Abstract
The Structures & Materials Discipline within the NASA Subsonic Rotary Wing Project is focused on developing rotorcraft technologies. The technologies being developed are within the task areas of:

- 5.1.1 Life Prediction Methods for Engine Structures & Components
- 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life
- 5.2.1 Crashworthiness
- 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing
- 5.3.1 Propulsion High Temperature Materials
- 5.3.2 Lightweight Structures and Noise Integration

The presentation will discuss rotorcraft specific technical challenges and needs as well as details of the work being conducted in the six task areas.
NASA Subsonic Rotary Wing Project -
Structures & Materials Discipline

Michael C. Halbig - Associate Principal Investigator (API)
Contact info: (216) 433-2651, Michael.C.Halbig@nasa.gov

Susan M. Johnson – Associate Project Manager (APM)
Contact info: (216) 433-2163, Susan.M.Johnson@nasa.gov

Fundamental Aeronautics Program Annual Meeting
Atlanta, GA, October 7-9, 2008.
Outline

- Project Structure and Technology Focus

- Tasks Areas
 5.1.1 Life Prediction Methods for Engine Structures & Components (GRC)
 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life (GRC)
 5.2.1 Crashworthiness (LaRC)
 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing (LaRC)
 5.3.1 Propulsion High Temperature Materials (GRC)
 5.3.2 Lightweight Structures and Noise Integration (LaRC/GRC)

- Collaboration Mechanisms and Current NRAs
The Structures & Materials Discipline within SRW

Mission Directorates
- Exploration Systems
- Aeronautics Research
- Science
- Space Operations

Programs
- Airspace Systems
- Fundamental Aeronautics
- Aviation Safety
- Aeronautics Test

Projects
- Subsonic Fixed Wing
- Subsonic Rotary Wing
- Supersonics
- Hypersonics

Disciplines
- Acoustics
- Aeromechanics
- Propulsion
- Flight Dynamics & Control
- Structures & Materials
- Experimental Capabilities
- Multi-Disciplinary Analysis and Technology Development
The SRW Project Management Structure

Fundamental Aeronautics Program Director
Dr. Juan Alonso

SRW Principal Investigator
Susan Gorton

Project Scientist
Isaac López

Special Projects
DoD Liaison: Mike Watts
NRTC Liaison: Dan Dugan

Special Projects
JPDO Liaison:
Odilyn Santa Maria

NRA Manager:
Karen Crandall

Project Manager
Barbara Esker

Project Scientist
Susan Johnson

Associate Principal Investigators

Experimental Methods
Luther Jenkins

Propulsion
Dr. Chris DellaCorte

Aeromechanics
Tom Norman

Acoustics
Dr. David D. Boyd

Structures & Materials
Michael C. Halbig

Multi-Disciplinary Analysis & Technology
Dr. Gloria Yamauchi

Flight Dynamics & Control
Bill Decker

Associate Project Managers

Odilyn Santa Maria

Susan Johnson

Bob Kufeld

Dan Dugan

Business Team
Deb Findley
Lead Analyst
Julie Fowler
Sandra Young
Unique Structures and Materials Issues For Rotorcraft

- **Propulsion system**
 - Turboshaft engines vs emphasis on turbofans for fixed wing
 - Higher temperature materials for improved efficiency, higher horsepower, reduced weight, and reduced emissions
 - Engine mission cycle
 - Short duration flight with hover and lift requirements (low cycle fatigue)
 - Low altitude flight with take-off from unimproved sites (erosion)

- **Airframe**
 - Unique durability and damage tolerance requirements
 - Local skin buckling is allowed in normal operation to minimize weight
 - Crashworthiness
 - Seats and other energy absorbing structures contribute significantly to human occupant survivability
 - Must limit cabin volume reduction caused by heavy engine/transmission located on top of fuselage structure

- **Propulsion/airframe integration**
 - Interior cabin noise caused by structure-born vibration from the gearbox

- **Main rotor structures**
 - High axial loads combined with bending
 - Particulate and rain erosion
 - Challenges with fabrication and integration of controls and data acquisition systems
Outline

