
NASA/SP–2013–604

May 2013

NASA Software Engineering Benchmarking Study
Heather L. Rarick
Johnson Space Flight Center, Houston, TX
Sara H. Godfrey
Goddard Space Flight Center, Greenbelt, MD
John C. Kelly
NASA Headquarters, Washington, DC
Robert T. Crumbley
Marshal Space Flight Center, Huntsville, AL
Joel M. Wilf
Jet Propulsion Laboratory, Pasadena, CA

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI) pro-
gram plays a key part in helping NASA maintain this
important role.

The NASA STI program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and its
public interface, the NASA Technical Report Server,
thus providing one of the largest collections of aero-
nautical and space science STI in the world. Results
are published in both non-NASA channels and by
NASA in the NASA STI Report Series, which includes
the following report types:

•	 TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase of
research that present the results of NASA Programs
and include extensive data or theoretical analysis.
Includes compilations of significant scientific and
technical data and information deemed to be of
continuing reference value. NASA counterpart of
peer-reviewed formal professional papers but has
less stringent limitations on manuscript length and
extent of graphic presentations.

•	 TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

•	 CONTRACTOR REPORT. Scientific and technical
findings by NASA-sponsored contractors and
grantees.

•	 CONFERENCE PUBLICATION. Collected
papers from scientific and technical conferences,
symposia, seminars, or other meetings sponsored or
co-sponsored by NASA.

•	 SPECIAL PUBLICATION. Scientific, technical,
or historical information from NASA programs,
projects, and missions, often concerned with
subjects having substantial public interest.

•	 TECHNICAL TRANSLATION. English-language
translations of foreign scientific and technical
material pertinent to NASA’s mission.

Specialized services also include organizing and
publishing research results, distributing specialized
research announcements and feeds, providing help
desk and personal search support, and enabling data
exchange services. For more information about the
NASA STI program, see the following:

•	 Access the NASA STI program home page at
http://www.sti.nasa.gov

•	 E-mail your question via the Internet to
help@sti.nasa.gov

•	 Fax your question to the NASA STI Help Desk at
443-757-5803

•	 Phone the NASA STI Help Desk at 443-757-5802

•	 Write to:

NASA STI Help Desk
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

NASA STI Program ... in Profile

National Aeronautics and
Space Administration

NASA Headquarters
Washington, DC 20546

NASA/SP–2013–604

May 2013

Heather L. Rarick
Johnson Space Flight Center, Houston, TX

Sara H. Godfrey
Goddard Space Flight Center, Greenbelt, MD

John C. Kelly
NASA Headquarters, Washington, DC

Robert T. Crumbley
Marshal Space Flight Center, Huntsville, AL

Joel M. Wilf
Jet Propulsion Laboratory, Pasadena, CA

NASA Software Engineering Benchmarking Study

Available from:
NASA Center for AeroSpace Information
7115 Standard Drive
Hanover, MD 21076-1320

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161 Price Code: A17

Level of Review: This material has been technically reviewed by technical management

Trade names and trademarks are used in this report for identification only. Their usage does not
constitute an official endorsement, either expressed or implied, by the National Aeronautics and
Space Administration.

Notice for Copyrighted Information

This manuscript is a work of the United States Government authored as part of the official duties
of employee(s) of the National Aeronautics and Space Administration. No copyright is claimed
in the United States under Title 17, U.S. Code. All other rights are reserved by the United States
Government. Any publisher accepting this manuscript for publication acknowledges that the
United States Government retains a non-exclusive, irrevocable, worldwide license to prepare
derivative works, publish, or reproduce this manuscript, or allow others to do so, for United
States Government purposes.

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Table of Contents

Executive Summary ..vi
1. Introduction .. 1
1.1. Background .. 1
2. Purpose .. 3
3. Scope ... 4
3.1. Scope of Topic Areas ... 4
3.2. Scope of Chosen Organizations ... 6
4. Methods ... 8
4.1. Preparation ... 8
4.2. Interviews ... 8
4.3. Data Analysis and Report Development ... 9
5. General Observations .. 11
5.1. Policy .. 11

5.1.1. Questions .. 11
5.1.2. Discussion ... 12

5.1.2.1. Aerospace Industries .. 13
5.1.2.2. Universities and University Research and Development Labs 14
5.1.2.3. Defense Services .. 15
5.1.2.4. NASA .. 16

5.1.3. Observations ... 18
5.1.4. Recommendations ... 18

5.2. Acquisition .. 20
5.2.1. Questions .. 20
5.2.2. Discussion ... 20

5.2.2.1. Aerospace Industries .. 22
5.2.2.2. Universities and University Research and Development Labs 22
5.2.2.3. Defense Services .. 23
5.2.2.4. NASA .. 23

5.2.3. Observations ... 24
5.2.4. Recommendations ... 24

5.3. Testing .. 26
5.3.1. Questions .. 26
5.3.2. Discussion ... 26

5.3.2.1. Aerospace Industries .. 29

ii

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.3.2.2. Universities and University Research and Development Labs 30
5.3.2.3. Defense Services .. 31
5.3.2.4. NASA .. 31

5.3.3. Observations ... 32
5.3.4. Recommendations ... 32

5.4. Assurance... 33
5.4.1. Questions .. 33
5.4.2. Discussion ... 33

5.4.2.1. Aerospace Industries .. 35
5.4.2.2. Universities and University Research and Development Labs 36
5.4.2.3. Defense Services .. 36
5.4.2.4. NASA .. 37

5.4.3. Observations ... 37
5.4.4. Recommendations ... 38

5.5. Training .. 39
5.5.1. Questions .. 39
5.5.2. Discussion ... 40

5.5.2.1. Aerospace Industries .. 40
5.5.2.2. Universities and University Research and Development Labs 41
5.5.2.3. Defense Services .. 43
5.5.2.4. NASA .. 43

5.5.3. Observations ... 44
5.5.4. Recommendations ... 46

5.6. Metrics .. 46
5.6.1. Questions .. 46
5.6.2. Discussion ... 46

5.6.2.1. Aerospace Industries .. 48
5.6.2.2. Universities and University Research and Development Labs 49
5.6.2.3. Defense Services .. 49
5.6.2.4. NASA .. 50
5.6.2.5. CMMI and Metrics ... 51

5.6.3. Observations ... 51
5.6.4. Recommendations ... 52

5.7. CMMI .. 53
5.7.1. Questions .. 53
5.7.2. Discussion ... 53

5.7.2.1. Aerospace Industries .. 56
5.7.2.2. Universities and University Research and Development Labs 58

iii

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.7.2.3. Defense Services .. 58
5.7.2.4. NASA .. 60
5.7.2.5. CMMI Maturity Level 5 Organizations ... 60

5.7.3. Observations ... 61
5.7.4. Recommendations ... 62

5.8. Small Projects ... 63
5.8.1. Questions .. 63
5.8.2. Discussion ... 63

5.8.2.1. Aerospace Industries .. 64
5.8.2.2. Universities and University Research and Development Labs 66
5.8.2.3. Defense Services .. 66
5.8.2.4. NASA .. 67

5.8.3. Observations ... 68
5.8.4. Recommendations ... 68

5.9. Tools ... 69
5.9.1. Questions .. 69
5.9.2. Discussion ... 69
5.9.3. Observations ... 70
5.9.4. Recommendations ... 71

