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Ceramic matrix composites (CMC) are suitable for high temperature structural applications such as 
turbine airfoils and hypersonic thermal protection systems due to their low density high thermal 
conductivity.  The employment of these materials in such applications is limited by the ability to 
accurately monitor and predict damage evolution.  Current nondestructive methods such as 
ultrasound, x-ray, and thermal imaging are limited in their ability to quantify small scale, transverse, 
in-plane, matrix cracks developed over long-time creep and fatigue conditions. CMC is a 
multifunctional material in which the damage is coupled with the material’s electrical resistance, 
providing the possibility of real-time information about the damage state through monitoring of 
resistance.  Here, resistance measurement of SiC/SiC composites under mechanical load at both 
room temperature monotonic and high temperature creep conditions, coupled with a modal acoustic 
emission technique, can relate the effects of temperature, strain, matrix cracks, fiber breaks, and 
oxidation to the change in electrical resistance.  A multiscale model can in turn be developed for life 
prediction of in-service composites, based on electrical resistance methods.  Results of tensile 
mechanical testing of SiC/SiC composites at room and high temperatures will be discussed.  Data 
relating electrical resistivity to composite constituent content, fiber architecture, temperature, matrix 
crack formation, and oxidation will be explained, along with progress in modeling such properties. 
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Why Electrical Resistance?

• Current nondestructive methods such as ultrasound, x-ray, and 
thermal imaging are limited in their ability to quantify small 
scale, transverse, in-plane, matrix cracks developed over long-
time creep and fatigue conditions 

• Electrical resistance of SiC/SiC composites is one technique that 
shows special promise towards this end
– Both the matrix and the fibers are semi-conductive 
– Changes in matrix or fiber properties should relate to changes in electrical 

conductivity along the length of a specimen or part, i.e., perpendicular to 
the direction of damage

– Resistance has been shown to be effective at monitoring damage in 
composites such as C/SiC and CFRP 

σ σ
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Objective

• To determine if and to what extent electrical resistance 
can be used as a self-sensing non-destructive evaluation 
technique for SiC-based fiber-reinforced composites
– Composite characterization
– Damage accumulation

• Analysis technique
• Monitoring as an inspection or possibly on-board device

– Electro/Mechanical Modeling  Performance and Life-
modeling
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Some studies in the literature
(mostly w/C fibers in epoxy, glass, or CVI SiC)

• Many papers last 20 years on C fiber reinforced polymer, 
concrete and carbon matrix composites
– Strain and damage monitoring

• Frankhanel et al., J. Euro. Ceram. (2001) – SiC-Fibre 
reinforced glasses – electrical properties and their application

• H. Mei and L Cheng., Mater. Let. (2005) & Carbon (2006) –
Damage analysis of 2D C/SiC composites subjected to 
thermal cycling in oxidizing environments by mechanical and 
electrical characterization

• Recent measurement of conductivity of SiC/SiC for nuclear 
applications [e.g., Gelles & Youngblood (PNL); Shinavski, 
Katoh, and Snead, (Hyper-Therm & ORNL)]
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What affects electrical resistivity?
ρ = Resistance • (Area/Length)

• The content and structure of composite
– Constituents (fiber, interphase and matrix) and their relative resistivities
– Nature and amount of porosity
– Fiber architecture

• Temperature
• Stress
• The damage state

– Already present (e.g., C/SiC) or as a result of stressed-oxidation 
(SiC/SiC)? 

– Transverse and/or interlaminar cracking?
• The oxidation and/or recession state
• Lead attachment – on the face, on an edge, an extension from within 

the structure?

Fibers broken in some cracks
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Room Temperature Damage Characterization

• 150mm specimens with contoured gage section
• Resistance measured by four- point probe method 

using an Agilent 34420 micro-Ohm meter
• Conductive silver paste was used to improve 

contact between specimen and voltmeter

dV

Constant current
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Room Temperature Damage Characterization 

• Load, unload, and reload in tension 
on an Instron Universal Testing 
Machine (4kN/min)

• Capacitance strain gage used with 
1% range over 25mm (metal knife-
edge contact extensometers were 
tried, but abandoned because of 
electrical interference)

• Resistance measurement made every 
second

• Acoustic emission monitored by 
50kHz to 2MHz sensors just outside 
the gage section
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Room Temperature Damage Characterization

Syl-iBN/CVI Matrix Woven Composite (f = 0.3)
As damage progresses, the resistivity of the composite increases

– 60% increase in resistivity at failure 
– an order of magnitude higher than C fiber reinforced systems
– In situ damage detection is possible