- Project Structure and Technology Focus

- Tasks Areas

 5.1.1 Life Prediction Methods for Engine Structures & Components (GRC)
 5.1.2 Erosion Resistant Coatings for Improved Turbine Blade Life (GRC)
 5.2.1 Crashworthiness (LaRC)
 5.2.2 Methods for Prediction of Fatigue Damage & Self Healing (LaRC)
 5.3.1 Propulsion High Temperature Materials (GRC)
 5.3.2 Lightweight Structures and Noise Integration (LaRC/GRC)

- Collaboration Mechanisms and Current NRAs
Objective
- Identify, evaluate and model key variables controlling fatigue life of rotary wing superalloy turbine disks:
 - Non-metallic inclusions
 - Machining damage

Approach
- Experimental
 - Study machining parameters of broaching speed, tool life (sharpness), and post-processing surface treatments
 - Determine the effect of extrusion and forging strains on the size and shape of inclusions
 - Perform LCF testing on realistic forging shapes
- Computational
 - Development of the Probabilistic Life Prediction Model to Account for presence of inclusions in Nickel Powder Metallurgy (P/M) Turbine Components
 - Integrate NASA GRC developed probabilistic life prediction method into the DARWIN probabilistic damage tolerance based life prediction code

Current collaborations
- Honeywell - contract for machining study
- Southwest Research Institute - implementation of probabilistic life prediction methodology into the Darwin code
The probability of failure depends on materials, processing, damage, design, and engine operating conditions.

- Ceramic inclusions are the primary flaw in powder metallurgy superalloys.
- Processing affects the local alloy microstructure and flaw distribution.
- Surface defects occur as a result of machining, finishing, and damage.

Machining Studies and Stress Analysis

Broach slot indicating regions of interest for microstructural evaluation and residual stress determination.

Disk Stress Modeling

Stress distribution in a sector model of a stage two gas generator turbine disk.
• **Objectives**
 – Develop erosion models for realistic engine conditions in the turbine
 – Develop thermal barrier coatings with improved erosion resistance

• **Approach**
 – Experimental
 • Add oxides to zirconia-yttria ceramic coatings to improve toughness
 • Perform erosion tests at U of Cincinnati and at NASA
 – Computational
 • Develop a mechanics-based erosion model that accounts for sintering of the coating

• **Current collaborations**
 – University of Cincinnati (NRA, PIs: Tabakoff and Hamed) - “Experimental and Numerical Simulation of TBC Erosion in Gas Turbines”
 – Aviation Applied Technology Directorate - blades and lead for possible future engine test
 – Howmet: PVD doped zirconia TBCs
 – Army SBIR Phase II with Directed Vapor Technologies International, Inc. - collaboration and integration
 – Engine companies - contacts and possible supply of new scrap blades
Erosion resistance of turbine blade thermal barrier coatings

- Ingested particulates and carbon particles cause erosion
- The best (lowest thermal conductivity) coatings have poor erosion resistance
- Erosion models currently do not account for thermally-induced material changes
- The burner erosion rig can be run in the coatings screening mode or the model validation mode

Mach 0.3 - 1.0 burner erosion rig at NASA GRC

Candidate Thermal Barrier Coatings for Turbine Blade Applications are Doped Zirconia-Yttrias
• Objectives
 – Demonstrate advanced structural concepts for crash energy management
 – Improve predictive capabilities for structural impact and multi-terrain impact

• Approach
 – Demonstrate energy absorbing concepts by component crash testing
 – Validate advanced simulation methods through component and full scale testing
 • Tests to evaluate HeloWerks skid gear are completed
 • Crash tests of two MD 530 helicopters are planned – one with external airbags and the second with a deployable energy absorber

• Current collaborations
 – U.S. Army Aviation Applied Technology Directorate (AATD) – Survivable, Affordable, Repairable Airframe Program (SARAP) test
 – Bell Helicopter, Sikorsky, Boeing - Information exchange on future crash testing
 – Stanford (NRA, PI: Fu-Kuo Chang) – “Crash Energy Absorption of Composite Rotorcraft Structures”
Vertical Drop Test of the Sikorsky Test Validation Article (TVA) – Survivable, Affordable, Repairable Airframe Program (SARAP)

Composite fuselage section shown in the load test machine at AATD.