5.10. Programmable Logic Devices .. 71
5.10.1. Questions ... 71
5.10.2. Discussion .. 71
5.10.3. Recommendations ... 73

6. Benefits .. 74
6.1. Feedback .. 74
6.2. Collaboration and Continued Opportunity ... 75
7. Comparisons and Trends ... 77
8. Recommendations ... 79
8.1. Software Benchmark Study Recommendations from Topic Sections 80
8.2. Recommended Forward Plan ... 88

8.2.1. Project Management ... 88
8.2.2. Processes, Practices, Training and Tools .. 89
8.2.3. Collaboration and Further Interactions .. 91

8.3. Summary .. 91
Appendix A – Acronyms and Abbreviations .. 93
Appendix B –Top Software Issues at NASA .. 97

iv

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Appendix C – NASA Presentation to Participating Organizations 99
Appendix D – Questions Asked of Participating Organizations 108
Appendix E – NASA Software Engineering History – Policies and Procedural
Requirements .. 118
Appendix F – Software Tools Identified ... 121
Appendix G – NASA Personnel on Interview Teams .. 125
Appendix H – List of Sites/Dates/Teams ... 126
Appendix I – Summarized Observations ... 127
Appendix J – References .. 128

List of Tables
Table 1: Common Software Policy Strategies ... 12
Table 2: Software Test Time Allocation ... 27
Table 3: Test Metrics for the Organizations Interviewed ... 28
Table 4: Organization Training Characteristics ... 40
Table 5: Commonly Collected Metrics and Metrics Practices .. 47
Table 6: CMMI Benefits and Challenges Mentioned in Interviews 55
Table 7: Organizational Practices for Small Projects... 64

List of Figures
Figure 1: Ishikawa Diagram Mapping Potential Root Causes When NASA Software
Engineering Requirements Fail to be Adequately Included in Contracts. 21
Figure 2: Activities Performed by Software Assurance.. 35
Figure 3: CMMI Levels of Organizations Pre-Interview and At Interview....................... 54
Figure 4: History of NASA's Software Policies .. 119
Figure 5: Current NASA Document Tree ... 120

v

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Executive Summary
To identify best practices for the improvement of software engineering on projects,
NASA’s Offices of Chief Engineer (OCE) and Safety and Mission Assurance (OSMA)
formed a team led by Heather Rarick and Sally Godfrey to conduct this benchmarking
study. The primary goals of the study are to identify best practices that:

 Improve the management and technical development of software intensive
systems.

 Have a track record of successful deployment by aerospace industries,
universities [including research and development (R&D) laboratories], and
defense services, as well as NASA’s own component Centers.

 Identify candidate solutions for NASA’s software issues.

Beginning in the late fall of 2010, focus topics were chosen and interview questions
were developed, based on the NASA top software challenges. Between February 2011
and November 2011, the Benchmark Team interviewed a total of 18 organizations,
consisting of five NASA Centers, five industry organizations, four defense services
organizations, and four university or university R&D laboratory organizations. A software
assurance representative also participated in each of the interviews to focus on
assurance and software safety best practices.

Interviewees provided a wealth of information on each topic area that included: software
policy, software acquisition, software assurance, testing, training, maintaining rigor in
small projects, metrics, and use of the Capability Maturity Model Integration (CMMI)
framework, as well as a number of special topics that came up in the discussions.
NASA’s software engineering practices compared favorably with the external
organizations in most benchmark areas, but in every topic, there were ways in which
NASA could improve its practices. Compared to defense services organizations and
some of the industry organizations, one of NASA’s notable weaknesses involved
communication with contractors regarding its policies and requirements for acquired
software. One of NASA’s strengths was its software assurance practices, which seemed
to rate well in comparison to the other organizational groups and also seemed to include
a larger scope of activities.

An unexpected benefit of the software benchmarking study was the identification of
many opportunities for collaboration in areas including metrics, training, sharing of
CMMI experiences and resources such as instructors and CMMI Lead Appraisers, and
even sharing of assets such as documented processes. A further unexpected benefit of
the study was the feedback on NASA practices that was received from some of the
organizations interviewed. From that feedback, other potential areas where NASA could

vi

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

improve were highlighted, such as accuracy of software cost estimation and budgetary
practices.

The following detailed report contains discussion of the practices noted in each of the
topic areas, as well as a summary of observations and recommendations from each of
the topic areas. The resulting 24 recommendations from the topic areas were then
consolidated to eliminate duplication and culled into a set of 14 suggested actionable
recommendations. This final set of actionable recommendations, listed below, are items
that can be implemented to improve NASA’s software engineering practices and to help
address many of the items that were listed in the NASA top software engineering
issues.

1. Develop and implement standard contract language for software procurements.
2. Advance accurate and trusted software cost estimates for both procured and in-

house software and improve the capture of actual cost data to facilitate further
improvements.

3. Establish a consistent set of objectives and expectations, specifically types of
metrics at the Agency level, so key trends and models can be identified and used to
continuously improve software processes and each software development effort.

4. Maintain the CMMI Maturity Level requirement for critical NASA projects and use
CMMI to measure organizations developing software for NASA.

5. Consolidate, collect and, if needed, develop common processes principles and
other assets across the Agency in order to provide more consistency in software
development and acquisition practices and to reduce the overall cost of maintaining
or increasing current NASA CMMI maturity levels.

6. Provide additional support for small projects that includes: (a) guidance for
appropriate tailoring of requirements for small projects, (b) availability of suitable
tools, including support tool set-up and training, and (c) training for small project
personnel, assurance personnel and technical authorities on the acceptable options
for tailoring requirements and performing assurance on small projects.

7. Develop software training classes for the more experienced software engineers
using on-line training, videos, or small separate modules of training that can be
accommodated as needed throughout a project.

8. Create guidelines to structure non-classroom training opportunities such as
mentoring, peer reviews, lessons learned sessions, and on-the-job training.

9. Develop a set of predictive software defect data and a process for assessing
software testing metric data against it.

10. Assess Agency-wide licenses for commonly used software tools.
11. Fill the knowledge gap in common software engineering practices for new hires and

co-ops.

vii

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

12. Work through the Science, Technology, Engineering and Mathematics (STEM)

program with universities in strengthening education in the use of common software
engineering practices and standards.

13. Follow up this benchmark study with a deeper look into what both internal and
external organizations perceive as the scope of software assurance, the value they
expect to obtain from it, and the shortcomings they experience in the current
practice.

14. Continue interactions with external software engineering environment through
collaborations, knowledge sharing, and benchmarking.

viii

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

1. Introduction
In almost every NASA program and project, software is a critical product. Nearly every
piece of hardware in use on a launch vehicle, spacecraft, science experiment, ground
system or network requires software to monitor or control its operation. "Today, software
touches everything in modern spacecraft development. Why does software fix hardware
problems? Because it can. ...Bottom line: the game has changed in developing space
systems. Software and avionics have become the system."1 Success of software is
critical to the success of NASA.

NASA leadership has worked diligently to improve software engineering and has
decided that an examination of internal and external practices would greatly benefit the
work being done within and for NASA. Thus a benchmarking effort has been undertaken
to identify, review and employ best practices relevant to the software that is critical to
NASA’s missions.

