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The collapse pressure of an inflatable membrane is the minimum differential
pressure which will sustain a specific desired shape under an applied load. In this
paper, we present a method for estimating the collapse pressure of a tension-cone
inflatable aerodynamic decelerator (IAD) that is subject to a static aerodynamic
load. The IAD surface is modeled as an elastic membrane. For a given aerodynamic
load and sufficiently high torus differential pressure, the IAD assumes a stable
axisymmetric equilibrium shape. When the torus pressure is reduced sufficiently,
the symmetric equilibrium state becomes unstable and we define this instance to
be the critical pressure pcr. In this paper, we will compare our predicted critical
torus pressure with the corresponding observed torus collapse pressure (OTCP)
for fifteen tests that were conducted by the third author and his collaborators at
the NASA Glenn Research Center 10′ × 10′ Supersonic Wind Tunnel in April 2008.
One of the difficulties with these types of comparisons is establishing the instance
of torus collapse and determining the OTCP from quantities measured during the
experiment. In many cases, torus collapse is gradual and the OTCP is not well-
defined. However, in eight of the fifteen wind tunnel tests where the OTCP is
well-defined, we find that the average of the relative differences (|pcr −OTCP|/pcr)
was 8.9%. For completeness, we will also discuss the seven tests where the observed
torus collapse pressure is not well-defined.

Nomenclature

S Complete membrane.
SF Fundamental section of membrane S.
CA Axial force coefficient.
E Young’s modulus of membrane (GPa).
ν Poisson’s ratio of membrane.
h Membrane thickness (micron).
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DA Aeroshell diameter (cm).
DT Torus diameter (cm).
DTot Total diameter (cm).
DTS Tension shell diameter (cm).
P Differential pressure (kPa).
pt Torus pressure (kPa).
q Dynamic pressure (kPa).
ps Static pressure (kPa).
α Angle of attack (deg).
RN Aeroshell nose radius (cm).
M Mach number.
A-T Anti-torque.
OTCP Observed torus collapse pressure (kPa).
AARD Absolute relative difference.
AARD Average absolute relative difference.
pcr Critical torus pressure (kPa).
FSI Fluid structure Interaction.

I. Introduction

The Mars Science Laboratory (MSL) utilized the largest diameter aeroshell (4.5 m) and the

largest diameter parachute ever flown on Mars to decelerate safely the 899 kg rover Curiosity to the

surface of Mars. This system is near the limits of current parachute technology and future missions

with larger landed mass may find it necessary to resort to a different decelerator technology.1,2

One alternative is the inflatable aerodynamic decelerator (IAD). The main advantage of IADs over

parachutes is that they do not have the inflation instabilities that parachutes suffer at higher Mach

numbers (M >∼ 1.5). While inflatable aerodynamic decelerator (or ballute) technology dates

back to the 1960’s,3–6 in recent years due to the advantages offered by the IAD, this technology

has garnered additional attention through NASA’s Program to Advance Inflatable Decelerators for

Atmospheric Entry (PAIDAE).7–9

An inflatable decelerator known as a tension-cone IAD (see Figure 1) has received particular

attention. The key components of a tension cone IAD are a rigid blunt aeroshell, a tension shell

designed to carry tensile loads, a pressurized torus, and in some versions, anti-torque (A-T) panels.

In this paper, we will focus our attention on two tension-cone IAD physical models as presented

by the third author and his collaborators.7,8, 10 In this model, the tension shell and torus were

constructed from urethane-coated kevlar. The A-T panels were introduced because, initially there

2 of 19

American Institute of Aeronautics and Astronautics



(a) With A-T panel (b) Without A-T panel (c) Aerodynamically loaded IAD with A-T panels.

(d) Tension Cone IAD without A-T panels. (e) Computer model of tension-cone IAD with A-T panels (aft view).