Deployable Energy Absorber (DEA) concept developed at NASA LaRC

Linear deployment

Radial deployment

Fuselage retrofit

LS-DYNA model

WASP Skid Gear

LS-DYNA shell skid gear analysis model and test article.
Objective

- Improve the durability and damage tolerance of composite rotorcraft structure

Approach

- Perform fatigue tests on stiffened thin skin specimens to determine if z-pinning combined with a self healing matrix can reduce delamination and improve fatigue life
- Measure residual compressive strength of impacted sandwich structures
 - Identify failure modes
 - Develop new analytical techniques to predict residual strength
- Use flex beam specimens (high axial loading with bending) to evaluate the effect of embedded sensors on fatigue life in rotor structures

Current collaborations

- Center of Rotorcraft Innovation (CRI) - SAA through NASA Aircraft Aging and Durability Project, “Development of a Delamination Fatigue Methodology for Composite Structures”
- Bell Helicopters – Supplier of flex beams with embedded sensors
Approaches for improved durability and damage tolerance

Self healing matrix combined with through thickness reinforcement to improve fatigue life

Effect of embedded sensors on fatigue life of rotor structures

Flex beam specimen test

Self healing matrix combined with through thickness reinforcement to improve fatigue life

- Z-pin reinforced composite flange
- Micro-encapsulation technique for self-healing

Failure modes and analysis methods for alternative sandwich structures and core materials

- Loading platen
- Sandwich specimen
- Impact site
- Shadow moiré grid
- End fixture
- Failure
• Objectives
 – Determine advantages of substituting metallic material with monolithic ceramics (i.e. \(\text{Si}_3\text{N}_4 \)) and fiber reinforced ceramic matrix composites (CMCs) (i.e. \(\text{SiC}/\text{SiC} \)) for:
 • turbine engine components
 • transmission components.

• Approach
 – Perform engine system analysis and trade-off studies to determine the feasibility and benefits of using advanced monolithic and CMC in a T-700 engine.
 – Design and predict stress in turbine components of advanced materials.
 – Develop joining technology for fabricating complex shaped ceramic components and for integration with dissimilar materials (i.e. metal alloy).
 – Fabricate/procure and test components.

• Current collaborations
 – Coatings for silicon nitride
 • Ceramatech (coating development)
 • Cleveland State University (coating development and modeling)
Trade Study for Using Uncooled Ceramics in the Power or Low Pressure Turbine (LPT)

The stages of a T700 turbo-shaft engine. Note: HP-High pressure; HPT-High pressure turbine, S-Stator (Vane), R-Rotor (Blade)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>With LPT bleed (Baseline)</th>
<th>No LPT bleed (Match T4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3, 1R (°C)</td>
<td>1319 (400)</td>
<td>1432 (522)</td>
</tr>
<tr>
<td>T4, 1R (°C)</td>
<td>3063 (429)</td>
<td>3063 (429)</td>
</tr>
<tr>
<td>T41, 1R (°C)</td>
<td>2655 (1333)</td>
<td>2685 (1330)</td>
</tr>
<tr>
<td>T45, 1R (°C)</td>
<td>2128 (909)</td>
<td>2141 (916)</td>
</tr>
<tr>
<td>T49, 1R (°C)</td>
<td>2060 (871)</td>
<td>2141 (916)</td>
</tr>
<tr>
<td>Mass flow (lb/s)</td>
<td>10.48</td>
<td>11.35</td>
</tr>
<tr>
<td>BSFC (lb/hr/ftp)</td>
<td>0.4507</td>
<td>0.3954</td>
</tr>
<tr>
<td>HP shaft speed (rpm)</td>
<td>44000</td>
<td>47145</td>
</tr>
<tr>
<td>Ratio of (HP shaft speed/Base line shaft speed)</td>
<td>1</td>
<td>1.07</td>
</tr>
<tr>
<td>Power turbine shaft power (hp)</td>
<td>1800</td>
<td>2371</td>
</tr>
</tbody>
</table>

