Hydrology Research with the North American Land Data Assimilation System (NLDAS) Datasets at the NASA GES DISC using Giovanni

David M. Mocko\(^1,2\), Hualan Rui\(^3,4\), and James Acker\(^3,4\)

Acknowledgements:

NASA GES DISC: Bill Teng, Guang-Dih Lei, Bruce Vollmer
NOAA/EMC: Youlong Xia, Michael Ek, Jiarui Dong
NASA Hydrological Sciences Lab: Christa Peters-Lidard and Sujay Kumar
Kenneth Mitchell, Kingtse Mo, and the rest of the NLDAS team (including at Princeton Univ., Univ. of Washington, NOAA's EMC, CPC, & OHD).
Former NASA NLDAS participants: Brian Cosgrove and Charles Alonge

1 – Hydrological Sciences Laboratory, NASA/GSFC, Greenbelt, MD
2 – SAIC, Beltsville, MD; 3 – NASA GES DISC, Greenbelt, MD; 4 – ADNET, Lanham, MD
Introduction of the North American Land Data Assimilation System (NLDAS) datasets

- Phase 1 (1996 – 2007) and Phase 2 (1979 – present)

Images and stories from NLDAS datasets using Giovanni at the NASA GES DISC

- A look at the 29 Jun 2012 U.S. derecho and Hurricane Isaac, along with stories on previous tropical systems, winter snow, etc.

What’s coming soon with NLDAS datasets

- Monthly and climatological NLDAS datasets
- Additional NLDAS land-surface model (LSM) datasets

The next phase of NLDAS

- Assimilation of remotely-sensed soil moisture and snow
NLDAS Phase 1 and Phase 2

- NLDAS Phase 1 datasets extend from 1 Aug 1996 to 31 Dec 2007
- NLDAS Phase 2 datasets extend from 1 Jan 1979 to present
- All NLDAS datasets are hourly and on an 1/8th deg. resolution (approximately 12km) over a CONUS domain, including parts of Canada/Mexico (25-53 °N; 125-67 °W)
- Both phases of NLDAS use a best-available blend of observations and reanalyses to create a land-surface model (LSM) forcing dataset to drive separate LSMS to produce output of soil moisture, fluxes, snow, soil temperatures, runoff, etc.
- Phase 2 (Xia et al., 2012, JGR) is the current real-time system, and includes improvements to the surface forcing and to the LSMS over the initial Phase 1 system (Mitchell et al., 2004, JGR)
- Phase 2 datasets are updated daily with a typical four-day lag
NLDAS Phase 2 Forcing Data

- The **model-based fields** are derived from the NCEP North American Regional Reanalysis (NARR) analysis fields:
 - NARR surface data used as base (3 hourly, 32km, Jan 1979 – present)
 - Elevation correction for temperature, pressure, humidity, and longwave
 - Includes 21 standard surface/2m/10m and lowest model layer forcing fields
 - NARR also has a real-time continuation product known as the Regional Climate Data Assimilation System (R-CDAS) from 2003 to present

- The **observation fields** used as part of NLDAS-2 include:
 - NARR’s surface-based downward shortwave radiation (SWdown) is bias-corrected using GOES UMD SRB SW data
 - Hourly NLDAS precipitation based on CPC daily PRISM-corrected gauge data, hourly Stage II Doppler radar data, half-hourly CMORPH, hourly HPD data, and 3-hourly NARR model data (depending on location and availability)
NLDAS Phase 2 Forcing Data

- List of Earth Observations in the NLDAS-2 forcing along with coverage dates and temporal and spatial resolutions of the data:

<table>
<thead>
<tr>
<th>Forcing</th>
<th>Coverage</th>
<th>Temporal Resolution</th>
<th>Spatial Resolution</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NARR Model</td>
<td>1979-2003</td>
<td>3 Hourly</td>
<td>32km</td>
<td></td>
</tr>
<tr>
<td>R-CDAS Model</td>
<td>2003-Present</td>
<td>3 Hourly</td>
<td>32km</td>
<td>Realtime version of NARR</td>
</tr>
<tr>
<td>GOES Radiation</td>
<td>1996-2000</td>
<td>Hourly</td>
<td>1/8th degree</td>
<td>Used to bias correct NARR</td>
</tr>
<tr>
<td>CPC PRISM Gauge</td>
<td>1979-Present</td>
<td>Daily</td>
<td>1/8th degree</td>
<td>Used over CONUS, Mexico</td>
</tr>
<tr>
<td>CPC Gauge</td>
<td>1979-Present</td>
<td>Hourly</td>
<td>2 X 2.5 degree</td>
<td>Used over CONUS</td>
</tr>
<tr>
<td>CMORPH Precip</td>
<td>2002-Present</td>
<td>1/2 Hourly</td>
<td>8km</td>
<td>Used over CONUS, Mexico</td>
</tr>
<tr>
<td>Stage II Precip</td>
<td>1996-Present</td>
<td>Hourly</td>
<td>4km</td>
<td>Used over CONUS</td>
</tr>
</tbody>
</table>