Figure 1. Tension-cone IAD models; (a) With A-T panel: (b) Without A-T panel; (c) Aerodynamically
loaded with A-T panels (front view); (d) inflatable model with inflation tube, inflatable torus and
support hardware; (e) computer model of an inflatable tension-cone IAD. Figures (a)-(d) correspond
to [10, Figures 55(b), 55(a), 54, 62(a), respectively].

were concerns that radially compressive forces generated by the tension shell would cause the

inflated torus to roll outward and forward. Figure 1(a) shows an IAD model with A-T panels

and Figure 1(b) shows one without A-T panels. During wind tunnel testing,8,10 the models with

and without A-T panels were found to behave very differently; we will discuss these differences

in the following sections. Based on the published data and specifications,7,8 we were able to able

to develop a mathematical model11,12 for the tension-cone IAD, including the membrane tension

shell, torus, and A-T panels. See Figure 1(e) where membrane components are yellow, A-T panels

are in green and seam reinforcements are shown in red.

One of the basic questions for aerodynamically loaded inflatable structures, in general, and
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Figure 2. Pressure sweeps for GRC SWT inflatable models. Reproduced from [8, Fig. 14].

tension-cone IADs, in particular, is the following: what is the minimum differential pressure that

is needed to maintain a certain desired aerodynamic shape? In the case of the IAD, the answer to

this question will help the engineer meet design requirements for a lightweight deployable structure

that packs into a small volume, is stiff enough to maintain a desired aerodynamic shape and enable

the landing of larger payloads at higher altitudes. Roughly speaking, if the aerodynamic loading is

not too extreme and the torus pressure is sufficiently large, the previously mentioned research7,8, 10

have demonstrated through physical models and numerical computation that the tension-cone IAD

shape is stable. However, if the aerodynamic pressure is maintained at a constant level and the

torus pressure is reduced a sufficient amount, there is a pressure threshold where the torus will

collapse. We call this particular pressure threshold the observed torus collapse pressure (OTCP).

The instance of torus collapse has been observed in supersonic wind tunnel tests that involve

pressure sweeps. A pressure sweep test has two parts. In the first part, the torus was inflated

initially to a maximum pressure pt,max. While the tunnel operating conditions were maintained,

the torus pressure was gradually reduced until the torus collapsed. In the second part of the pressure

sweep test, the torus was re-inflated. The instance where the IAD recovered to the axisymmetric

shape defined the observed torus re-inflation pressure. Researchers, including the third author, who

were involved in the 2008 NASA Glenn Research Center Supersonic Wind Tunnel (GRC SWT) test

estimated both the torus collapse threshold and the torus re-inflation pressure from the experimental
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data. In the pressure sweeps with the A-T panel model, there was a rapid change in the measured

value of CA that could be correlated with the torus pressure which was recorded simultaneously.10

Hence, the torus collapse pressure was well-defined for the model with A-T panels. See Figure 2.

However, since there was no sudden collapse of the test articles without A-T panels during the

pressure sweeps and CA changed gradually, the instance of torus collapse is not well-defined. In

fact, the definition of collapse pressure is somewhat arbitrary in the model without A-T panels.

It should be noted that some of the axial force on the model is reacted by the inflation tubes (see

Figure 1(d)) and not measured by the wind tunnel balance. Thus, the value of CA reported here

is not the same as would be obtained in free flight or in a static wind tunnel test without inflation

tubes. However, since the quantity of interest in this paper is the value of the torus pressure at

which the axial force exhibits a significant change, the absolute value of CA is not critical to the

present discussion. Values of CA that are not affected by inflation tubes may be found by consulting

other references.8,10 Nevertheless, at least the torus collapse pressure is well-defined in the model

with A-T panels. The models with A-T panels (starting from a collapsed state) would change

shape by a small amount, but remain in a collapsed state, as the torus pressure was increased. At

the re-inflation pressure, they would pop up to the fully inflated shape, and the axial force would

jump up. In the model without A-T panels, the torus re-inflation pressure was gradual and thus a

threshold was not well-defined in these cases. The third author and Clark10 developed a heuristic

method for estimating the observed torus collapse by correlating its occurrence with a change in the

axial force coefficient CA, a measured quantity (see, e.g., [8, Fig. 5]). Based on the test data and

keeping in mind the above remarks, the CA threshold collapse was defined as 0.97 times the static

value of CA that was recorded at full inflation pressure. For the second part of the same inflation

test and after the torus collapsed, the torus was then re-inflated while wind tunnel conditions were

maintained. This method of estimating OTCP worked well for the model with A-T panels (where

there was a rapid change in CA) and not so well for the model without A-T panels (where the

change in CA was gradual).

