
On the Statistical Analysis of X-ray Polarization Measurements

T. E. Strohmayer and T. R. Kallman

X-ray Astrophysics Lab, Astrophysics Science Division, NASA’s Goddard Space Flight

Center, Greenbelt, MD 20771

Received ; accepted



– 2 –

ABSTRACT

In many polarimetry applications, including observations in the X-ray band,

the measurement of a polarization signal can be reduced to the detection and

quantification of a deviation from uniformity of a distribution of measured an-

gles of the form A + B cos2(ϕ − ϕ0) (0 < ϕ < π). We explore the statistics

of such polarization measurements using both Monte Carlo simulations as well

as analytic calculations based on the appropriate probability distributions. We

derive relations for the number of counts required to reach a given detection

level (parameterized by β the “number of σ′s” of the measurement) appropriate

for measuring the modulation amplitude a by itself (single interesting parameter

case) or jointly with the position angle ϕ (two interesting parameters case). We

show that for the former case when the intrinsic amplitude is equal to the well

known minimum detectable polarization (MDP) it is, on average, detected at the

3σ level. For the latter case, when one requires a joint measurement at the same

confidence level, then more counts are needed, by a factor of ≈ 2.2, than that

required to achieve the MDP level. We find that the position angle uncertainty

at 1σ confidence is well described by the relation σϕ = 28.5(degrees)/β.

Subject headings: polarimetry: general — statistical analysis: Monte Carlo simulations
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1. Introduction

Emission and scattering processes thought to be important in many astrophysical

X-ray sources are likely to impart specific polarization signatures, but to date there have

only been a few positive detections of polarization from cosmic X-ray sources, largely due

to sensitivity limitations. Some of the earliest and highest precision measurements were

made with the OSO-8 Bragg reflection polarimeter (Kestenbaum et al. 1976; Weisskopf et

al. 1976), and include high significance measurements of the linear polarization properties

of the Crab nebula in several energy bands (Weisskopf et al. 1978).

More recently, observations with the INTEGRAL spectrometer SPI and imager IBIS

have exploited the polarization dependence of Compton scattering to infer the linear

polarization properties of the Crab at γ-ray energies (Dean et al. 2008; Forot et al. 2009).

These results indicate that the > 200 keV flux from the Crab nebula is highly polarized

(≈ 50%), with a position angle consistent with the pulsar rotation axis.

In the last few years the development of micropattern gas detectors has enabled the

capability to directly image the charge tracks produced by photoelectrons, thus enabling use

of photoelectric absorption in a detection gas as a direct probe of X-ray polarization (Costa

et al. 2001; Black et al. 2004; 2010). It is likely that such technology will be employed in

the not-too-distant future to sensitively explore the polarization properties of many classes

of astrophysical X-ray sources for the first time.

In this paper we explore the question of how one detects, measures, and characterizes

a polarization signal with a photoelectric polarimeter. The remainder of this paper is

organized as follows; in §2 we outline the basic problem of detecting a modulation in

a distribution of angles, and we describe the angle distributions used throughout the

paper. In §3 we briefly outline the probability distribution relevant to such polarization

measurements. In §4 we describe our Monte Carlo simulations and present our results. We
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conclude with a short summary in §5.

2. Statement of the Problem

The angular distribution of photoelectrons ejected by a linearly polarized beam of

photons (X-rays) is proportional to sin2(θ) cos2(ϕ)/(1−β cos(θ))4 (see, for example, Costa et

al. 2001), where θ is the emission angle measured from the direction of the incident photon

(0 < θ < π), and ϕ is the azimuthal angle measured relative to the polarization vector

of the incident photon (see Figure 1 for the basic geometry applicable to a photoelectric

polarimeter). In most practical situations the angle θ is not inferred directly, but the

electron charge track projected into the plane orthogonal to the direction of the photon

(the plane defined by θ = 90 deg) is imaged and thus ϕ can be estimated for each detected

photon. The angle ϕ is measured around the line of sight to the target of interest and

can be referenced to, for example, local North on the sky. The presence of a significant

linear polarization component is then evident in the distribution of azimuthal angles. For

example, an unpolarized photon flux will produce a uniform distribution in the angle ϕ,

whereas a linear polarization component produces a distribution peaked at a particular

azimuthal angle, ϕ0.

