A Systems-Level Perspective on Engine Ice Accretion

Ryan D. May
Vantage Partners, LLC

Ten-Huei Guo, Donald L. Simon
NASA Glenn Research Center

Presented to the ACGSC, Reno, NV
March 6-9, 2013
Overview

• Problem of Engine Power Loss
• Modeling Engine Icing Effects
• Simulation of Engine Rollback
• Icing/Engine Control System Interaction
• Detection of Ice Accretion
• Potential Mitigation Strategies
• Future Work
Problem of Icing Induced Power Loss

• More than 150 power loss events reported in last 20 years in High Ice Water Content conditions
 • Temporary or sustained power loss, uncontrollability, engine shutdown

• Many possible causes of power loss:
 • Compressor surge
 • Flame-out due to combustor ice ingestion
 • Damage due to ice shedding
 • Sensor icing
 • Engine rollback
Problem of Icing Induced Power Loss

- Ice crystals are believed to enter the core, melt, and accrete on engine components
- No pilot reports of weather radar returns
- No observations of airframe icing

Video courtesy of NASA GRC
Our Approach

- Accept that ice does accrete in the engine core
- Focus on the impact of the icing on the engine’s performance
 - Collaborative effort across NASA Glenn Research Center
 - Controls and Dynamics Branch
 - Turbomachinery Branch
 - Icing Branch
- Develop models to study the conditions in which ice accretes (COMDES+NPSS+GlennICE)
- Use some of these results to develop “simplified” models
Modeling of Effect of Engine Icing

- C-MAPSS40k engine simulation
 - Commercial 40,000lb\(_f\) thrust, high-bypass turbofan engine
 - Physics-based model
 - Realistic engine control system & sensor noise
 - Written in MATLAB/Simulink
 - Modular design
 - Publicly available to US citizens
Modeling of Engine Icing Effects

- Low Pressure Compressor (LPC) maps with various quantities of ice blockage in the 2nd row stator
- Integrated into C-MAPSS40k
 - Linear interpolation between maps

Underlying data from:
Simulation of Engine Performance during Ice Accretion

- Impact of Engine Icing
 - Start from nominal conditions and increase the blockage level
 - Move from nominal LPC map to 20% blocked map

- Effect:
 - Higher fuel flow rate required to maintain desired setpoint leads to increase in all other parameters
 - No Rollback event
Simulation of Engine Rollback

- As blockage increases, eventually a rollback occurs
- Decrease in thrust
- Decrease in fan speed
- Increase in TGT
Engine Control System

- **Power Management**
 - Responsible for holding current power level

- **Protection Logic**
 - Responsible for ensuring safe operation
 - Adjusts Fuel Flow to ensure limits are observed
Controller Response To Icing

- Core speed limit prevents fuel flow rate from continuing to increase

- Normal operation of controller in the presence of blockage results in rollback
Detection of Engine Icing

- Typically 5 – 7 control sensors present in an engine
- Icing causes a change in the LPC operational characteristics
- Operate in conjunction with airframe devices to reduce chance of false-positive
Detection of Engine Icing

- Estimate the change in LPC “health” based on fan and core shaft speeds and look for a decrease in the flow capacity
- Linear estimator approach
 - Uses simple 1D interpolation
 - Low memory usage
 - Should be capable of operating real-time in typical FADEC

- Early Sim. Results:
 - False-Positive = 0.0%
 - True-Positive = 100.0%
 - Average Blockage Level at Detection = 6.80%
Mitigation of Engine Icing

• Ideally, completely avoid ice accretion

• If we can detect accretion can the engine controller act to mitigate the impact of the ice blockage?

• Potential mitigation strategies:
 ▪ Operate actuators off-nominally to change operating point
 » Close inter-compressor bleed valve or move HPC inlet guide vanes off schedule
 ▪ Use existing airframe integration in novel ways
 » Power take-off, Customer air bleed
 ▪ Change shaft speed to cause ice to shed

• All of these approaches require iteration with an icing code to determine the effect of the new condition on ice accretion!
Future Plans

• Upcoming testing at NASA Glenn’s Propulsion System Laboratory promises to provide validation of models and detection algorithm

• Develop mitigation strategies – iterate with the NASA GRC icing code to determine how the change in operating point impacts the accretion of ice & possible testing in PSL
Acknowledgements

• This work was funded by the NASA Aviation Safety Program’s Vehicle Systems Safety Technologies Project
References

Detection of Engine Icing

- Linear estimator – optimal unbiased least squares
 \[y = Hx + \omega \]
 \[\hat{x} = (H' R^{-1} H)^{-1} H' R^{-1} y \]
- Detection threshold can be chosen to obtain a desired false-positive rate
- As threshold increases the detection latency also increases