There are subtleties in how the re-inflation pressure was determined, and the behavior of the

models with and without anti-torque panels were very different. This can be seen in Figure 2
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(reproduced from [8, Fig. 14]). The values for OTCP presented in this paper include unpublished

data from the GRC SWT tests carried out in April 2008. Plots for other pressure sweeps from

the 2008 GRC SWT testing were very similar to Figure 2 (i.e., the results for the IAD model with

A-T panels led to a well-defined torus collapse pressure, but for the model without A-T panels

this was not the case). In general, the observed torus re-inflation pressure was significantly higher

than the OTCP, but the OTCP and the inflation-to-collapse portion of the pressure sweeps was

more pertinent to pcr. The numerical modeling in10,13 performed well in predicting the behavior of

the IAD without A-T panels, but not so well in the cases with A-T panels. We will discuss these

comparisons in Sections III(C) and D.

II. The Critical Pressure in Other Applications

In previous articles,14,15 the first two authors developed a methodology, called the Deployment

Pathway Portrait (DPP), to predict the differential pressure at which an ascending super-pressure

balloon is likely to deploy. A properly designed symmetric balloon in equilibrium in the fully

deployed and fully pressurized state is stable. At float (maximum) altitude, the design volume is

Vd and the the differential pressure at the bottom of the balloon is pd > 0. At sea level, the volume

of the lifting gas contained within the balloon envelope is compressed typically to less than 1% of

Vd. The differential pressure at the bottom of the balloon is p0 < 0. As the balloon rises, the volume

of the lifting gas expands and its density decreases. Initially, the majority of the envelope hangs

loosely beneath the gas bubble. The mass of the lifting gas is constant (although some gas may

be vented during ascent). Eventually, the gas will expand a sufficient amount so that p0 > 0; p0

will continue to increase, until the balloon reaches its maximum altitude. The lowest value of p0 at

which a super-pressure balloon deploys is called the deployment pressure. The deployed state is one

where the balloon is free of self contact (as determined by an observer who records a differential

pressure when deployment is first observed). Typically, a super-pressure balloon deploys when

p0 < pd. The balloon continues to ascend and the pressure at the bottom of the balloon continues

to increase until maximum altitude is achieved and p0 = pd. It is only when p0 = pd that the

super-pressure balloon assumes the fully developed pumpkin-shape.
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Using the second author’s program Surface Evolver,16 we determined the strained equilibrium

state of a single gore in a cyclically symmetric balloon shape and then carried out a stability analysis

of the complete shape. For some p0 = pcr (0 < pcr < pd), the stability of the symmetric state

changed from unstable to stable. The threshold p0 = pcr where the symmetric state changed from

stable to unstable is called the critical pressure (this is analogous to the critical torus pressure for the

inflatable IAD). The critical pressure correlated well with the observed deployment pressure during

tests and balloon flights. The family of cyclically symmetric ascent shapes S(p0) parametrized by

p0 along with a count of the number of corresponding unstable eigen-modes is called the DPP.

The DPP approach was validated for super-pressure balloons by comparing predicted deployment

pressures with those that were recorded in ground-based inflation tests [14, Tables 3-5] and actual

flight data [14, Tables 6-7].

In a recent article [12, Sec. III], the DPP approach was adapted to the problem of determining

the critical torus pressure for conditions corresponding to the two pressure sweeps described in

Figure 2. The DPP-based results were encouraging and the estimated critical torus pressure of

138 kPa (19.9 psi) compared well with the observed torus collapse pressure (OTCP) of 120 kPa

(17.4 psi) for the tension-cone IAD model with A-T panels [12, Table 4]. While the absolute relative

difference (ARD): AARD = |pcr − OTCP|/pcr of 13% for the A-T panel case was good, when the

anti-torque panels were removed, the predicted critical pressure of 236 kPa (34.2 psi)was off by 24%

when compared with a “conservative” OTCP that was estimated to lie in the interval (310 kPa, 345

kPa) (i.e., (45 psi, 50 psi)). However, as we have discussed earlier, the OTCP is not well-defined in

the case of the IAD model without A-T panels. Nevertheless, these preliminary findings provided

the motivation to analyze additional data that was available from the NASA GRC SWT tests

conducted in April 2008.