- An important point to keep in mind is that the CPC PRISM-corrected gauge-based daily 1/8th-degree precipitation analysis is used as the forcing in NLDAS-2, and the other datasets are used to temporally disaggregate the daily values into hourly amounts.

- Additional details on the products used for this disaggregation depending on location within the domain and data availability are found in the following slide.
Generation of NLDAS-2 precipitation

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Years</th>
<th>CONUS</th>
<th>Mexico</th>
<th>Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC daily gauge analysis</td>
<td>1979 – present</td>
<td>1/8<sup>th</sup>-degree PRISM-adjusted analysis</td>
<td>1/4<sup>th</sup>-degree (before 2001, 1-degree) analysis</td>
<td>Not used</td>
</tr>
<tr>
<td>Stage II Doppler hourly 4-km radar data</td>
<td>1996 – present</td>
<td>1<sup>st</sup> choice to temporally disaggregate</td>
<td>Not used</td>
<td>Not used</td>
</tr>
<tr>
<td>CMORPH satellite-retrieved half-hourly 8-km analysis</td>
<td>2002 – present</td>
<td>2<sup>nd</sup> choice to temporally disaggregate</td>
<td>1<sup>st</sup> choice to temporally disaggregate</td>
<td>Not used</td>
</tr>
<tr>
<td>CPC HPD 2x2.5-degree hourly analysis</td>
<td>1979 – present</td>
<td>3<sup>rd</sup> choice to temporally disaggregate</td>
<td>2<sup>nd</sup> choice to temporally disaggregate</td>
<td>Not used</td>
</tr>
<tr>
<td>NARR/R-CDAS 3-hourly 32km model-simulated precipitation</td>
<td>1979 – present</td>
<td>4<sup>th</sup> choice to temporally disaggregate</td>
<td>3<sup>rd</sup> choice to temporally disaggregate</td>
<td>Used for all precip over Canada areas; a 1-degree blend near U.S.-Canada border is done.</td>
</tr>
</tbody>
</table>
Generation of NLDAS-2 precipitation

Over CONUS, CPC PRISM-adjusted daily gauge analyses are temporally disaggregated to hourly, primarily using Stage II Doppler radar data. If the radar data is unavailable, the following datasets are used instead, in order of availability: CMORPH analyses, CPC HPD hourly analysis, and then NARR model-simulated precipitation. Different data/methods used over Canada/Mexico.
Matsui et al. (2010) examined the diurnal cycle of summertime precipitation in NLDAS over CONUS. Zonal phase speeds of the precipitation were estimated and compared to background zonal wind speeds from the MERRA reanalysis.
NLDAS-2 Land Surface Model (LSM) Reanalysis Datasets

- NLDAS-2 surface meteorological forcing is used to drive a suite of four LSMs, from both the meteorological (Noah and Mosaic) and hydrological (VIC and Sacramento) communities.

- Common model parameters are used with these models, such as:
 - Land mask/cover datasets from AVHRR
 - Albedo, greenness, and LAI/SAI climatologies
 - STATSGO (for CONUS) and FAO (outside CONUS) soil info
 - GTOPO-30 ~1-km elevation dataset

- The LSMs produce hourly outputs of soil moistures/temperatures, snow, runoff, evapotranspiration, fluxes. Streamflow values are also calculated from routing the runoff (Lohmann et al., 2004, JGR).

- A near real-time NLDAS Drought Monitor webpage is updated daily using a long-term climatology for each NLDAS-2 LSM.
Evaluating NLDAS-2 LSM Results

- (1) Top 2m soil moisture and (2) runoff anomalies for both the 1988 drought (left panels) and 1993 wet (right panels) years for the four NLDAS LSMs

Xia et al. (2012): Part 1, JGR-Atmos.
Streamflow Comparisons

- Correlation coefficients between mean observed and simulated streamflow anomalies for the four models and their multi-model ensemble mean (EM) for years, 1979-2008

- Top figure: For monthly means (961 basins)

- Bottom figure: For daily means for 8 major U.S. river basins

Xia et al. (2012): Part 2, JGR-Atmos.
NLDAS-2 model data are also used in a near-real-time drought monitor (with anomalies/percentiles against 1980-2007 NLDAS-2 climatologies).