In general, the observed distribution in ϕ will be of the form,

S(ϕ) = A+B cos2 (ϕ− ϕ0) . (1)

This distribution has an amplitude of modulation given by, a ≡ (Smax − Smin)/(Smax +

Smin) = B/(2A + B), and a position angle (the angle at which the distribution has a

maximum) given by ϕ0, thus, the detection of polarization can be reduced to a statistical

detection of a modulation in the distribution of angles, ϕ. Such a distribution is often

referred to as a modulation curve.
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In principle the angle ϕ can be measured in the range from 0 − 2π (0 - 360 degrees),

however, due to the two-fold symmetry of the cos2(ϕ) dependence of the angular distribution

of ejected photoelectrons, it is sufficient to consider distributions over a range of angles

from 0 to π (0 - 180 degrees).

An equivalent and often convenient way to express this distribution is using the

so-called Stokes decomposition,

S(ϕ) = I +Q sin (2ϕ) + U cos (2ϕ) , (2)

where I, Q and U are the well-known Stokes parameters, the modulation is now given by

a = (Q2 + U2)1/2/I, and the position angle is ϕ0 = 1/2 tan−1(Q/U).

Now, the amplitude of modulation a is not in general equal to the source polarization

amplitude, ap, because a detector is not a perfect analyzer and will not provide an exact

measurement of the true photoelectron angle ϕ. That is, individual angle estimates will have

some uncertainty associated with them and these will produce a uniform (unmodulated)

component to the measured distribution even in the case of a 100% polarized beam. This

“lossiness” of the angle estimates is quantified in terms of the so-called detector modulation,

µ, which is the modulation amplitude produced in the detector by a 100% polarized X-ray

beam.

In general, µ can depend on a number of factors, including the energy of the incident

photons, and the composition and pressure of the absorbing gas, among others (see

Paciani et al. 2003, Bellazini et al. 2003). In the absence of background, the amplitude

of polarization is just ap = a/µ. In general, ap is larger than the measured amplitude of

modulation, a, because as noted above, detectors are not 100% efficient, and some of the

intrinsic polarization amplitude is smeared out.
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3. Probability Distribution

Previous studies have shown that the joint probability distribution for a measurement

of polarization amplitude, a, and position angle, ϕ is given by

P (N, a, a0, ϕ, ϕ0) =
Na

4π
exp

(
−N

4
(a2 + a20 − 2aa0 cos 2((ϕ− ϕ0)))

)
, (3)

where a, a0, ϕ, ϕ0, and N are the measured amplitude, the true amplitude, the measured

position angle, the true position angle, and the number of detected photons, respectively

(see, for example, Weisskopf, Elsner & O’Dell 2010). In the case of no intrinsic polarization,

a0 = 0, the distribution simplifies substantially to

P (N, a) =
Na

4π
exp

(
−N

4
a2
)
, (4)

and this expression can be readily integrated to find the probability of measuring an

amplitude, a, if there is no intrinsic polarization. The amplitude that has a 1% chance

of being measured is referred to as the minimum detectable amplitude (MDA), and it is

relatively straightforward to show that MDA = 4.29/
√
N . The polarization amplitude

that would produce this modulation amplitude in a particular detector system is called

the minimum detectable polarization (MDP), and based on the discussion above is just

MDP =MDA/µ = 4.29/(µ
√
N).

