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Overview 

• Problem of Engine Power Loss 

• Modeling Engine Icing Effects 

• Simulation of Engine Rollback 

• Icing/Engine Control System Interaction 

• Detection of Ice Accretion 

• Potential Mitigation Strategies 

• Future Work 
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Problem of Icing Induced Power Loss 

• More than 150 power loss events reported in last 

20 years in High Ice Water Content conditions 

• Temporary or sustained power loss, uncontrollability,  

engine shutdown 

• Many possible causes of power loss: 

• Compressor surge 

• Flame-out due to combustor ice ingestion 

• Damage due to ice shedding 

• Sensor icing 

• Engine rollback 
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Problem of Icing Induced Power Loss 

• Ice crystals are believed to enter the core, melt, 

and accrete on engine components 

• No pilot reports of weather radar returns 

• No observations of airframe icing 
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• Accept that ice does accrete in the engine core 

• Focus on the impact of the icing on the engine’s 

performance 

Collaborative effort across NASA Glenn Research Center 

»Controls and Dynamics Branch 

»Turbomachinery Branch 

» Icing Branch 

• Develop models to study the conditions in which ice 

accretes (COMDES+NPSS+GlennICE) 

• Use some of these results to develop “simplified” 

models 

Our Approach 
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Modeling of Effect of Engine Icing 

• C-MAPSS40k engine simulation 

Commercial 40,000lbf thrust, high-bypass turbofan 

engine 

Physics-based model  

Realistic engine control system & sensor noise 

Written in MATLAB/Simulink 

Modular design 

Publicly available 

to US citizens 
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Modeling of Engine Icing Effects 

• Low Pressure 

Compressor 

(LPC) maps with 

various quantities 

of ice blockage in 

the 2nd row stator 

• Integrated into  

C-MAPSS40k 

• Linear interpolation 

between maps 
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Underlying data from: 

Jorgenson, P.C.E., Veres, J.P., May, R.D., Wright, W.B., 

“Engine Icing Modeling and Simulation (Part I): Ice Crystal 

Accretion on Compression System Components and Modeling 

its Effects on Engine Performance,” 2011-38-0025, SAE 

International Conference on Aircraft and Engine Icing and 

Ground Deicing, Chicago, IL, Jun 13-17, 2011. 

doi:10.4271/2011-38-0025 
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Simulation of Engine Performance 

during Ice Accretion 

• Impact of Engine Icing 

Start from nominal 

conditions and increase the 

blockage level 

Move from nominal LPC 

map to 20% blocked map 

• Effect: 

Higher fuel flow rate 

required to maintain desired 

setpoint leads to increase in 

all other parameters 

No Rollback event 
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Simulation of Engine Rollback 

• As blockage 

increases, eventually 

a rollback occurs 

• Decrease in thrust 

• Decrease in fan 

speed 

• Increase in TGT 
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Core 

Speed 

Fan 

Speed 

Core 

Accel 

Fan 

Decel Ps3 Power 

Management 

Schedule 

Fuel 

Control 

EPR Feedback 

Nf Feedback 

Throttle 

Engine Control System 

• Power Management 

Responsible for holding current power level 

• Protection Logic 

Responsible for ensuring safe operation 

Adjusts Fuel Flow to ensure limits are observed 
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Controller Response To Icing 

Core speed limit 

prevents fuel flow rate 

from continuing to 

increase 

 

Normal operation of 

controller in the 

presence of blockage 

results in rollback 
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Detection of Engine Icing 

• Typically 5 – 7 control 

sensors present in an 

engine 

• Icing causes a change 

in the LPC operational 

characteristics 

• Operate in conjunction 

with airframe devices 

to reduce chance of 

false-positive 
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Detection of Engine Icing 

• Estimate the change in LPC 

“health” based on fan and 

core shaft speeds and look 

for a decrease in the flow 

capacity 

• Linear estimator approach 

Uses simple 1D interpolation 

Low memory usage 

Should be capable of 

operating real-time in typical 

FADEC 
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• Early Sim. Results: 

• False-Positive = 0.0% 

• True-Positive = 100.0% 

• Average Blockage Level at 

Detection = 6.80% 

Detection 

Threshold 
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Mitigation of Engine Icing 
• Ideally, completely avoid ice accretion 

• If we can detect accretion can the engine controller act to 

mitigate the impact of the ice blockage? 

• Potential mitigation strategies: 

 Operate actuators off-nominally to change operating point 

» Close inter-compressor bleed valve or move HPC inlet guide 

vanes off schedule 

 Use existing airframe integration in novel ways 

» Power take-off, Customer air bleed 

 Change shaft speed to cause ice to shed 

• All of these approaches require iteration with an icing 

code to determine the effect of the new condition on ice 

accretion! 
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Future Plans 

• Upcoming testing at NASA Glenn’s Propulsion 

System Laboratory promises to provide validation 

of models and detection algorithm 

• Develop mitigation strategies – iterate with the 

NASA GRC icing code to determine how the 

change in operating point impacts the accretion of 

ice & possible testing in PSL 
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• Linear estimator – optimal 

unbiased least squares 

 

 

• Detection threshold can 

be chosen to obtain a 

desired false-positive rate 

• As threshold increases 

the detection latency also 

increases 

yRHHRHx

Hxy

111 ')'(ˆ 

 

Detection of Engine Icing  
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