• Upon unloading, resistivity does not return to original
– Inspection of damage is possible after unloading 
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As σ ↑, R ↑ due to:
•Matrix cracking (follows AE)
•Piezoresistivity of fibers
•Fiber breaks
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Elevated Temperature Set-up 

• Copper wire leads brazed 
(CuSil-ABA) on face and 
ends of specimen 

• Resistance measured by 
four- point probe method

• Stress-rupture at 1315oC 
in air

Hot 
Zone 

Furnace 
Region

Epoxy 
Grip Tab 

Epoxy 
Grip Tab

dV

Constant 
Current
Applied
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Elevated Temperature Set-Up

σ

σ
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Elevated Temperature Damage Characterization

• Determine effects of temperature and time on 
resistivity:
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Elevated Temperature Procedure

EXPERIMENT:
• Raise furnace temperature to 

1315oC
– Resistivity decreases with 

temperature (SiC)
• Raise stress to desired level

– Resistivity increases with 
stress

• Hold stress until failure
– Resistivity increases with 

time at stress
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Elevated Temperature Damage Characterization

Syl-CVI SiC (Vendor 1); 
1315C; 86 MPa

Syl-iBN-CVI SiC (Vendor 2); 
1315C; 172 MPa
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What is occurring?
•Matrix cracking & growth
•Creep of matrix

•Load transfer to 
fibers

•Oxidation in matrix cracks
•Fiber breaks
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Elevated Temperature Damage Characterization
(Extension to Time-Temperature-Stress Conditions)

• In principle, as unbridged cracks form and oxidizing 
species fill matrix cracks and/or pores and/or oxidation 
reactions cause recession of composite, resistance 
changes should occur. If they can be quantified, then 
this technique offers a way of health monitoring.
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Coupled Electrical/Mechanical Model at Tow Level

(d) (e)

δR

V

σ

σ

(a)

(c)(b)

Electrical Model:        
Local resistances

Resistance vs. 
stress/strain/damage

Mechanical Model:    
Damage, local stresses

Stress vs. strain, failure

Z.H.Xia, et. al. Comp. Mater. Sic . Tech.. 2003
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Random Fiber-Fiber contacts in composites

• Electric characteristic length: 
The average distance between electrical contacts 

is measureable:

fL

T
ce V

d
4
π

ρ
ρβδ =

d---- diameter of fiber
Vf ----volume fraction of fiber

ρ------- Resistivity 
β------geometric contact factor

An analogy to mechanical characteristic length  
slip length δc : /c c yrδ σ τ=

fc = fiber contact density
Nc = the number of fiber contacts
N = the number of fibers
L= length of composites

ceδ

cc
ce N

LN
f 2
1

==δ

ceδ
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3D Electrical/Mechanical Models

Force equilibrium :
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δ
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From neighbors (contact current) From neighbors (shear forces)

I=(vi+1-vi)/Ri
Axial Force: F=AE(ui+1-2ui+ui-1)/δ

Shear force F=hG(ui-uin)/d

Electrical Model                                     Mechanical model
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σ

σ

R

Coupled  Model at Laminate Scale

Matrix
crack

Electrical Model              Mechanical model

Unit Cell model: 
• Single fiber bundle surrounded by matrix
• Through-thickness matrix cracks bridged by fiber bundles 
• Matrix containing 90o fiber are conductive

Conductive matrix

Fiber tow
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Mechanical Behavior of SiC/SiC Composites
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Fitting stress-strain curve by adjusting matrix Weibull strength σ0 and 
interfacial shear strength τ

• τ=25 MPa, with the typical  experimental range.
•Predicted matrix crack density curve well matches cumulative AE energy.
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Electrical Resistance of SiC/SiC Composites
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Experimental

By varying electrical parameters, the model should fit 
experimental data, but there is an unknown problem
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Summary and Conclusions

• Electrical resistance in SiC-based CMCs is very 
sensitive to constituent content, fiber-architecture, and 
stress/strain history

• Electrical resistance offers a useful way to characterize 
SiC-based CMCs, both as-produced and after 
mechanical damage

• This technique offers potential as 
– a method of quality control for processing these composites
– a method to monitor the health of SiC-based CMC 

components in-situ or as an inspection technique
• which can then be related to life-prediction models based on stress, 

time, and damage accumulation and their relationship to electrical 
response
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Future Work

• Compare different composites – varying composite 
constituents and fiber architecture

• Quantify elevated temperature microstructural change 
with resistivity change 

• Determine lead attachment schemes for different 
applications and conditions

• Extend electro/mechanical model to:
– Include high temperature properties
– Include 90° tows
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