A presentation outlining current jet noise work at NASA was given at the NAVAIR Noise Workshop. Jet noise tasks in the Supersonics project of the Fundamental Aeronautics program were highlighted. The presentation gave an overview of developing jet noise reduction technologies and noise prediction capabilities. Advanced flow and noise diagnostic tools were also presented.
Jet Noise Research at NASA

Brenda Henderson
NASA

NAVAIR Noise Workshop
December 10
Patuxent River, Maryland
Fundamental Aeronautics Program

• Four projects
 – Supersonics
 – Subsonic Fixed Wing
 – Subsonic Rotary Wing
 – Hypersonics

• Supersonics Technical Challenges
 – Efficiency
 – Environment
 • Airport Noise
 – Prediction
 – Diagnostics
 – Engineering
 • Sonic Boom
 • High Altitude Emissions
 – Performance
 – Entry, Descent, and Landing
 – Multidisciplinary Design, Analysis, and Optimization
Critical Military Jet Noise Sources

- Mixing noise
- Mach wave radiation
 - Crackle
- Shock associated noise
 - Broadband
 - Discrete
- STOVL noise/tones

Modeling and noise reduction technology must address each of these differently depending on flight regime.
NASA Aircraft Noise Prediction Program: ANOPP

NASA POC: Casey Burley, Casey.L.Burley@nasa.gov

- Total aircraft noise prediction capability for subsonic and supersonic aircraft.
 - Predicts aircraft source noise, propagation and impact at receiver
 - Predominantly semi-empirically based methods
 - Ability to predict high speed jet mixing & broadband shock noise

\[M_j = 1.2 \]
\[TTR = 3.6 \]
\[BPR = 0.2 \]
Large-Eddy Simulation Research

NRA: Stanford University
PI: Sanjiva Lele

- Code development for time-dependent turbulent simulations of flowfields from noise suppressing nozzles
- Develop computational tools to couple Reynolds Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) methods for jet noise analyses.

Vorticity magnitude contours for a Mach 0.9 jet

NASA POC: Jim DeBonis
James.R.Debonis@nasa.gov

- In-house research code
- Low dispersion Runge-Kutta time stepping (1st - 4th order)
- High-order (2nd - 12th) central and DRP based spatial schemes
- Shock capturing filters

Time averaged velocity contours for a Mach 0.9 jet
Broadband Shock Associated Noise Prediction

NRA: Pennsylvania State University, PI: Philip Morris

- Noise model based on RANS CFD prediction for shock cell structure and on model for two-point turbulence statistics
 - Captures observed trends – reviewing details of turbulence source statistics to improve high frequency predictions
 - Requires ~1 hour per observer angle to compute
Improving Scale Model Noise Prediction

Funded by Strategic Environmental R & D Program (SERDP)
NASA POC: Tom Norum, Thomas.D.Norum@nasa.gov

F-15 ACTIVE Flight Test (1997)

Moderate Scale Tests
Diagnostics
Advances in Flow Diagnostics for Noise Reduction and Prediction

Turbulence measured in hot jets using Particle Image Velocimetry (PIV)

Flow-Source correlations explored using multiple advanced techniques

NASA POC: James Bridges, James.E.Bridges@nasa.gov

Time-Resolved PIV

Phased Arrays

Increasing Downstream Distance

M = 1.4, TR = 1.4, TR = 1.8

TKE/Uj²

-0.03
0.02
-0.02
-0.01
0
JEDA Measurements for Jet Noise

NASA POC: Tom Brooks, Thomas.F.Brooks@nasa.gov

Goals:

- Develop processing methodologies for incoherent and coherent convecting sources
- Characterize performance of array
- Obtain detailed source distribution maps for subsonic and supersonic exhausts
- Obtain data for validation of prediction codes
Supersonic Measurements with JEDA

Convergent / Divergent Nozzle, NPR = 2.27, $M_j = 1.15$, $f_{1/3} = 12.5$ kHz

(Non-coherence assumption DAMAS processing – preliminary results)
Engineering
Mechanical Chevrons for Noise Reduction

Funded by Strategic Environmental R & D Program (SERDP)
NASA POC: Tom Norum, Thomas.D.Norum@nasa.gov

Investigate impact of nozzle geometry and chevron parameters on radiated sound
Supersonic Jet Noise Suppression Using Plasma Actuators

NRA: The Ohio State University
PI: Mo Samimy

• Various jet instabilities are manipulated to mitigate noise
• Large Eddy Simulations used to predict optimal jet forcing for noise mitigation

Example of actuation effects on the jet flow field

Example of noise mitigation at Mach 1.3

Image of baseline Mach 1.3 jet

Image of forced jet at 5 kHz and at azimuthal mode m= 1

Noise reduction relative to baseline jet (actuation not optimized)
Twin Model for Jet Interaction Studies

Investigate
- Jet plume interactions
- Noise characteristics of rectangular nozzles

- Critical design review - Dec. 11
- Model delivery - March, 2009

NASA POC: Brenda Henderson, Brenda.S.Henderson@nasa.gov
Fluidic Chevrons for Noise Reduction

- Air injection nozzles tested at subsonic and supersonic exhaust speeds
- Mixing noise and broadband shock noise reductions achieved for some configurations and operating conditions
- Nozzle design resulted from partnership between NASA and Goodrich Aerostructures

\[\theta = 61^\circ \]

\[\text{NPR}_c = 1.61 \]
\[\text{NPR}_f = 2.23 \]

SPL (dB)

Frequency (Hz)
Developing Technology Summary

• Prediction
 – ANOPP
 – LES
 – Statistical models for broadband shock noise
 – Scale model and flight data databases

• Diagnostics
 – PIV
 – Time accurate PIV
 – Phased array

• Engineering
 – Chevrons
 – Plasma actuators
 – Twin jet studies
 – Fluidic injection