In this paper, we validate our mathematical approach for estimating the torus collapse pressure

of an aerodynamically loaded tension-cone inflatable aerodynamic decelerator by comparing the

predicted critical torus pressure with the observed torus collapse pressure for a total of fifteen

pressure sweeps that were conducted in April 2008 at the NASA GRC SWT. The observed torus

collapse pressure must be well-defined in order for these comparisons to be meaningful. We will vary
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the Mach number, dynamic pressure, static atmospheric pressure and torus differential pressure and

carry out stability analyses of the symmetric equilibrium shapes. When the observed torus collapse

pressure is well-defined (i.e., the IAD model with anti-torque panels), we found good agreement with

the DPP predicted critical torus pressure. In particular, we found the relative difference between

pcr and OTCP ranged between 1.1% and 15.7%, with an average relative difference of 8.9%. When

anti-torque panels are not included in the model, the torus does not instantaneously collapse and

it is difficult to define precisely the torus collapse pressure. Nevertheless, when using the value of

the observed torus collapse estimated by the third author, we find the relative difference between

pcr and OTCP ranged between 10.4% and 27.4%, with an average relative difference of 18.1%.

III. Mathematical Model for a Tension-Cone IAD

The tension cone inflatable aerodynamic decelerator (IAD) was proposed by Anderson et al.3

Additional details on the development of the IAD concept may be found in [13, Sec. 1.2.2]. The

tension cone IAD is a shell of revolution consisting of a blunt aeroshell nose, a pressurized toroidal

toroidal membrane and a a tension shell designed to carry tensile loads when acted upon by a known

pressure field. See Figure 1(a)-(d) for photographs of IAD models and Figure 1(e) for a computer

model of an IAD with A-T panels. Our IAD mathematical model is presented in Sections III.A-B

(see also [12, Secs. III.A-B]).

A. The GRC SWT IAD Model

We will focus on the model relevant to the NASA GRC SWT IAD and use the design specifications

in the article by Clark, et al.8 In the following, refer to Figure 3, where the generating curve for

the GRC SWT IAD is presented. The legend in Figure 3 indicates four subregions: ΩTC - tension

cone and aeroshell nose; ΩT1 - upstream side of torus; ΩT2 - downstream side of torus; ΩATP -

anti-torque panel. Differential pressure P (r, z) is a function of the radial distance r and z. The

dynamic pressure is treated as a static aerodynamic pressure distribution that is included in P . In
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Figure 3. Generating curve for GRC SWT IAD shell of revolution.

the nominal case where we assume zero angle of attack (i.e., α = 0), P is given by

P (r, z) =


(cp,u − cp,d)(r)q on ΩTC (Tension cone),
cp,u(r)q + ps − pt on ΩT1 (Upstream torus),
cp,d(r)q + ps − pt on ΩT2 (Downstream torus),
0 on ΩATP (Anti-torque panels),

(1)

where the regions ΩTC , ΩT1 , ΩT2 and ΩATP are defined in Figure 3 and the differential pressure

coefficients cp,u(r), cp,d(r) are defined in Fig. 4. Fig. 4 is based on data from [8, III. Rigid Models

Tests - LaRC UPWT] involving a 15.24 cm diameter physical model for Mach number M = 2.5.

cp,u(r) and cp,d(r) are the upstream and downstream coefficients, respectively. The data is rescaled

so that it can be applied to the 60 cm diameter fabric model that is considered here. The aeroshell

nose portion of ΩTC is fixed. The values of P depends on the angle of attack α and Eq. (1) will

need to be adjusted if α 6= 0. In fact, the data in Fig. 4 is for α = 0.3 deg, but this is sufficiently

close to zero for our purposes. We also note that when α 6= 0, the flow is not axisymmetric.