Furthermore, if we are not concerned with the position angle, ϕ, then we can integrate

equation (3) over angles and obtain the distribution,

P (N, a, a0) =

∫ π/2

−π/2

P (a, ϕ)dϕ =
a

σ2
exp(−(a2 + a20)

2σ2
)I0(

aa0
σ2

) (5)

where I0 is the modified Bessel function of order zero, and σ2 = 2/N . This distribution is

known as the Rice distribution (Rice 1945) and it reflects the fact that the amplitude is

always a positive quantity, and so the distribution must go to zero for a = 0. An important

property of this distribution concerns the second moment, which is related to the width,
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and is given by: < a2 >= a20 + 4/N which shows that the distribution width increases with

a0.

4. Monte Carlo Simulations

Without loss of generality an X-ray source’s linear polarization characteristics can be

described by the modulation amplitude, a0, and position angle, ϕ0 (in the range from 0 -

π), that would be produced in a particular detector system. In making an observation a

total of N photons are observed for each of which an angle ϕi is estimated for the ejected

photoelectron in the range from 0 − π (0 - 180 deg). One can then create a histogram of

the number of events (photons) in each of M position angle bins, where the bin size (in

degrees) is ∆ϕ = 180/M . One can then do least-squares (χ2) fitting to estimate both a, ϕ,

and their 1σ uncertainties (in practice we fit the modulation curves with the Stokes form of

the distribution, equation 2). We call this a measurement of polarization. In effect, what is

measured is the modulation amplitude, a, and it is the knowledge of the detector system,

expressed in terms of µ, that enables this to be converted to a source polarization amplitude

via the expression ap = a/µ.

This procedure is quite amenable to simulation with Monte Carlo techniques, and here

we present results of such simulations, both in the case with a0 = 0 and a0 > 0. For now we

ignore background considerations and work only in terms of modulation amplitudes, that

is, the following results can be considered applicable to any detector system, regardless of

the µ value that characterizes its polarization sensitivity.

The simulations proceed as follows, for a given set of true parameter values, a0 and ϕ0,

we compute a number, Msim, of simulated data sets each of which has N photons. For each

simulated data set we bin the resulting angles to form a modulation curve and for each the
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Stokes form of the distribution (equation 2) is fitted to determine best-fit values for Q, U ,

and I, and their 1σ uncertainties, σQ, σU , and σI , respectively. We can use the fitted Stokes

parameters to express the results in terms of a and ϕ using the expressions defined above.

The 1σ uncertainties, σa and σϕ, can also be determined by standard error propagation

methods, which yields,

σa = a
(
(σI/I)

2 + (σ2
Q/(Q

2 + U2))
)1/2

, (6)

and

σϕ (deg) = (180/π)
(√

(x2)/(2(1 + x2))
) (

(σQ/Q)
2 + (σU/U)

2
)1/2

, (7)

where, x = Q/U , and σI , σQ, and σU are the standard 1σ uncertainties on the fitted

quantities, I, Q and U . The procedure can then be repeated with different values of N .

All the Monte Carlo simulations described here were done using IDL, and uniform deviates

were obtained with IDL’s random number generator randomu. We use a least-squares

fitting routine within IDL developed by Craig Markwardt that is based on MINPACK-1

(see http://cow.physics.wisc.edu/c̃raigm/idl/fitting.html). In all of the least squares fits all

parameters are allowed to vary.

4.1. Results with a0 = 0: Minimum Detectable Amplitude (MDA)

In the case of a0 = 0 the distribution of angles, ϕ, is uniform, which can be easily

simulated with a random number generator that produces uniform deviates. We obtain

from this procedure a distribution of best-fit amplitudes, a, from which we can estimate

the value a1% that has a 1% chance probability of being measured. This is just the familiar

MDA described above. Figure 2 shows a comparison of the results from the simulations

(blue square symbols) versus the analytic expression given above, 4.29/
√
N (solid line).

We computed Msim = 10, 000 simulations for these results, and we used 16 position angle
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bins for the modulation curves. Figure 2 shows that the a0 = 0 simulations are in good

agreement with the analytic result, giving us confidence that our simulation procedures are

correct.