1.1. Background
NASA policy directives (NPDs) and NASA Procedural Requirements (NPRs) govern the
policies, process and requirements for each NASA program/project, including specific
software engineering requirements. In addition to these documents, other mechanisms
are used to effectively manage software engineering such as common training and
feedback from programs/projects. The NASA Software Executive and the Software
Working Group (SWG) are responsible for establishing the software engineering
processes and training required to manage and produce software vital to the success of
NASA’s missions.

The SWG is led and chaired by the NASA Software Executive from the OCE, and
functions as an advisory group from its charter to manage software engineering and the
advancement of software engineering practices. The SWG is comprised of NASA
Center software engineering and software assurance experts who meet regularly to
plan and execute their tasks.

1.2.1 The NASA Headquarters Office of the Chief Engineer shall lead, maintain,
and fund a NASA Software Engineering Initiative to advance software engineering
practices. [SWE-002]

1.2.2 Each Center shall maintain, staff, and implement a plan to continually
advance its in-house software engineering capability and monitor the software

1 Is Software Broken? by Steve Jolley , NASA ASK Magazine, Issue 34, September 2009
http://askmagazine.nasa.gov/issues/34/34i_software_broken.html.

1

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

engineering capability of NASA's contractors, as per NASA's Software Engineering
Initiative Improvement Plan. [SWE-003]2

The NASA SWG Chair initiated a benchmarking effort for fiscal year 2011 (FY11) to
discover new software engineering techniques and tools; review and learn from internal
and external organizations; and, examine the current and near-term software
engineering environment. Initially, this benchmarking effort was organized with the
expectation of gathering best software engineering practices from among a sampling of
organizations, and sharing these practices throughout NASA. Although this remains the
cornerstone of the effort, the purpose was further developed to include best practices
within NASA. By including internal organizations (NASA Centers), the effort also gained
baseline data that can be compared with the external organizations. This effort and
analysis of the information collected is expected to advance software engineering
practices within NASA.

2 NPR 7150.2A, NASA Software Engineering Requirements, NASA Office of the Chief Engineer, 2009.

2

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

2. Purpose
The purpose of this report is to share the results of the interviews and discussions that
were arranged with select software engineering and software assurance organizations
from NASA Centers and from other organizations that had or have done work with or for
NASA. Identified are internal best practices alongside external best practices; new
techniques and tools; and possible improvements that could be or may necessarily be
achieved within the next few years. This report, summary briefings, and execution of
forward actions are expected to advance the software engineering practices of NASA.

3

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

3. Scope
Since this benchmarking effort could encompass many aspects of software engineering
and many organizations, the Benchmark Team narrowed the focus to strategic target
areas and requested interviews with the specific categories of organizations. Software
assurance, although often treated independently in NASA and elsewhere, was included
and should be assumed whenever “software engineering” is referenced or used.

3.1. Scope of Topic Areas

It was necessary to focus the effort on target areas that were currently of high concern
or interest to NASA Centers, and which offered a practical opportunity to obtain useful
information. Therefore, the Benchmark Team utilized a list of NASA’s top software
issues compiled in 20103 (Appendix B), as a basis for determining the key target areas.
For example, software cost estimation is on the top software issues list, but the topic
was excluded since it is unlikely that competitive organizations would divulge their cost
strategies. The key target areas and a synopsis of the questions asked during the
interview are summarized below. A few specific comments from the top software issues
list are also noted and incorporated into the suite of questions used at the interviews
(Appendix D).

1. Software policies: Identify level of detail and use of industry standards,
who/how are policies developed, changed, communicated and complied with. Is
there a more effective way to determine, communicate and ensure compliance
with policies?

2. Software acquisitions: Examine how to maintain organizational requirements
in software acquisitions. Are policies and requirements waived, tailored or fully
met, successful or not?

Comments from 2010 Top Issues List: Software does not receive adequate
attention in contracts where the procurement is a hardware product containing
software. Required software documentation, measurements and reviews are
often omitted from contract (due to cost)… Issues identified with incorporating
commercial off-the-shelf (COTS) and open source products into mission critical
software developments (e.g., flight software, ground software, and the software
development environment) and maintaining rigorous processes.

3 Top NASA Software Issues of 2010, Joint software Working Group / Mission software Steering
Committee Meeting at NASA Plum Brook, August, 2010.

4

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

3. Testing: Seek insights on testing and opportunities to improve testing time,
reduce errors found in testing, manage schedules and composition of test teams.
What factors improve the efficiency and shorten the testing time?

4. Software assurance: Obtain understanding of software assurance tools,
training, metrics and relationship with software quality, reliability and safety. How
is software engineering integrated with software assurance?

5. Training: Inquire about training and whether or not in house training programs
are more effective/efficient. What are some different types of training techniques
that are used and what are the most useful topics that are provided to software
engineers?

Comments from 2010 Top Issues List: There are insufficient software experts
available to assist software development teams that are composed of scientists
and engineers without formal software engineering training. The education level
of non-software discipline engineers, project managers and Center management
knowledge regarding software [value, why, how it’s designed, related NPR’s,
software classifications, value of software assurance/Independent Verification
and Validation (IV&V)] could be substantially improved.

6. CMMI – maturity level benefits and benefits of advancement: Analyze
organizations that have CMMI maturity levels of two or greater and solicit
benefits and costs. Who and what drives the maturity levels, how are the benefits
demonstrated, how are costs minimized and accepted?

7. Small projects: Investigate how rigor is maintained. Are policies and
requirements tailored, are there alternate tools/techniques used for small
software projects? NOTE: Small projects at NASA are defined as using five or
fewer software engineers.

Comment from 2010 Top Issues List: The number of requirements and
documents are disproportional to the funding and risk levels of small missions,
technology demonstration projects and smaller robotics spacecraft with accepted
risk.

8. Tools: Find out what tools are prevalent and what success or efficiencies are
gained from the use of the tools. What tools are most often used and are there
greater dependencies on specific tools for small projects with limited resources?

Two other topics were also discussed via this benchmark. Both topics were considered
areas of interest and treated as secondary and optional objectives. Questions regarding
metrics were asked of most of the organizations but were more heavily pursued with

5

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

organizations that had higher level CMMI maturity levels. (For the purpose of this
benchmark and report, NASA considered CMMI maturity levels 3 (ML3) and higher as
“higher maturity levels.”) Questions regarding programmable logic devices (PLD) were
asked but discussions were not detailed.

 Metrics: Ascertain the success of metrics in improving software and impacts of
life cycle. What metrics are most useful and how are they used?

 Programmable logic devices: Discuss how software organizations are
handling and their concerns about PLDs. Are software organizations
participating in PLDs from a process and requirements perspective, should they
be if they are not?

Comment from 2010 Top Issues List: There is an increasing tendency to put
mission critical functionality in field programmable gate arrays (FPGAs) because
of the perception that there are cost and schedule benefits to doing this.
Perception that complex electronics are not held to the same level of rigor in
requirements, development, testing, and verification as software. Need
combination of hardware and software approaches to developing complex
electronics.

Each organization was asked a set of questions on the key target areas. These
questions were limited to keep the length of the interview to less than three hours. The
questions were also targeted to organizations that develop and/or acquire software
comparable to NASA mission critical software. The benchmarking team decided on this
limitation because software for projects of a much less critical nature may not be
applicable to software issues at NASA (based on cost versus benefit). Several smaller
organizations and organizations with unique and possibly innovative competitive
attributes, but which still met the critical software development criteria, were selected to
minimally compensate for those excluded organizations.