Mechanical properties for the membrane components of the IAD were assumed to be the same as

those presented in7 and [13, Appendix A, Table A.2]. See Table 1 for a summary of parameter
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Figure 4. Pressure coefficient as a function of the radial coordinate r.

values. The surface pressures act on the IAD membrane. Torus pressures are absolute. We include

anti-torque panels as depicted in [8, Fig. 12]. In case studies considered here, we add thickness

along the gore component seams to bring our numerical model closer in line with the physical

model for which experimental data is available. Note, the IAD model considered here is similar to,

but not identical to, the IAD model in previous works.1,7, 8, 19 For example, inflation tubes are not

considered in the model presented here. Nevertheless, the IAD model presented here is sufficiently

close to the physical IAD model to evaluate our analytical methods.

Table 1. GRC SWT semi-rigid inflatable model. See [7, Table 1].

Quantity Variable Value

Young’s modulus E 2.67 GPa

Poisson’s ratio ν 0.3

Thickness h 334 µm

Aeroshell diameter DA 18.44 cm

Torus diameter DT 7.5 cm

Total diameter DTot 60.0 cm

Tension shell diameter DTS 52.5 cm

Angle of attack α 0 deg

Aeroshell nose radius RN 4.74 cm

A true torus is generated by rotating a circle of radius r about a line belonging to the plane of
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(a) SF - fundamental section.

(b) GF - reference configuration.

Figure 5. Reference configuration and fundamental section of torus IAD model.
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the circle and at a distance a > r away from the center of the circle. Instead, we consider a straight-

sided torus IAD model generated in the following way. Assume the curve in Figure 3 lies in the

plane y = tan(π/16)x in three-dimensional Euclidean space IR3. Project that curve orthogonally on

to the plane y = 0. The lines generated by the projection determine a developable surface. Reflect

that developable surface in the plane y = 0 and the result is a section of a straight-sided torus

(i.e., a section of a cylinder) sandwiched between the planes y = ± tan(π/16)x (see Figure 5(a)).

The straight-sided torus IAD model can be unrolled into a plane as illustrated in Figure 5(b). We

double the membrane thickness along certain edges (see the dark regions in Figure 5) to simulate

reinforced seams (a seam width of 0.885 inches (2.248 cm) is used). The seam width of 4.45 cm

in [12, Sec. III.A] is a typographical error (a seam width of 2.248 cm was used in the calculations

and so the reported numerical results are unchanged). The seam width of the physical model is

1 inch.13 The bottom portion of the gore presented in Figure 5(b) corresponds to the reference

configuration of the aeroshell nose, which is fixed. The complete IAD is shown in Figure 1(e).

B. IAD Problem Formulation and Stability

In this section, we outline the problem of determining the equilibrium shape of a strained pressurized

membrane under aerodynamic loading. Details of the model can be found in other references.11,17,18

For a complete shape S ⊂ IR3, the reference configuration is Ω = ∪ng

i=1Gi where Gi is isometric

to the cutting pattern GF that we assume is known (see, Figure 5(b)). In the numerical model,

the rectangular regions are subdivided into triangular facets. In this case, the complete deformed

shape is S = ∪ng

i=1Si where Si is a deformation of Gi. In the IAD application of interest in this

paper, ng = 16. If we restrict our attention to cyclically symmetric shapes, then an equilibrium

configuration of a fundamental gore is denoted by SF . We describe our model as it applies to a

complete shape S.

The total potential energy of S is denoted by f where

f = EP + S∗m, (2)

EP =
∫
D
PdV =

∫
S
Pz k · n dσ, (3)

S∗m =
∫

Ω
W ∗mdA, (4)
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dA is area measure in the lay-flat reference configuration, EP is the pressure potential and S∗m is

the total membrane relaxed strain energy. We follow the convention that the torus pressure pt acts

in the direction of the outward unit normal n. D is composed of the torus interior plus the volume

directly below the IAD surface. The pressure at any point on the IAD is given by P (r, z) as defined

in Eq. (1) and Figure 3; dσ is surface area measure in the strained surface and W ∗m is the relaxed

membrane strain energy density. This approach has been applied successfully to the analysis of

superpressure balloons.11,17,18

To determine a strained equilibrium shape, we solve the optimization problem:

min
S∈X

f(S) (5)

where X denotes the class of feasible shapes.11,18 This approach is particularly well-suited for the

analysis of compliant structures. Our mathematical model has been implemented into the second

author’s program Surface Evolver (see [16, www.susqu.edu/brakke/evolver]), which is used to carry

out stability analysis.