Examples of (1) soil moisture percentiles and (2) streamflow anomalies from the NLDAS Drought Monitor is shown to the right.

Anomalies (based on a 28-year mean value for the DOY) and percentiles (with a 5-day moving window) are calculated as current, past week, and past month values.
NLDAS data/services at the GES DISC

- Hydrology DISC (HDISC)
 http://disc.gsfc.nasa.gov/hydrology/

- GrADS Data Server (GDS)
 http://hydro1.sci.gsfc.nasa.gov/dods/

Data is available via 4 methods:
1) Mirador searching, subsetting, and downloading
2) Giovanni online visualization and analysis
3) anonymous ftp
4) a GDS.

Currently, NLDAS-1 forcing as well as NLDAS-2 forcing and Mosaic and Noah model output datasets are available.
LDAS Datasets Added to CUAHSI

The GES DISC has integrated NLDAS & GLDAS data into the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS):

- A Web Service that provides the data as a time series along with corresponding metadata in WaterML
- Schematic on left shows data access using the CUAHSI HIS client HydroDesktop; the data can be searched, retrieved, and analyzed along with hydrological data from other sources available via HIS.

1. NASA Hydrologic Data Access from HydroDesktop (an example)
A significant heat wave occurred over Texas and Oklahoma during July and August 2011

Giovanni created images of (left) a snapshot from an animation of hourly temperatures and (right) an area-average time-series of the 2-m above ground air temperature from the NLDAS-2 forcing.

http://disc.sci.gsfc.nasa.gov/gesNews/steamly_heat_on_plains
These figures show differences in winter snow cover and temperatures for DJF 2011 (snowy) and 2012 (not snowy)

http://disc.sci.gsfc.nasa.gov/gesNews/nldas_warm_winter_part_2
Tropical Storm Lee made landfall on the Gulf Coast and brought rainfall and increased soil moisture to the East.

http://disc.sci.gsfc.nasa.gov/gesNews/nldas_views_ts_lee
A severe derecho traveled from Iowa/Illinois through to the Mid-Atlantic on 29 Jun 2012. Heavy precipitation and strong winds resulted in widespread power outages. The left figure is from Giovanni and the right figure is from the National Weather Service.

http://disc.sci.gsfc.nasa.gov/giovanni/giovanni_user_images#derecho
Hurricane Isaac made landfall in Louisiana and brought intense rainfall. Before and after soil moisture anomalies from the NLDAS Drought Monitor are also shown.
Future NLDAS Datasets/Products

- **Coming soon: NLDAS monthly and climatology datasets for Phase 1 and Phase 2**
 - Monthly-mean fields (from the current hourly datasets) for the forcing and the LSM outputs will be released at the GES DISC
 - Monthly climatological fields will also be provided

- **Coming soon: NLDAS Phase 2 VIC and Sacramento LSM hourly datasets**
 - VIC and Sacramento currently available at NOAA/EMC only via ftp, but will be brought to the GES DISC and made available in Giovanni

- **A year or two from now: next phase of NLDAS**
 - The next phase of NLDAS will include new and upgraded LSMs and include data assimilation of remotely-sensed soil moisture and snow
 - The NASA-developed Land Information System (LIS) will be used as the software framework
The Land Information System (LIS)

- LIS is a flexible land-surface modeling and data assimilation framework developed with the goal of integrating satellite- and ground-based observational data products with land-surface models.

- LIS can use different LSMs, forcings, parameter datasets, observations, and includes modules for data assimilation and parameter optimization techniques.

- In addition to being run in an offline/uncoupled mode, LIS can also run coupled to the WRF forecast model.
The next phase of NLDAS is currently in development, and will include new and upgraded LSMs using the Land Information System (LIS) software framework; LIS was developed within the Hydrological Sciences Laboratory (HSL) at NASA/GSFC.

The LIS framework will allow data assimilation of soil moisture and snow products to help improve drought diagnosis using NLDAS.

Outputs will be extensively evaluated against numerous observations using the NASA/HSL’s Land surface Verification Toolkit (LVT).