4.2. Results with a0 > 0: Detection of Polarization

We can now explore a number of issues with regard to detection of polarization. For

example, how many counts are needed to measure a modulation amplitude to a particular

precision, and for a given precision in the amplitude measurement, how accurately can the

position angle be measured?

To address these questions we perform additional simulations using true distributions

with specified amplitudes and position angles. For the illustrative examples below we used

two different amplitudes, both with ϕ0 = 0, however, we have explored many different

cases and all the results summarized here are independent of the particular values of a0 or

ϕ0 used. The example distributions described below are; S(ϕ) = 10 + 1 cos2(ϕ − 0) and

S(ϕ) = 10 + 2 cos2(ϕ− 0). These examples correspond to intrinsic modulation amplitudes,

a0, of 1/21 and 2/22, respectively. For a specific detector these would correspond to

polarization amplitudes, ap = 1/(21µ), and 2/(22µ).

To determine the number of counts, N , needed to reach a polarization sensitivity given

by the MDP value we require that MDP = 4.29/µ
√
N = ap = a/µ, and thus a = 4.29/

√
N .

Note that here µ cancels out, and to achieve MDP values at these amplitudes requires

(212) ∗ 4.292 = 8116.21, and (22/2)2 ∗ (4.29)2 = 2226.90 counts, respectively. Note that this

may seem a trivial point, but it’s important to keep the terminology as precise as possible.

Below we will compare the counts needed to reach a certain MDP, Nmdp, and the counts

needed to measure the same amplitude of polarization to a certain precision, N . While N
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and Nmdp will individually depend on µ, the ratio, N/Nmdp, cannot depend on µ, that is, it

is independent of the detector system employed.

When a0 > 0 we sample random angles from the true distributions by the so-called

transformation method. We first compute the cumulative distribution of S(ϕ), then draw

uniform deviates, x, and find the corresponding value of ϕ(x) in the cumulative distribution.

We use the root finder ZBRENT implemented in IDL to solve for ϕ given x. We can

thus draw a specific number of events, N , from the true distribution. For each value of

N we compute a large number Msim of realizations, to each of which is fitted the Stokes

distribution to determine the best fit values of I, Q, and U (and thus a and ϕ), and their

1σ uncertainties. We can thus simulate the distributions of a and ϕ for different N .

4.3. Single Parameter Confidence Regions

Here we present the results of our simulations in several ways. First, we used the results

from Msim = 1, 000 realizations for different values of N to find the mean values of a, and ϕ

and their 68% confidence ranges. These are derived for each parameter independently of the

other, that is, they are 1-dimensional (single parameter) ranges. For example, if one were

interested in asking the question, is a source (or population of sources) polarized, without

regard to the particular position angle of the electric vector, then the 1-d distribution would

be appropriate. We explore the joint, 2-dimensional distributions below in §4.4.

Figure 3 shows an example simulated distribution of measured amplitudes, a, computed

with N = 20, 000 events and a0 = 2/22 (with ϕ0 = 0). The left panel shows the differential

(binned) distribution, and the right panel shows the same results expressed as a cumulative

distribution. We also computed similar distributions for the measured position angle, ϕ.

Procedurally we use the estimated cumulative distributions to identify the mean of
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each distribution (ie., for both a and ϕ), and the two values amax and amin that enclose

68% of the distribution. This then gives the 1σ uncertainty, σa,1d = (amax − amin)/2 (we

also compute the corresponding values for the ϕ distribution). We can then compute the

quantity β1d = amean/σa,1d, which can be thought of as the “number of sigmas” of the

measurement. We now explore the behavior of several quantities as a function of β1d.

The first is the ratio N/Nmdp (see Figure 4), where N is simply the number of events

(photons) simulated (ie. the number of observed counts in the modulation curve), and

Nmdp = 4.292/a20 is just the number of counts that would be required to reach an MDA

equal to the true amplitude, a0. This ratio can be thought of as the additional observing

time required to measure the true amplitude to a given significance compared to the time

needed to reach an MDA equivalent to the true amplitude. The black diamond symbols in

Figure 4 show the results of simulations using the example distributions described above

with Msim = 1, 000 for different values of N .