S is triangulated and without loss of generality we will refer to the faceted surface as S. The

degrees of freedom (DOF) in a complete faceted shape S are the x, y, z-coordinates of the nodes of

triangular facets that are free to move. Let x = (x1, x2, . . . , xN ) be a list of the DOF. Let f(x) be

the total energy of a faceted balloon configuration S = S(x). Df(x) = [∂f/∂xj ] , j = 1, . . . , N is the

gradient of f evaluated at x, where ∂f/∂xj denotes partial differentiation with respect to xj . The

Hessian of f evaluated at x is the N×N matrix, Hf (x) = D2f(x) =
[
∂2f/∂xi∂xj

]
, i, j = 1, . . . , N .

Stability is defined in the usual way.

Definition III.1 Let S = S(x) be a solution of (5). We say S is stable if all the eigenvalues of

Hf (x) are positive. S is unstable if at least one eigenvalue of Hf (x) is negative. The stability of

S is indeterminate if the lowest eigenvalue of Hf (x) is zero.

While the number of degrees of freedom in the complete shape S is large, one does not evolve S.

We first determine SF and then use symmetry to determine the DOF of S and assemble Hf (S). An

algebraic problem is solved to determine the sign of the smallest eigenvalue of Hf and the stability

of S. If the symmetric state is unstable, then one can determine alternate equilibria.12
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When the torus pressure pt is sufficiently large, the cyclically symmetric equilibrium shape is

stable. This leads to the following definition.

Definition III.2 The critical torus pressure pcr is the lowest torus pressure pt for which the corre-

sponding Hessian matrix Hf (S) is positive definite (i.e., all the eigenvalues of Hf (S) are positive).

C. IAD Numerical Results

In this section, we will calculate pcr for a number of different loading scenarios for a tension-cone

IAD with and without anti-torque panels. To support this research, J. R. Cruz and I. G. Clark

made available a comprehensive set of pressure sweep data and methodology used to analyze it.20

The observed torus collapse as determined by these methods is compared with the critical torus

pressure pcr. A total of fifteen pressure sweeps are considered here.

For the inflation tests involving the model with anti-torque panels, the torus collapse pressure

was easy to discern. For each of the eight cases considered, the torus was inflated to a certain

maximum value (a higher dynamic pressure loading corresponded to a higher (initial) maximum

torus pressure). Table 2 contains key parameters (Mach number, dynamic pressure, static pressure,

maximum torus pressure) for GRC SWT pressure sweeps for IADs with anti-torque panels. Table 2

presents the critical torus pressure and observed torus collapse pressure (OTCP). We include the

“collapsed-to-inflated” (C-to-I) re-inflation pressure for completeness. Similar results for pressures

sweeps for models without anti-torque panels are presented in Table 3.

Table 2 considers the IAD model with anti-torque panels. There are basically three parameter

settings which are repeated two or three times. We include the Average Absolute Relative Difference

(AARD, i.e., the average of the relevant values of Absolute Relative Differences

AARD = |OTCP− pcr|/pcr

for the Inflated-to-Collapse portion of the pressure sweep tests. Due to test variability, the measured

quantities (M, q, ps) are slightly different in each test. The difference between between the results

for the repeated tests is due to test variability and can be seen by examining Figure 6 where

OTCP is plotted versus pcr. With the exception of the columns corresponding to pcr and AARD,
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all data reported in Tables 2-3 is taken from summary tables of the pressure sweep data.20 We will

refer to the various pressure sweeps by the run number that was assigned during the test.

• (M, q, ps) = (2.42, 2.5 kPa, 0.6 kPa); Repeat two times; Run Numbers: 26, 137; AARD: 6.4%.