List of parameters, resolution, and satellite sensors of data to be used:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Spatial Resolution</th>
<th>Satellite Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snow covered area (SCA)</td>
<td>500m</td>
<td>Terra/Aqua MODIS</td>
</tr>
<tr>
<td>Snow water equivalent</td>
<td>25-km</td>
<td>Aqua AMSR-E</td>
</tr>
<tr>
<td>SCA & SWE</td>
<td>25-km</td>
<td>ANSA</td>
</tr>
<tr>
<td>Soil moisture</td>
<td>25-km</td>
<td>Aqua AMSR-E</td>
</tr>
</tbody>
</table>
Soil moisture data assimilation to improve ET

How does soil moisture data assimilation improve (ET) evapotranspiration estimates?

Assimilation of LPRM retrievals of AMSR-E soil moisture into Noah LSM

ET estimates are evaluated against FLUXNET and MODIS-based datasets

Panels show improvement metrics in red [RMSE diffs]

<table>
<thead>
<tr>
<th>Noah v3.2 Qle</th>
<th>FLUXNET (W m⁻²)</th>
<th>MOD16 (W m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RMSE</td>
<td>Bias</td>
</tr>
<tr>
<td>Open-loop</td>
<td>27.6 ± 0.3</td>
<td>12.9 ± 0.4</td>
</tr>
<tr>
<td>LPRM DA</td>
<td>25.6 ± 0.3</td>
<td>10.9 ± 0.3</td>
</tr>
</tbody>
</table>

Evaluating Snow Assimilation Results

- Non-assimilated open-loop (“OL”) simulations compared with assimilated (“SNOWDA”) and observations (“CMC”), which are included for an independent evaluation of the simulations.

- Validation performed with the U. S. NOAA/NWS COOP stations

<table>
<thead>
<tr>
<th></th>
<th>RMSE (mm)</th>
<th>Bias (mm)</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>OL</td>
<td>212 +/- 10.7</td>
<td>-130.0 +/- 11</td>
<td>0.63 +/- 0.01</td>
</tr>
<tr>
<td>CMC</td>
<td>197 +/- 8.0</td>
<td>-85.9 +/- 8.0</td>
<td>0.70 +/- 0.01</td>
</tr>
<tr>
<td>SNOWDA</td>
<td>152 +/- 8.5</td>
<td>-77.6 +/- 8.19</td>
<td>0.77 +/- 0.01</td>
</tr>
</tbody>
</table>
Summary

- NLDAS is a successful collaboration project that’s produced over 32 years of hourly 1/8th-degree surface forcing and land-surface model output over CONUS and parts of Canada/Mexico.
- NLDAS integrates many different Earth Observations in the creation of the surface forcing as well as in the LSMs to produce model output of soil moisture, evaporation, snow pack, runoff, and surface fluxes.
- The NASA GES DISC provides many NLDAS datasets/services; Giovanni-created images and stories have examined numerous tropical storms, the 29 Jun 2012 derecho, winter snow, heat waves.
- NLDAS monthly, climatological, and VIC/Sacramento dataset will soon be added to the NASA GES DISC.
- The next-generation of NLDAS will include upgraded LSMs as well as data assimilation of soil moisture and snow products towards improved diagnosis of drought and initial conditions for forecasts.
Acknowledgements

- The hourly NLDAS forcing and LSMs datasets
 - Brian Cosgrove, Charles Alonge, Youlong Xia, Michael Ek, Kenneth Mitchell, Kingtse Mo, Yun Fan, Justin Sheffield, Eric Wood, and the NLDAS team

- Assimilation of Hydrological and Meteorological Observations in NLDAS (via LIS)
 - Christa Peters-Lidard, Sujay Kumar, Kristi Arsenault, Youlong Xia, Michael Ek, and Jiarui Dong

- NLDAS dataset availability and services provided by the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)
 - Hualan Rui, Bill Teng, Guang-Dih Lei, James Acker, Bruce Vollmer, and Henry Fang
 - Collaborations with AquaTerra and CUAHSI
NLDAS & LIS websites

- NLDAS at NASA:
 http://ldas.gsfc.nasa.gov/nldas/

- NLDAS datasets at the NASA GES DISC:
 http://disc.gsfc.nasa.gov/hydrology/

- NLDAS at NOAA/NCEP/EMC:
 http://www.emc.ncep.noaa.gov/mmb/nldas/

- LIS website at NASA:
 http://lis.gsfc.nasa.gov/

Please sign up for the LDAS mailing list!