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Space Radiation Analysis for the Mark III Spacesuit 
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The NASA has continued the development of space systems by applying and integrating 
improved technologies that include safety issues, lightweight materials, and electronics. One 
such area is extravehicular (EVA) spacesuit development with the most recent Mark III 
spacesuit. In this paper the Mark III spacesuit is discussed in detail that includes the various 
components that comprise the spacesuit, materials and their chemical composition that 
make up the spacesuit, and a discussion of the 3-D CAD model of the Mark III spacesuit. In 
addition, the male (CAM) and female (CAF) computerized anatomical models are also 
discussed in detail. We “combined” the spacesuit and the human models, that is, we 
developed a method of incorporating the human models in the Mark III spacesuit and 
performed a ray-tracing technique to determine the space radiation shielding distributions 
for all of the critical body organs. These body organ shielding distributions include the BFO 
(Blood-Forming Organs), skin, eye, lungs, stomach, and colon, to name a few, for both the 
male and female. Using models of the trapped (Van Allen) proton and electron 
environments, radiation exposures were computed for a typical low earth orbit (LEO) EVA 
mission scenario including the geostationary (GEO) high electron environment. A radiation 
exposure assessment of these mission scenarios is made to determine whether or not the crew 
radiation exposure limits are satisfied, and if not, the additional shielding material that 
would be required to satisfy the crew limits. 

Nomenclature 
BFO = Blood-Forming Organ 
CAD = Computer-Aided Design 
CAF = Computerized Anatomical Female model 
CAM = Computerized Anatomical Male model 
mSv = milliSievert = 1/1000 Sievert = measure of biological response to absorbed dose 
EVA = ExtraVehicular Activity 
GEO = Geostationary Earth Orbit 
GCR = Galactic Cosmic Radiation 
GLE = Ground Level Event (Enhancement); an extremely large solar proton event (SPE) 
HDPE = high density polyethylene ( = 0.95 g/cm2) 
ISS = International Space Station 
LEO = Low Earth Orbit 
MeV = million electron volts; a unit of particle energy 
PLSS = Portable Life Support System; “backpack” 
SPE = Solar Proton (Particle) Event 

I. Introduction 
HE amount of space radiation exposure to crewmembers is of utmost important when planning a mission. The 
crews are fairly well protected in most spacecraft due to its inherent bulk mass shielding. The primary concern 

of space radiation exposure is from high energy trapped (Van Allen) protons, solar proton events (SPEs), and 
extremely high energy galactic cosmic radiation (GCR) that can penetrate the spacecraft. Secondary neutrons are 
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Figure 3.  Mark III spacesuit radiation shielding ray tracing model. 

 
 

IV. The CAM & CAF Anatomical Models 

The Computerized Anatomical Male (CAM)3 and Computerized Anatomical Female (CAF) 4 models are human 
models that we have been using for a number of years to determine the shielding distribution at a specific point in 
the human or within the critical body organs. Using a ray-tracing technique, the shielding distribution is generated 
over 4 steradian solid angle. We have found that approximately 1000 rays (or thicknesses) are quite adequate to 
quantify the amount of shielding distributed about the dose point of interest. Each ray is an equal solid angle, and the 
CAMERA3 driver program keeps track of the materials (skin, bone, tissue, and organ) each ray intercepts. The 
shielding distribution is then an output data set (list of material thicknesses converted to aluminum equivalent) that 
is ordered from the thinnest to the thickest values. 

A. The CAM Model 
Based on the initial work of Kase5 (1970) and corrected work of Billings & Yucker3 (1973), they produced a 

computerized anatomical model of a standard 50th percentile USAF male that stands 69.1”(175.5 cm) and weighs 
153.2 lbs. (69.45 kg). The CAM model is a high-fidelity human male model containing all of the critical body 
organs including the testes. 

The model uses QUAD6 geometry to produce a mathematical model having 2450 regions and 1095 surfaces and 
uses a right hand coordinate system with the origin located at the top of the head with the 

 z-axis pointing toward the feet 
 x-axis pointing out the chest 
 y-axis out the right side 

 
There are nine (9) primary human body materials and corresponding material densities: 

 lung 
 organ 
 intestine 
 muscle 
 bone 
 marrow 
 skeleton 
 tissue 
 water 

The computer program, CAMERA3, was developed to provide shielding distributions for any (x, y, z) 
coordinate point in or on the CAM model using a ray-tracing technique, 500 to 1000 rays are used to generate a 
shielding distribution (in g/cm2 aluminum equivalent thicknesses). CAMERA can also be utilized to produce cross-
sectional computer plots as shown in Figure 4 below. Figure 5 shows three views of the anatomical male human and 
the internal organs. 
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Figure 6.  CAM body organ shielding distributions (968 thicknesses) for 5 specific male organs. 
 

C. Combined Mark III Spacesuit and Organ Shielding Distributions 
We “mathematically” placed the CAM and CAF models inside the Mark III 3-D CAD spacesuit model and 

generated shielding distributions for several locations in (BFO – Blood-Forming Organ) and on (skin) the male and 
female. Figures 7 and 8 are CAM shielding distributions for several skin and BFO locations, respectively. 

 

 
 

Figure 7.  CAM shielding distributions for several skin points. 
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Figure 8.  CAM shielding distributions for several BFO points. 
 

 Figures 9 and 10 show the CAF shielding distributions for several skin and BFO locations, respectively. 
 

 
 
 

Figure 9.  CAF shielding distributions for several skin points. 
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Figure 10.  CAF shielding distributions for several BFO points. 
 

 These CAM and CAF shielding distributions are used in section VII to compute the respective skin and BFO 
space radiation exposures. 

V. LEO Radiation Environment 

We used a typical ISS orbit (400 km x 51.6 inclination) and the SPENVIS9 on-line tool to compute the trapped 
proton10 and electron11 differential and integral spectra as shown in Figs. 11 and 12 for solar minimum for an 8 hr 
EVA. 
 

 
 

Figure 11.  LEO integral and differential trapped proton spectra (solar MIN) for an 8 hr EVA. 
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Figure 12.  LEO integral and differential trapped electron spectra (solar MIN) for an 8 hr EVA. 
 

VI. GEO Radiation Environment 
 

GEO (35,786 km x 0 inclination) electron11 spectrum is shown in Figure 13 for solar minimum (epoch 2012). 
The proton environment is negligible at GEO; the maximum proton energy is ~4 MeV. Thus, at GEO we are only 
concerned with radiation exposures due to the trapped electrons (and, of course, GCR and SPEs). 

 
 

. 
 

Figure 13.  GEO differential trapped electron spectrum (solar MIN) for an 8 hr EVA. 
 

 At the GEO radiation environment the earth’s magnetic field is very weak and the high energy particles from 
GCR and SPE’s that have nearly free access. The solar proton environment is will not be considered in this paper, 
since any EVA activity would not take place in an enhanced radiation environment and the crew would seek 
maximum shielding shelter inside the spacecraft. 
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