• (M, q, ps) = (2.44, 4.5 kPa, 1.0 kPa); Repeat three times; Run Numbers: 28, 78, 136; AARD:

4.9%.

• (q, ps) = (2.46, 7.2 kPa, 1.7 kPa); Repeat three times; Run Numbers: 30, 134, 145; AARD:

14.5%.

Table 2. SWT pressure sweeps - model with anti-torque panels. Units of pressure: kPa.

Run M q ps pt,max pcr OTCP AARD C-to-I

26 2.424 2.513 0.611 179.6 43.64 38.5 11.7% 65.39

137 2.428 2.515 0.610 164.1 43.67 43.20 1.1% 69.45

136 2.451 4.518 1.074 245.0 78.17 84.38 7.9% 133.3

28 2.444 4.538 1.053 246.1 78.51 81.41 3.7% 120.1

78 2.439 4.579 1.099 426.9 79.24 81.86 3.3% 125.1

30 2.458 7.207 1.704 289.6 123.4 140.8 14.1% 201.6

134 2.467 7.223 1.695 261.7 123.7 143.1 15.7% 220.4

145 2.468 7.229 1.700 236.6 123.8 141.0 13.9% 222.0

Table 3 considers the IAD model with no anti-torque panels. Three parameter settings are

repeated two or three times. In the case without anti-torque panels, the instance of torus collapse

is not well defined and the torus collapses over an interval of pressure. See “Without anti-torque

panels” in Figure 2. Nevertheless, to estimate an instance of torus collapse, we can utilize the axial

force coefficient approach.20 These estimates for observed torus collapse are presented in Table 3.

• (M, q, ps) = (2.43, 2.5 kPa, 0.6 kPa); Repeat two times; Run Numbers: 37, 153; AARD: 23.5%

• (M, q, ps) = (2.45, 4.5 kPa, 1.1 kPa); Repeat three times; Run Numbers: 39, 51, 154; AARD:

17.8%.

• (M, q, ps) = (2.47, 7.2 kPa, 1.7 kPa); Repeat three times; Run Numbers: 41, 152; AARD: 13.1%.

Figure 6 presents a plot of observed torus collapse pressure versus critical torus pressure. Data

for IADs with and without A-T panels are included. The line OTCP = pcr is also presented. It

is clear from the above observations and those noted in [12, Sec. III.C.3], it is difficult identify a

15 of 19

American Institute of Aeronautics and Astronautics



Table 3. SWT pressure sweeps - model with no anti-torque panels. Units of pressure: kPa.

Run M q ps pt,max pcr OTCP AARD C-to-I

37 2.427 2.507 0.608 228.8 71.59 85.61 19.6% 101.4

153 2.428 2.509 0.608 402.0 71.60 91.22 27.4% 108.9

39 2.453 4.574 1.086 293.8 145.6 168.4 15.6% 190.5

154 2.453 4.574 1.086 266.4 145.6 177.1 21.6% 198.8

51 2.453 4.579 1.091 426.9 145.8 169.6 16.3% 191.1

41 2.470 7.205 1.688 457.8 235.4 272.8 15.9% 304.1

152 2.468 7.233 1.696 399.5 236.6 261.2 10.4% 316.2
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Figure 6. OTCP versus pcr.

unique criteria that does not have some level of arbitrariness to define the torus collapse pressure

for the IAD model with no anti-torque panels. On the other hand, the instance of torus collapse

for the IAD model with anti-torque panels is more clearly defined due to the sharp change in the

axial force coefficient.

In [12, Fig. 11], we estimated that the torus collapse pressure to be 138 kPa for Case 30 and
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between 310 kPa (45 psi) and 345 kPa (50 psi) for Case 41 by extrapolating from Figure 2. This

method of estimating the observed torus collapse pressure is prone to introduce errors. To address

this issue, a heuristic method8,10 for estimating the observed torus collapse by correlating its

occurrence with a change in the axial force coefficient CA was proposed (see, e.g., [8, Fig. 5]).