3.2. Scope of Chosen Organizations
The scope of the organizations to be interviewed was focused on those that had similar
software criticality. The Benchmark Team chose defense services organizations,
aerospace companies, universities and university laboratories. These organizations had
or have done work with or for NASA. Several NASA Centers were also interviewed as
part of the benchmark.

A minimum of three organizations from each category was originally planned but
ultimately expanded to include 4 Defense Services organizations, 5 Aerospace Industry
organizations, 4 Universities (2 Universities and 2 University Research and

6

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Development Laboratories) and 5 of the 10 NASA Centers. Although this study
interviewed more organizations than originally anticipated, the collection is still a small
sample of organizations that could have been interviewed as well as a very limited
sample of organizations within each category.

The Benchmark Team extends its thanks and appreciation to all organizations and
participants. The openness and willingness to communicate exhibited by the
interviewed organizations was tremendous and is of great value to NASA and to the
software engineering community. In exchange for the honest and accurate information
provided by the interviewed organizations, NASA has agreed to not disclose the names
of the organizations or of the personnel that participated.

7

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

4. Methods
4.1. Preparation
The benchmark effort was established with eight key target areas based on many of
NASA’s top software issues. These target areas were converted into interview
questions. An extensive list of questions was generated and then reduced to fit into a
three hour interview. Appendix D contains the list of questions shared with the
participating organizations and a longer list of questions used by the Benchmark Team
to assist in the discussions (not provided to the organizations). The questions, along
with a short briefing (Appendix C), were sent to each participating organization. With
this request a recommendation was made on which persons in the organization, based
on roles and responsibilities would be appropriate to attend.

Contacts with personnel in the 18 organizations were used to initiate the process. Once
the organizations responded with interest, details were provided and an interview was
scheduled.

4.2. Interviews
Interviews consisted of three to five NASA personnel, typically one or both of the
Benchmark Team leads, the SWG Chair and/or Deputy Chair, a software assurance
person and an SWG member local to the interview location. Appendix G lists the NASA
personnel who participated on the interview teams.

The NASA personnel were responsible for asking questions and taking notes. Although
the questions were formalized and provided, the face-to-face meeting allowed for a
more natural and comfortable dialogue among participants, leading to more open and
robust discussions. For some interviews, travel by all of the NASA personnel was not
possible, so the interviews were conducted using both on-site personnel and
teleconference. The intention was to maintain some consistency within the
benchmarking effort, using the Benchmark Leads and the SWG Chair/Deputy, but also
to include some diversity, using local SWG members. Including a member from the
SWG also enhanced the SWG’s first-hand knowledge of internal and external software
engineering organizations.

A typical interview began with a brief summary presentation of the purpose and scope
of the benchmark effort (Appendix C). The summary also included an explanation of
NASA’s software engineering and assurance organizations, NASA and Center policies
and requirements, software classifications, training, CMMI at NASA and the top
software issues. The organization often provided a reciprocal briefing to explain their
organization and their policies and requirements. Following these introductory and

8

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

background discussions, the NASA personnel asked questions and facilitated
discussions on the key target areas. Some organizations had greater interest and
involvement in some topics, so the interview was adjusted to delve into those areas and
spend less time on other target areas. It is important to note that NASA chose to focus
on understanding each organization and used the questions to gain that understanding
and identify different ideas rather than pursuing answers to each specific question.

4.3. Data Analysis and Report Development
After the interview, notes were collected and used to generate the key target area
summaries within Section 5 (General Observations) in this report. Each summary topic
begins with a list of the topic’s interview questions, and then focuses on organizing the
data into subsections:

 General discussion with specific information regarding:
o Aerospace industries
o Universities and university labs
o Defense Services Organizations
o NASA Centers

 Major observations
 Recommendations

In Section 5, similarities and differences between the organizational groups can be
recognized and common and unique best practices can be identified. Both the
similarities/differences as well as the commonality/uniqueness may be helpful in
determining the success or applicability to implementation within NASA. For each key
topic area, a few major observations were assembled to capture some of the more
relevant data in the Discussion section. Recommendations were specified to apply the
relevant data into possible forward plans for implementation within NASA.

The remaining sections, Benefits (Section 6) and Comparison and Trends (Section 7)
were written to explore where NASA is exceeding the current software engineering
environment and where NASA should focus its efforts to improve on its software
engineering. The data and information presented is based on the review of the
Benchmark Team leads and the SWG Chair/Deputy which was discussed and analyzed
from recollection and interview notes. The NASA interview participants shared in the
review and completion of the key target area summaries and the review of the entire
report.

The Benefits Section introduces unanticipated outcomes and an assessment on the
benefits of this study. The Comparisons and Trends Section looks at how NASA fared

9

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

against the different organizational groups. This perspective provides corroboration in
determining the areas where NASA should focus to achieve improvements and which
improvements are most needed.

The recommendations listed in Section 8 include the full list of recommendations from
each topic area (Section 8.1) and also includes a suggested set of recommendations for
NASA review and potentially NASA concurrence for inclusion in near-term plans
(Section 8.2). These recommendations are focused on topics that were included in this
study because they were considered areas that the NASA software engineering
community was interested in improving (Top Software Issues, Appendix B). The
recommendations are constructed based on best practices gathered through the
benchmarking effort and were analyzed to be areas that would bring NASA’s practices
closer to the common practices of the external software engineering environment.

At a minimum, this report is intended to be shared within NASA and with the
organizations that participated. For NASA, it will serve as a guide on near-term
decisions and focal points for further development. It should also serve as an
opportunity to continue assessing software engineering on a routine (but smaller) basis
since this effort has produced positive results.

10

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5. General Observations
As mentioned in Section 4.3 Data Analysis and Report Development, this section
contains much of the detailed information gathered on each of the focus topics during
the interviews. Each topic section lists the topic area interview questions and then
contains a section of general discussion where the focus is on the broad perspective of
the topic across all of the organizations interviewed. Many of the observations that were
common for the majority of the organizations are discussed in this initial discussion
section.

The initial discussion section is followed by individual discussion sections covering the
observations from the interviews, grouped by the types of organizations, i.e., Industry
organizations, University and University Research and Development Laboratories,
Defense Service organizations, and NASA Centers, so similarities and differences can
be seen within the various groupings of organizations.

The next section in each topic area pulls out the “key” observations. Generally these
key observations were differences or commonalities with NASA but also include notable
comments, some of which are best practices or specific areas where an improvement
opportunity for NASA was noted.

And finally, each topic section contains recommendations for NASA improvements in
the topic area. The topics in this section include:

 Policy
 Acquisition
 Testing
 Software assurance
 Training
 Metrics
 CMMI
 Small projects
 Tools
 Programmable logic devices (PLD)

5.1. Policy

5.1.1. Questions

 Please identify and summarize software policies, directives or requirements you
have that are implemented organization-wide (governing documents)?

11

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

 Identify the source of software policies, directives or requirements which are
applied to your organization’s software activities? Who (organizationally) is
responsible for these high-level documents and how/when are they updated?

 Describe how your organization ensures compliance with these governing
documents?

 Please explain how these documents are communicated to the users?
 How are policies and requirements included in contracted work (e.g.,

acquisitions)?
 How are project reviews and milestones coordinated with software reviews and

milestones?