One can also present the results in a slightly different but complementary way. In

the above simulations we have essentially carried out many simulated observations and

computed the distribution of “observed” values of the amplitude and position angle, but in

reality an observer may not have the luxury of making such a large number of independent

observations of a particular source. All any observer can do is to observe some number,

N , of photons from the source, construct a modulation curve and fit it as we have done in

the simulations described above. From this procedure we obtain four quantities, a, σa, ϕ,

and σϕ. This constitutes a measurement of the polarization parameters, or more simply, a

measurement of polarization. Here, the uncertainties, σa, and σϕ, are obtained for a specified

confidence level and number of degrees of freedom. For example, for the 1σ (68.3%), single

parameter confidence ranges we would find the change in each parameter that produces

a ∆χ2 = 1 (while allowing the other parameter to vary in the fitting procedure). For a
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2-dimensional, joint confidence region at the same level of confidence (68.3%) we would find

the ∆χ2 = 2.3 contour in the a - ϕ plane.

For the diamond symbols in Figure 4 above we used the mean values and 1σ

uncertainties derived from the distributions computed from many simulated observations

to obtain β1d, however, one can also use the “measured” quantities from each simulated

observation to compute βobs,1d = a/σa,1d. One can then plot the observed quantities for

each simulated observation, where now Nmdp(a) is computed using the best-fit value for

a and the formula a = 4.29/N
1/2
mdp. We have done this and show the results in Figure 4

with the colored symbols. That is, the colored points are these “measured” values from

individual simulations. The red symbols were computed with N = 10, 000, a0 = 2/22,

ϕ0 = 0 (deg), the blue used N = 20, 000, a0 = 2/22, ϕ0 = 0 (deg), and the green with

N = 24, 000, a0 = 3/25, and ϕ0 = 22.5 (deg). We see that the distribution of “measured”

points falls along the same relations as that deduced from the simulated distributions of

a, and ψ, as indeed they should since they are sampling the same distributions, this way

of presenting the results of the simulations makes a more direct connection with actual

polarimetric observations, as we only plot quantities that one would obtain directly from a

single observation. To the extent that actual observations are dominated only by poisson

counting noise and for which the background is small, then they must fall along the relations

followed by the simulated observations shown in Figure 4. Indeed, the locus of points traced

out by the “measured” values from individual simulations can be easily approximated by

simply plotting curves that intersect the entire swarm of simulated points. Doing this we

find that N/Nmdp = β2
obs,1d/9.18 (dashed curve in Figure 4) to very good accuracy.

We also explored simulations where the true amplitude a0 was set equal to the MDA.

Figure 5 shows the cumulative distribution of the “measured” values of β from several such

simulations. One can see from Figure 5 that roughly 60% of the time one would “measure”
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the amplitude, a, at the 3σ level, or better. We emphasize that this relation is based on the

1-d (single parameter) confidence range for a, and would be appropriate only for the case of

addressing the question of the detection of a significant modulation amplitude independent

of the position angle. We now explore the joint, 2-dimensional confidence regions.

4.4. Joint Confidence Regions for a and ϕ

For a 2-dimensional confidence region we need to find the contour in the a - ϕ plane

that encloses a specified fraction of the best-fit pairs. For a 1σ region (68.3% confidence)

this is the contour that satisfies ∆χ2(a, ϕ) = 2.3, where ∆χ2 = χ2(a, ϕ)− χ2
min(abest, ϕbest).

We again use the Stokes decomposition and compute ∆χ2(I,Q, U) on grids of I, Q and U

around the best-fit values, Ibest, Qbest, and Ubest. We can then convert the grids of Stokes

parameters into the appropriate values of a and ϕ and find the boundaries of the region

that satisfies ∆χ2 ≤ 2.3. We next find the maximum and minimum value on the boundary

for each parameter. We can then define σa,2d = (amax − amin)/2 and σϕ = (ϕmax − ϕmin)/2,

where amax, amin, ϕmax and ϕmin are the maximum and minimum values on the contour of a

and ϕ, respectively. Figure 6 shows a pair of 1σ confidence regions computed in this fashion.