Based on the test data, the CA threshold collapse was defined as 0.97 times the static value of

CA that was recorded at full inflation pressure.10 The collapse pressure that was associated with

OTCP and C-to-I are distinguished, but we compute a single critical torus pressure pcr. Table 3

contains similar information for the pressure sweeps without anti-torque panels. The “observed”

torus collapse pressures reported in Table 2-3 were determined from the axial force coefficient

measurements.8,10

Using a Fluid Structure Interaction (FSI) model, Tanner estimated the torus collapse pressure

to be 287 kPa (41.6 psi) [13, Sec. 4.7.1] for Case 41; using a FSI model to correct the axial force

coefficient data, the FSI corrected observed torus collapse pressure was 290 kPa (42.1 psi), leading

to a relative error of 1.1%. Tanner notes the FSI analysis of the tension-cone IAD with anti-

torque panels was hindered by the collapse of the space between the torus and the tension shell,

preventing more than one FSI iteration [13, p. 193]. When anti-torque panels are included in the

model, Tanner estimated the torus collapse pressure to be 261 kPa (32.8 psi) [13, Sec. 4.7.2] for

Case 30, significantly higher than the observed torus collapse pressure of 141 kPa (20.5 psi). It

should be pointed out that without anti-torque panels, Tanner’s finite element model results and

the observed test article are in very good agreement. See [13, Fig. 4.48] where there is a striking

qualitative similarity between the FEM solution and test article without anti-torque panels. This

was not the case when anti-torque panels are included in the model.

The DPP method only requires the calculation of a fundamental piece (i.e., one-sixteenth) of the

complete shape as the torus pressure is gradually reduced. However, the stability of the complete

symmetric shape is assessed at each step. While an axisymmetric state can always be found, at the

critical torus pressure threshold its stability changes from stable to unstable and as the results of

the previous section demonstrates, this change of stability is an indication of torus collapse. Unlike

the FEM or FSI approaches, we need not compute a complete non-symmetric equilibrium state of
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the IAD as we approach the instability threshold. This is the reason the DPP method works well

for predicting the torus collapse for the IAD model with anti-torque panels.

D. Discussion of Numerical Results

In this paper, we validate our mathematical approach for estimating the torus collapse pressure of a

tension cone inflatable aerodynamic decelerator by comparing the computed critical torus pressure

with the observed torus collapse pressure from GRC SWT testing that was carried out in 2008. We

varied Mach number, dynamic pressure, static atmospheric pressure and torus differential pressure

and carried out stability analyses of the symmetric equilibrium shapes. In general, we find good

agreement between the DPP predicted pcr and the observed torus collapse pressure for the model

with anti-torque panels. The average relative difference between predicted and observed torus

collapse is about 8.9%. When anti-torque panels are not included in the model, the torus does not

instantaneously collapse and it is difficult to define precisely the torus collapse pressure. In this case,

the average relative difference is about 18.1%. Because the torus collapse pressures presented here

are based on the axial force measurements from the tests,20 the relative differences are, in general,

more reliable than those reported in [12, Table 4] which were extrapolated from the presentation

in Figure 2. The results presented in this paper for tension-cone IADs with anti-torque panels and

the successful application of the DPP method to the deployment of super-pressure balloons suggest

the method may be applicable to other aerodynamic decelerators such as the Inflatable Reentry

Vehicle Experiment (IRVE)19 or other deployable structures such as the ExaVolt Antenna (EVA):

a large-aperture balloon-embedded antenna for ultra-high energy particle detection.21

IV. Conclusion

The Deployment Pathway Portrait approach was applied to a tension cone inflatable aerody-

namic decelerator under a variety of loading conditions. We conjectured that the torus collapse

pressure of an inflatable aerodynamic decelerator coincides with the the lowest pressure for which

the symmetric state is stable. The difference between predicted and observed torus collapse thresh-

olds for an inflatable aerodynamic decelerator with anti-torque panels differed by about 8.9%. The

observed torus collapse threshold is is not as well-defined for the model without anti-torque panels
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and the difference between observed and predicted is about 18%. These results are encouraging and

suggest they may be applicable to other deployable structures such as Inflatable Reentry Vehicle

Experiment (IRVE) and the ExaVolt Antenna (EVA).
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