5.1.2. Discussion

The first topic of the Benchmark, Software Policy, provides an opportunity to examine
approaches to policies, requirements, standards, and guidance which have been
successful for outside organizations, as well as those local to NASA Centers. Some of
the unique elements of software policy were identified by organization in the table
below.

Table 1: Common Software Policy Strategies

N1 N2 N3 N4 N5 I1 I2 I3 I4 I5 G1 G2 G3 G4 U1 U2 U3 U4
Policy Topic
Formal up front tailoring process X X X X X X X X X X X X X X
Use of software classification X X X X X X X X
Corporate/enterprise-wide Processes X X X
Software engineering principles X X X
Months to flow down software NASA
procedural requirement (NPR) to Center
procedural requirement 19 19 35 19 36

CMMI level - at interview 2 2 2 3 3 3 5 3 3 - # 2 5 3 - - - 3
Previous CMMI level 5 organization X X X

Nx NASA Centers Ux
Ix Industry Organizations Gx Defense Services

Organizations

University, Univ. R&D Labs

Note: X's in matrix indicate practices mentioned in interviews. Lack of X's in boxes DO NOT indicate that the
practice is not performed. The chart should be viewed as an indication of the practices mentioned. The light gray X
under I1 indicates the organization had used a classification scheme, but no longer uses it.

indicates organization had a previous CMMI Maturity Level 2 rating, which was expired at time of interview.

Not Relevant/Question was not pursued with this type of organization

12

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.1.2.1. Aerospace Industries

Representatives from five industry organizations were interviewed for this benchmark.
Some interesting trends resulting from these interviews include:

 Policy: Four of the five industry organizations interviewed had corporate-wide
software policies which are flowed down to projects.

 Assets: Of the four with corporate-wide software policies, all had a variety of
lower level software direction that was also held corporate-wide. Examples of
other corporate-wide software assets that were mentioned include: a standard
software process manual; checklists; templates; and a tailoring guideline.

 Corporate/enterprise-wide processes: Three of the aerospace industries
interviewed had transitioned to a consolidated set of software processes
corporate-wide. The transition in two cases included allowances for local
differences provided they yielded specific benefits. A third aerospace
organization had some of the elements of an enterprise-wide software process
approach in place. Some of the benefits included: mobility of software engineers
across projects and divisions; strength in software training across the
corporation; significant economic advantages in the development and
maintenance of software process assets, associated tools, and engineering
support kits; common software measurements; and efficiencies gained in CMMI
appraisals.

o One of the experienced interviewees provided the following caveat:
“The challenge in this approach is to have buy-in to the common practices,
as everyone thinks they are unique.”

 Compliance checks: Industry in-house software quality assurance (SQA) was
mentioned as playing a key role in the way each organization ensures
compliance with institutional software requirements (involved SQA suggests
compliance checks are done). Other supporting checks included: audits; monthly
reviews with the software process owner (technical authority); use of checklists
that have the software requirements embedded in them; use of compliance
matrices; peer reviews (e.g., software inspections, walkthroughs); and keeping of
tangible software metrics.

 Contracting:
o Most of the industry organizations did not use subcontractors for software

development. Of the two that did, software requirements were flowed
down (including CMMI). One company that mentioned outsourcing
software development said that they assigned a company flight software
technical lead oversight responsibility for the contracted software.

13

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

o There was a general agreement that software policies and requirements
for a project were communicated through contracts for all acquirer/supplier
relationships. Internal software policies and requirements were
communicated through company training programs, mentoring, and
general culture.

o NASA’s flow down of software requirements in contracts seems to be
variable in this small sample. Organizations reported both excessive
software requirements flowed down, as well as a case where no software
requirements were put on the contract.

 Software classification: Two of the aerospace industry organizations developed
internal software classification schemas for engineering systems. These industry
schemas have either four or five categories. For comparison purposes, NASA
has five software categories for engineering systems and the Federal Aviation
Administration (FAA) has four. While these classification schemas vary in their
details, there are similarities with mission critical software being at the top of the
classification structure.

o Another industry interviewee mentioned that software classification
schemas weren’t that useful in their environment as all of the code was
considered safety critical.

o One of aerospace industry’s mentioned that their software classification
schema was dropped when the company transitioned to a corporate-wide
software process asset strategy.

 Up front tailoring: Four of the five aerospace organizations described formal
upfront tailoring approaches with designated approval authorities. In each of
these cases, the tailoring was formally documented and the approval authorities
were independent of the project itself.

5.1.2.2. Universities and University Research and Development Labs

Representatives from four Academic/University organizations were interviewed for this
benchmark. Two of these locations represented a typical university environment; while
the other two were specialized off-site R&D laboratories run by universities. Some
interesting trends resulting from these interviews include:

 Policies and processes in universities: The two typical university environment
organizations had no internal software policies/requirements, nor software
process infrastructure [e.g., process asset libraries (PALs), procedures,
templates]. Additionally, voluntary consensus standards did not appear to be in
common use for software development. The only software development direction

14

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

mentioned by these organizations were requirements specified by external
customers.

 Policies and processes in university R&D labs:
o The off-site R&D laboratories have institutionalized software processes

and procedures based on the CMMI model which are used across multiple
projects.

o The off-site R&D laboratories have documented quality plans and
processes to check compliance with both institutional as well as product-
specific software requirements.

o The off-site R&D laboratories have organized training for developers in
standard procedures and development methods. This training also serves
the purpose of communicating the organization’s software policies and
procedural requirements.

 Software classification: One of the R&D laboratories established a software
classification schema which was based on four factors. Like industry and defense
services classification schemas mentioned in the preceding and following
section, criticality of the software played an important role.

 Up front tailoring: One of the R&D laboratories described a formal tailoring
process which was based on size, complexity, and guidance from the sponsor.

5.1.2.3. Defense Services

Representatives from four defense services organizations were interviewed for this
benchmark. Some interesting trends resulting from these interviews include:

 Policy: The source of software policy and requirements came directly from
military regulations, standards, CMMI, and AS9100 Quality Management
Systems - Requirements for Aviation, Space and Defense Organizations. These
were augmented by a variety of local software policies and requirements
mechanisms:

o Capstone documents which contained high level ‘business area’
objectives at the top, down to templates in process asset libraries at the
bottom.

o Plans, local policy (roles and responsibilities), work environment and risk
standards, non-conformance product guide (based on AS9100), etc.

o Local organizational software policies and application area workbooks.
o Process structure: software policy, then processes, then work aids (e.g.,

templates).

15

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

o Defense services organizations have significant software policy and
requirements infrastructures which exceed NASA’s in breadth and cultural
acceptance (see also Section 5.2, Acquisition of this report). This includes
the use of standard contracting language to ensure the software
policies/requirements are included in acquisitions which contain software.

 Software classification: Within the defense services organizations,
interviewees mentioned that all aspects of their systems were critical in nature,
and they didn’t see the usefulness of a classification schema for the purpose of
tailoring requirements and processes out of the development life cycle (i.e., all
software was given equal attention and rigor).

 Up front tailoring: Three of the four defense services organizations described
using formal upfront tailoring approaches (typically involving an approval
authority, tailoring guidance, and a record of the tailoring). The other organization
didn’t mention a formal tailoring process, which could have been a reflection of
the critical nature of their application and risks associated with tailoring out
procedures.