Results from two simulations are shown, one with a lower amplitude, a0,low = 2/24, and

one with a higher amplitude, a0,hi = 3/25. Both simulations were performed with ϕ0 = 25

deg (these true parameters are marked by the red diamond symbols), and N = 10000. In

each case a modulation curve was randomly sampled using the true amplitude and position

angle, and the simulated data were then fitted to determine the best-fit values of the

amplitude and position angle. These points are shown by the green square symbols. The

shaded areas show the regions of a and ϕ around each best-fit pair that satisfy ∆χ2 ≤ 2.3.

The horizontal and vertical dotted lines mark the maximum and minimum values on the

regions for each parameter. One can see that the size of the confidence region grows for
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smaller intrinsic modulation amplitudes (as one would expect), and that the confidence

regions are in general not circular.

The probability distribution described earlier (§3) can also be used to derive an

analytic expression for the 2-d confidence contour in the a - ϕ plane for any desired level of

confidence. This approach has been investigated by Weisskopf et al. (2010). They derive a

pair of parametric relations for the values of a and ϕ on any confidence contour (see their

equation 8). These expressions predict the correct range (extremes) in the amplitude, a,

but overpredict the range in ϕ by a factor of 2, apparently because their original derivation

neglected a switch from phase angle to position angle (Weisskopf, private communication).

Thus, if one replaces all occurrences of ϕ, ϕ0 and ψ with 2x the respective angle (eg.,

sinϕ0 −− > sin 2ϕ0) beginning at their equation (6), one obtains the following expressions;

a =
(
a20 +∆a2C + 2a0∆aC cos 2(ψ − ϕ0)

)1/2
(8)

and

ϕ = 1/2 tan−1 ((a0 sin 2ϕ0 +∆aC sin 2ψ)/(a0 cos 2ϕ0 +∆aC cos 2ψ)) , (9)

where ∆aC = (−4 ln(1 − C)/N)1/2, with C and N being the desired confidence level and

number of detected photons, respectively, and ψ is just a parametric angle that varies

around the contour. The thick blue curves in Figure 5 were drawn using these expressions

with N = 10, 000, C = 0.683 (ie., 1σ), and the pair (a0, ϕ0) given by the appropriate best

fit values (green square symbols). These contour curves provide an excellent match to the

boundaries of the shaded regions, indicating that the Monte Carlo simulations and analytic

calculations are in excellent agreement.

We can now compute the value β2d = abest/σa,2d for each particular simulation. This

again quantifies the “number of sigmas” of the measurement, but now reflects the fact

that it is a joint measurement of both a and ϕ together. Results from a number of such

simulations are also shown in Figure 4, where we plot the same figure of merit, N/Nmdp, as
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before, but now using β = abest/σa,2d. This curve is again quadratic in β but rises more

steeply than the 1d relation, because σa,2d is larger than σa,1d. In agreement with Weisskopf

et al. (2010) we find that the 2d relation is very well approximated as N/Nmdp = β2/4.1,

and this is the dashed line running through the square symbols.

We also show in Figure 7 the position angle uncertainty, σϕ in degrees (at 1σ confidence)

as a function of β = abest/σa,2d. We find that this relation can be very well approximated

as σϕ = 28.5(deg)/β. Thus, a joint 3σ measurement constrains the position angle to better

than 10 degrees.

5. Discussion and Summary

The MDP is a very commonly employed figure of merit to describe the polarization

sensitivity of a detector system. In their recent paper Weisskopf et al. (2010) have argued

that “more counts would be needed” to measure the polarization corresponding to the 99%

confidence MDA rather than to just establish the same level. As we have shown this is

correct in the sense of a “polarization measurement” being a joint measurement of both

the amplitude a and position angle ϕ. This seems sensible, since it adds an additional

requirement, that the measured a and ϕ both fall within a 2d confidence region. We have

also confirmed that the additional number of counts required is given by a factor of ≈ 2.2.