For case of no LPT bleed and T4 matching, uncooled LPT components offer:
- 31% increase in turbine shaft power
- 11% decrease in BSFC

Joining and Integration of Ceramics

Polished cross-sections of Si3N4 joined to Si3N4 using Ticusil braze (left), and Si3N4 using Copper-ABA braze (right), and Inconel 625 using Ticusil braze (below).
17

Fundamental Aeronautics Program Annual Meeting, October 7-9, 2008

Subsonic Rotary Wing Project

SRW Discipline: Structures & Materials
5.3.2 Lightweight Structures and Noise integration (LaRC/GRC)
POC: Rob Bryant, LaRC; Chris Johnston, GRC

• Objectives
 – Develop lightweight materials and structures for cabin treatment
 – Develop methods for improved passive and active control of noise and vibration

• Approach
 – Develop low density open cell absorber/core materials (polyimide foam, aerogels, hybrids)
 – Provide composite materials to the Acoustics Discipline for vibration testing and modeling
 – Review past work in passive and active control of noise and vibration and assess the potential for improvement with current materials and structures technology

• Current collaborations
 – Polyumac Inc. (licensed NASA LaRC polyimide foam technology)
 – Patz Materials and Technologies (SBIR) - “Optimized Cellular Core for Rotorcraft”
 – Bell - Informal discussions on composite panel design for vibration testing and modeling
 – Ohio State University’s Smart Vehicle Concept Center – assessment of the state of the art in active and passive noise control
Goal is to reduce cabin noise without increasing weight

- Current work is focused on development of lightweight bulk absorbing materials and controlling the open cell structure to optimize sound absorption at specific frequencies
- Acoustic materials testing is used assess material performance and to provide inputs for the acoustic models

Lightweight hybrid foam concept

GRC acoustic property screening lab consisting of:
- a modular acoustic impedance tube
- a flow resistance rig

At LaRC, detailed acoustic testing is done to obtain acoustic parameters for model development
Goals:
- Measure erosion rate in properly simulated aero-thermal environment
- Assess advances in TBC erosion resistance
- Predict TBC erosion pattern on Turbine blades

10 mils TBC Cumulative Erosion Test Results
(T = 1800 F, V = 1000 ft/s, β = 90° & Total Qp = 15 g)

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>W_{initial} (g)</th>
<th>W_{final} (g)</th>
<th>ΔW (mg)</th>
<th>Q_p (g)</th>
<th>ε (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>6.9369</td>
<td>6.8134</td>
<td>123.5</td>
<td>5</td>
<td>24.70</td>
</tr>
<tr>
<td>1b</td>
<td>6.8134</td>
<td>6.6962</td>
<td>117.2</td>
<td>+5</td>
<td>23.44</td>
</tr>
<tr>
<td>1c</td>
<td>6.6962</td>
<td>6.5786</td>
<td>117.6</td>
<td>+5</td>
<td>23.52</td>
</tr>
</tbody>
</table>

Effect of Particle Size on Trajectories Through Rotor

30μ particles
1500μ particles
SRW Discipline: Structures & Materials

NRA (Round 1) - Crash Energy Absorption of Composite Rotorcraft Structures, Stanford University. Prof. Fu-Kuo Chang

Tasks:
- Analysis to develop relevant damage modes and material response.
- Implementation of a dynamic material model into a commercial FEM code.
- Study of relevant parameter and improvements for energy absorption.

Test, Data, and Modeling at 650 LBS Load

Four-point bend test with built-in acousto-ultrasound sensors to monitor damage growth

FEM model of four-point test

Load and displacement diagram at 450 lbs (650 lbs diagram not available)

Acoustic sensor data for unfolded tube
Summary

- The Structures & Materials Discipline is focused on technology areas that are most relevant to rotary wing applications.

- Resources are directed toward tasks where we can have the most significant impact on the structures and materials within the propulsion system and the airframe.

- Development of the technologies is leveraged with NRAs, SBIRs, SAAs, academic programs, and collaborations.

- The discipline is interested in continued collaboration and industry perspective on critical technology areas.