5.1.2.4. NASA

A summary of NASA’s policy and procedural requirements history for software
engineering is included in Appendix E for reference. Representatives from five NASA
Centers were interviewed for this benchmark. Some interesting trends that resulted from
these interviews include:

 Flow down of NASA’s software NPR to Center procedural requirements
(xPRs): All five of the Centers had or were working on establishing local Center
Procedural Requirements (xPR) for software based on the Agency-wide
requirements. Three of the five Centers had the local xPRs approved and
operational, while the other two were in the development or approval process.

 Principles: Three of the Centers established engineering principles or rules that
include numerous software entries. These principles/rules are basically a way of
capturing and promulgating practical lessons learned on projects. The
principles/rules are taken very seriously and checked at the project’s major
milestone review. Two additional Centers are in the process of developing
engineering principles/rules for software engineering.

 Compliance checks:
o Compliance checks against applicable software requirements were routine

across all of the Centers benchmarked. Software assurance personnel
were typically the principle ones performing this verification, but instances

16

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

where the software process improvement organization, branch manager,
or technical authority played a major role were also found.

o Software compliance matrices were commonly used to document
applicable requirements on projects. Software requirements tailoring was
captured in the compliance matrix.

 Software classification: NASA has a five-level schema for classifying software
based on 1) usage of the software within a NASA system, 2) criticality of the
system to NASA’s major programs and projects, 3) extent to which humans
depend upon the system, 4) developmental and operational complexity, and 5)
extent of the Agency’s investment. The number of applicable procedural
requirements (including a CMMI rating) for software development is determined
by the NASA-wide classification schema. There is also an independent second
classification on whether software is safety critical (which invokes additional
requirements contained in the NASA Software Safety Standard). Interviewees
commented on difficulties encountered in meeting NPR requirements on small
projects with tight budgets and few FTEs, yet still needing mission critical
software development.

o The internally developed NASA software classification tool was mentioned
as useful in helping to eliminate confusion. Another Center mentioned
difficulties in using NASA’s software classification schema as well as the
software classification tool. This interviewee has hopes that a soon-to-be
released xPR will help remedy divergent points of view in this area. A
couple of other Centers interviewed didn’t seem to have difficulty in using
the software classification schema.

 Up front tailoring: All five NASA Centers described formal upfront tailoring
approaches with involvement of designated approval authorities (called Software
Technical Authorities). In each of these cases, the tailoring was formally
documented, approved, and involved a software compliance matrix.

 Items only found at single NASA Centers, but noteworthy include:
o Specific processes documented for the use on Agile development efforts.
o Certification of mission critical software engineers via a Center training

program.
 Some of the Centers commented that the measures put in place in response to

the 2010 Top NASA Software Issues of 2010 study provided useful progress in
solving some of the policy related issues (NASA-HDBK-2203 Software
Engineering Handbook, Training on NPR 7150.2A, etc.).

17

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.1.3. Observations

 Policies and processes in universities: Among the organizations interviewed,
only the universities (excluding the off-site university R&D laboratories) lacked
internally established software policies, requirements, standards [including
Voluntary Consensus Standards (VCS)], procedures, and processes. There
appears to be a gap in the awareness and use of standard software engineering
practices within the university environment.

 Flow down of NASA’s software NPR to Center xPRs: The trickle down of top-
level NASA software policy and requirements to Center-level direction is slow.
The average time lag from Agency-wide software requirements release to
Center-level requirements adoption appears to be over two years.

 Contracts: NASA should be more consistent in the flow down of software
requirements on contracts (see also Section 5.2, Acquisition of this report).

 Compliance checks: In-house quality assurance (QA) plays a key role in
compliance checks for adherence to software policies and requirements.

 Principles: Several NASA Centers are finding value in the documentation and
use of engineering principles with respect to software.

 Classification: Software classification schemas were relevant for organizations
responsible for a wide variety of systems, but not necessarily for military systems
where all aspects of the system are critical. The software classifications schemas
encountered in industry and R&D Labs didn’t appear to be fundamentally
different from NASA’s approach.

5.1.4. Recommendations

PO1 Improve policies and processes with regard to universities. Although this is a
small sample, there is an important distinction between University versus
University R&D Laboratory software providers. It can’t be assumed that
university graduates have a firm foundation in the awareness and use of
common software engineering practices. This has implication for co-op
assignments and in-house training of new hires by NASA. Recommendations
include:

 NASA should be proactive in filling the knowledge gap in common
software engineering practices for new hires and co-ops.

 Be aware of the risk of ad hoc software development practices when
evaluating proposals from universities.

 Work through the STEM program with universities in strengthening

18

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

education in the use of common software engineering practices and
standards.

PO2 Improve the flow down of NASA’s software NPR to Center xPRs. Establish an
Agency-wide 1 year time limit/grace period on flowing down approved NASA
Procedural Requirements (NPR) updates into approved Center level direction
via xPRs (i.e., NASA Center ‘x’ Procedural Requirements).

PO3 Improve contracts. Recommendations include:

 NASA should examine the details of how defense services
organizations maintain consistency in the flow down of software
requirements through contract vehicles, then create and implement
standard language with respect to the Agency’s software
requirements.

 Since in-house SQA plays a key role in compliance with policies and
standards, NASA Request for Proposals (RFPs) should request
information on supplier’s quality assurance (QA) capabilities and use it
as one of the evaluation factors in contract awards.

PO4 Establish corporate/enterprise-wide processes. The corporate-wide software
engineering strategy communicated by two aerospace industries should
provide a model for future NASA software engineering improvements (with
appropriate tailoring to ensure it provides benefits within NASA’s
environment).4

PO5 Collect and publish a set of well documented software engineering
principles/rules from the NASA Centers, to promulgate software lessons
learned in a natural periodic manner available to all NASA Centers and
projects.4

4 The NASA Headquarters Office of Chief Engineer began an initiative called Agency Processes and
Principles for Software (APPS) under the leadership of Sara H. Godfrey and Steve Larson to develop a
NASA capability in this area.

19

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.2. Acquisition

5.2.1. Questions

 Do any of your projects include software acquisitions as a deliverable or as a
piece of the complete software project? If so, could you describe your acquisition
process, specifically how it integrates into your software organization?

5.2.2. Discussion

In 2010 NASA identified missing flow down of software engineering requirements5 as a
potential Agency systemic issue. This issue involved both the internal-NASA flow down
for work performed at NASA Centers as well as work contracted out to suppliers. In a
separate NASA study, a representative identified “Insufficient attention to software on
contracts,” in the top ten software issues for the Agency6. In an effort to remedy these
problems and learn from the experience of other organizations, questions related to
acquisition and flow down of software engineering requirements were included in this
Benchmark.

Five NASA Centers were interviewed in this Benchmark. Based on these inputs and
related data from the above mentioned NASA software issues (Appendix B) an Ishikawa
Diagram was developed to sort feedback into seven major categories for analysis of
potential root causes (see Figure 1). Sufficient inputs related to each of the seven
categories indicate that acceptable solutions for this issue will need to be multifaceted
within the Agency to be successful.

5 "Systemic Software Issues found during OCE Surveys and OSMA QAARS", Martha Wetherholt & John
Kelly, NASA Safety Center’s Audits and Assessments Office (AAO) Workshop, Houston, TX, Nov. 2011.