However, if one were to ask a different question, and were interested in establishing

simply that a source is polarized, with say, a 3σ measurement of the amplitude, a, without

concern for the position angle ϕ, then the 1d (one interesting parameter) case is appropriate,

and no extra counts are needed to measure the MDA. So, in some sense the answer one

obtains depends on the question asked.

The MDP value has often been used to estimate observing times required to reach
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particular sensitivity levels. The results shown here demonstrate that exposure requests

should clearly match the measurement goals of the desired scientific program. For example,

if source modeling requires a joint measurement of both polarization parameters, then the

appropriate time to reach a required precision for two interesting parameters should be

requested.
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Fig. 1.— Geometry relevant for photoelectric polarimeter measurements. Photons travel

from figure top to bottom. Photoelectrons are preferentially emitted in the plane perpendic-

ular to the photon direction of travel (in this case the X - Y plane), and their initial direction

is measured by the azimuthal angle ϕ.
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Fig. 2.— The amplitude, a1% ≡ MDP (µ = 1), vs the number of counts, N , obtained from

simulations described in §4.1 (blue squares), and the analytic formula (solid curve, §3).
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Fig. 3.— Example 1d distributions in the amplitude, a, computed from Monte Carlo simula-

tions. The left panel shows the differential distribution (binned), and the right panel shows

the cumulative distribution. To estimate the mean we find the midpoint (triangle sym-

bol), and the 1σ extremes, amin and amax at 0.165 and 0.835, respectively (square symbols,

enclosing 68% of the distribution).



– 21 –

Fig. 4.— Plot of N/Nmdp(a) as a function of β, the “number of sigmas” of the measurement.

Both the 1d amplitude distribution (σa,1d, independent of the position angle) and the 2d

joint distribution (σa,2d), are shown. The black diamond symbols are derived from the

results of Msim = 1000 simulations for different values of N (see discussion in §4.3). The

colored symbols are the results of individual simulations where β is derived from the best-

fit amplitude, a, and its 1d, 1σ uncertainty, σa,1d. The red symbols were computed with

N = 10, 000, a0 = 2/22, ϕ0 = 0 (deg), the blue used N = 20, 000, a0 = 2/22, ϕ0 = 0(deg),

and the green with N = 24, 000, a0 = 3/25, and ϕ0 = 22.5 (deg). The solid dashed curve

for the 1d case is given by N/Nmdp(a) = β2/9.2. The black square symbols show the 2d

confidence region results (see discussion in §4.4). The curve running through the 2d results

is given by N/Nmdp(a) = β2/4.1
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Fig. 5.— Plot of the cumulative distribution of β = a/σa,1d for several different simulations

all satisfying the condition that a = MDA. A vertical line is plotted at β = 3 (the nominal

3σ detection criterion), and which is close to the most probable value (the distribution is

not exactly gaussian, ie. symmetric). See the discussion in §4.3 for more details.
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Fig. 6.— Confidence regions and contours in the (a, ϕ) plane. Results from two simulations

are shown. Simulated modulation curves were computed with N=10,000 counts for two

different intrinsic amplitudes both with a position angle of 25 degrees. These values are

marked by the red diamond symbols. The resulting best fit parameter values (green squares)

and confidence regions (shaded areas) are shown. The shaded regions are the ∆χ2 < 2.3

regions (1σ for 2d confidence regions). The horizontal and vertical dotted lines denote the

extremes in each parameter and are used to compute σa,2d and σϕ,2d. The blue contour curves

were computed from the analytical expressions in §4.4.



– 24 –

Fig. 7.— Plot of the position angle uncertainty, σϕ (1σ, in degrees), derived from the 2d

confidence regions, as a function of β2d, the “number of sigmas” of the measurement. The

solid dashed curve is given by σϕ = 28.5/β2d.