 Note: QAARS - Quality Audit, Assessment, and Review
6 "Software Engineering Improvement at NASA: Past, Present, & Future", John Kelly & Tim Crumbley,
Systems and Software Technical Conference, Salt Lake City, UT, April 2012.

20

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Figure 1: Ishikawa Diagram Mapping Potential Root Causes When NASA Software Engineering Requirements Fail

to be Adequately Included in Contracts.

21

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.2.2.1. Aerospace Industries

The four industry organizations provided information from mostly a supplier perspective.
One of their issues was the difficulty on reaching agreement with NASA on software
cost estimates. Major industry partners have become sophisticated in estimating cost
and schedule for the software portion of their product with good track records of planned
versus actuals. Some of the comments received in this area include:

 The company has measurable process estimation – within 10% variance. Every
NASA project challenges the amount of code, time or schedule.

 NASA cuts good estimates and introduces risk.
 NASA forces the project (contractor) into a “smaller” box, then forgets who made

the decision.
 NASA starts with the budget to create a project instead of finding out how much

budget it will take to do the job.

5.2.2.2. Universities and University Research and Development Labs

The four university/university labs varied widely in the size and scope of the software
supplied to NASA. In many cases, software was related to the flight or ground aspects
of science instruments. One of the frustrations expressed was the unpredictable nature
of NASA’s year-to-year funding:

 Each instrument was cost-capped. Instruments were doable within cost, but
schedule was stretched out a year due to sponsor’s funding short fall. This
significantly increased the cost of the project well beyond the original proposal.

 Being able to commit and fulfill a fixed funding level within an agreed to fixed time
would make projects less expensive, as well as less annoying for the supplier.
The European Space Agency (ESA) was mentioned as a sponsoring agency
similar to NASA who took this approach.

 An interviewee mentioned that they would like to see NASA scale down
documentation requirements for smaller projects that are typically contracted to
universities. They mentioned the need for flexibility in acceptance of combined
project documentation, wiki based documentation, and alternatives to extensive
slide based reviews. Similar to industry, universities mentioned:

o NASA forces the project into a “smaller” box, and then forgets who made
the decision.

o NASA starts with the budget to create a project instead of finding out how
much budget it will take to do the job.

22

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.2.2.3. Defense Services

The four defense services organizations interviewed didn’t appear to have the same
problems with the flow down of software requirements on contracts as indicated by
some NASA Centers with regards to Agency requirements. The Department of Defense
(DoD) has a number of acquisition courses, guides, and support materials available
through its Defense Acquisition University (www.dau.mil). In many cases individual DoD
software organizations provide further policies and requirements applicable to in-house
and out-of-house development within their specific application area. The Defense
Contracting Management Agency (DCMA) is regularly utilized to oversee contracted
software development and maintenance efforts. Defense services organizations appear
to make wide use of standard contracting language for acquisition containing software.

5.2.2.4. NASA

Five NASA Centers provided inputs on experiences in acquisitions containing software
deliverables. Some of the noteworthy comments from NASA Center interviewees during
this Benchmark include:

 One interviewee recommending against invoking NPR 7150.2 in a contract with a
single sentence. Instead they recommended including it in SOWs by stating the
applicable requirements from 7150.2 as well as other NPRs. One of their
contractors didn't realize what they were signed up for based on a one liner in the
contract with respect to NPR 7150.2.

 At one Center after a significant omission of software requirements on a contract,
the Center’s Contracting Office adopted the default position that “a project has
software, unless proven otherwise.”

 A couple of Centers recommended including a standard set of compliant data
requirements documents for acquisition projects that are put into the Software
Management Plan which is subsequently put on the contract.

 When applicable, Centers mentioned putting a requirement for CMMI on RFPs
and contracts. This improves communication and expectations between acquirer
and supplier.

 One of the interviewees communicated the lesson learned that NASA should
ensure the contract management team includes domain experts, including
software, during the acquisition process.

 A separate NASA study, How Does NASA Estimate Software Cost? Summary
Findings and Recommendations by J. Hihn, et.al 2012, indicates the need for the

23

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Agency to significantly improve its internal capabilities in software cost estimation
for project planning, monitoring, and control.

5.2.3. Observations

Two main findings arose from the benchmark visits on the topic of software acquisition:

 NASA appears to be behind defense services organizations in using standard
contracting language for acquisitions that include software.

 Recognition and use of good software estimates during project planning is a
NASA management weakness.

5.2.4. Recommendations

Recommendations for software acquisition improvement include:

AQ1 Standardize contract language for software. Develop standard NASA contracting
language to ensure software requirements are consistently flowed down on
contracts that include software development or maintenance. Defense services
and the ESA have contract language for software that should be examined in the
development of standard NASA language. Contracting language should reflect
any pre-tailored requirements to enable allowances for alternative documentation
and review approaches [e.g., The approach of using a standard set of compliant
data requirements documents was mentioned by a couple of NASA Centers, as
were product data and life cycle management (PDLM) tools approaches.]. The
contracting language should address subcontracting situations to ensure
software requirements are flowed down to subcontractors from primes. This effort
should leverage and enhance the software acquisition guidance provided in
NASA-HDBK-2203 Software Engineering Handbook (Topic 7.3). While the
Handbook provides needed guidance among the software community, the
adopted standard contract language needs to be institutionalized within the
NASA acquisition community set of common practices.

AQ2 Provide accurate and trusted software cost estimates. Improve the fidelity of
NASA’s cost estimates for software and utilize it to reach agreement with industry
partners. NASA needs to enhance its capability in trusted software cost estimates
to accurately evaluate contractor software estimates and make smart project
trades. Adequate planning funds also need to be put in place by project
management to ensure there are resources to perform better software cost

24

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

estimates.

AQ3 Improve the NASA contracting process to adequately address software:

 Introduce a check in the contracting process to ensure adequate software
requirements have been included.

 When contracting for systems, knowledgeable software personnel need to
be involved to ensure adequate agreements are put in place.

 Ensure representation or advice from software experts in the acquisition of
systems that depend on software.

 When applicable, use CMMI to better communicate NASA’s software
needs and expectations on contracts.

 Secure and maintain adequate budgets to fund trusted software estimates.
 Clarify what is acceptable to NASA in terms of “equivalence” and “meets

or exceeds” in the area of software requirements. Leverage the work
performed in 2012 under the special NASA task which mapped the
Agency’s software requirements to voluntary consensus standards.

AQ4 With regard to training and guidance, recommendations include:

 Improve NASA acquisition training as it relates to supplied software (train
personnel in standard software contracting language, applicable
requirements, and cost estimation).

 Utilize the NASA Software Engineering Handbook and its guidance on
acquisition and contracts. Ensure the Handbook is available to contractors
to facilitate better communication and understanding of NASA’s
expectation in meeting software requirements.

 When applicable, use CMMI to better communicate NASA’s software
needs and expectations on contracts. Including the expectation of
increased accuracy in software cost estimates from organizations at
higher maturity levels (3 and above).

 Better awareness and use of the Federal Acquisition Regulations (FAR)
supplemental clauses concerning software and data rights (at the Agency
and Center levels) available to place on contracts.

AQ5 Clarify NASA’s Software Requirements. In the 2014 update of NPR 7150.2,
NASA Software Requirements, it is recommended that inherently governmental
requirements be clearly labeled to eliminate confusion when NPR 7150.2
requirements are put on contracts.

25

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.3. Testing

5.3.1. Questions

 Please describe software testing: include strategy and scope, test plans, testing
types, success/completion criteria.

 What is the organization and composition of your typical software test team?
 Please identify any tools used or autonomous testing performed?

5.3.2. Discussion

Developing software is a complex task and there are risks involved in the development
process. The risk is directly influenced by the software testing effectiveness and
efficiency. Various problems affect the software testing process. In order to build robust
software and to have efficient software testing processes and methodologies, it is
essential to understand the potential software testing problems. Often the cost and
schedule for software testing is under-estimated and under-qualified personnel are
assigned to perform software testing. Software testing should be done by skilled testers
who have both the technical as well as domain knowledge. Schedule pressure can
directly influence the testing quality. Deadlines negotiated by the management from the
stakeholders will directly affect the nature of testing. If the tester is under pressure,
there is a higher risk of failing to find defects and/or schedule slippage which can
adversely affect a project. Maintaining a healthy balance between both schedule and
cost can be a major problem. Software testing should include metrics for project
monitoring and control as well as improving an organization’s ability to produce quality
software. The intent of these benchmark questions was to assess how software testing
is being addressed and handled by the organizations being interviewed. General note-
worthy software testing lessons include:

 Software test approaches: “Test-as-you-fly” is a common approach across
organizations. The principle of “test-as-you-fly” means that tests and simulations
accurately reflect the planned use of the software. It also includes testing the
planned mission profile along with off-nominal scenarios. Testing of all critical
mission-operation elements as they will be flown greatly reduces the risk of
encountering negative impacts on mission success, from partial to full loss of
mission capability.

 Software testing challenges: Many organizations identified the availability of
hardware test time prior to software delivery as one of the biggest software
testing challenges.

26

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

 Testing of commercial-off-the-shelf (COTS) and government-off-the-shelf
(GOTS): Some of the organizations interviewed tested COTS software (tool kits,
library software, and open source) at the same level as developed software. In
most organizations, COTS and GOTS go through the same QA process as
developed software. Other organizations did not do any separate testing for
purchased operating systems or COTS. Part of the decision process in deciding
to purchase COTS is to consider the supplier’s testing. One organization used a
strategy for real-time operating systems (RTOS) specification of obtaining a DO-
178B certifiable operating system. For GOTS testing, one organization’s test
team doesn't repeat previous tests done by the original developer, but instead
runs a comprehensive set of tests in the context of the full build of the project's
application of the GOTS software.

 Software test time allocation: As indicated by Table 2 below, most
organizations estimated the percentage of time on software testing to be
between 30 to 50 percent of the development life cycle. A rule of thumb used by
one organization was to plan to test twice as long as you code.

Table 2: Software Test Time Allocation
Organizations % of time on software testing
NASA Centers 21% to 40%
Defense Services 25% to 50%
Industry 35% to 50%
University/University Labs Percentage ranges not available. One

organization offered their rule of thumb for
planning the amount of test time was to
“test twice as long as you code”.

 Data on software testing approaches and a summary of software testing
metrics collected: Table 3 shows the typical test metrics that were collected by
the organizations interviewed.

27

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Table 3: Test Metrics for the Organizations Interviewed

 Software assurance role during software testing: The role of software
assurance was not consistently defined across the organizations interviewed.
Some organizations had a software assurance role that used a sampling strategy
during software testing to determine the level of assurance involvement that
ranged from witnessing a subset of tests to reviewing a subset of test reports;
some organizations did not require software assurance sign-off on each test
case; some software assurance groups sampled software test reports; and a few
organizations had a representative from software assurance witness all formal
testing. A number of organizations did software assurance as a part of the
engineering activities and did not have separate organizations for SQA.

 Test team characteristics: Most organizations use an independent test team
which has an independent reporting chain from the developers. Independent
testing was also done for small projects while large projects had independent and
also specialized teams. Some organizations were able to use operations
personnel in software testing, and considered the use of operations personnel as
a best practice.

N1 N2 N3 N4 N5 I1 I2 I3 I4 I5 G1 G2 G3 G4 U1 U2 U3 U4
Test Information
Estimated % of time used for testing 30% 40% 21% 30% 40-50% 40% 35% 25% 40-50%
Static analysis tools used in software testing X X X X X X X X X X X X X X X
Uses an independent test team X X X X X X X X X X X X X X X X
Test Metrics Collected
KSLOC X X X X X X X X X X X X X X X X
Defects X X X X X X X X X X X X X X X X X
Defect Density X X X X X X X X X
Phase containment X X X X X X
Effort /Phase X X X X X X
Effort/Activity or process X X X X X X X
Tests performed/passed X X X X X X X X X X X X X X X
Requirements verified X X X X X X X X X X X X X X
Schedule variance X X X X X X X X X X X X X
Cycle time X X X X
change reports X X X X X X X
QA audit findings X X X X X X X X X X X X
Development progress X X X X X X X X X X X X X X X
Non-compliance Delinquency X X X X
Test coverage (% code tested) X

CMMI Level - at interview 2 2 2 3 3 3 5 3 3 - # 2 5 3 - - - 3
Previous CMMI Level 5 Org. X X X

Nx NASA Centers Ux
Ix Industry Organizations Gx

-

University, Univ. R&D Labs
Defense Services

 Not Applicable

Note: X's in matrix indicate practices or metrics mentioned in interviews. Lack of X's in boxes DO NOT indicate metric is not collected or practice is not performed. The
chart should be viewed merely as an indication of the practices mentioned often and the metrics that seemed to be commonly collected. For U1, no information was
received. # indicates organization had a previous CMMI Maturity Level 2 rating, which was expired at time of interview.

Organizations

28

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

 Peer reviews: Most organizations used peer reviews extensively to catch
defects early (including technical peer reviews at the unit code level). Peer
reviews took a fair amount of time, but they were highly valued by interviewees.

 Software test philosophies: Several unique testing philosophies were
identified from the interviews, including:

o Purchase all boards at once, so that they all have the same configuration.
This helps ensure that the boards all have the same firmware versions.

o Foundation documents for testing are the Software Development Plan and
the Software Test Plan.

o The software integration and test plan and strategy should be done by
Preliminary Design Review (PDR).

o Test procedures should be ready by Critical Design Review (CDR).
o Test results should be available as soon as the test is run.
o Projects that performed design testing early in the project caught a

number of defects early in the life cycle.
o Test by breaking down the functions and testing them individually.
o Unit test as the code is developed; perform informal testing during the

code development cycle.
o Defining test resources is essential to successful software testing.

 CMMI and tools: CMMI observations regarding software testing are discussed
in the CMMI section (Section 5.7) and information on software test tools is
covered in the Software Tools section (Section 5.9) of this report.

5.3.2.1. Aerospace Industries

The five industry organizations provided a number of useful lessons learned and good
practices in software testing.

A few industry organizations used common metrics across all development sites, held
monthly reviews, and took corrective action as needed. Higher rated CMMI
organizations (Maturity Levels 3 through 5) seemed able to test more efficiently,
possibly due to use of metrics during testing and the use of more mature testing
philosophies. Metrics were also able to improve the overall software processes when
common metrics were applied consistently across development organizations. One of
the key metrics found in use was defects per thousand of source lines of code
(KSLOCS). Metrics were also noted for testing from the other organizational groups as
well. Table 3 includes testing metrics identified during the benchmark interviews.

29

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Industry organizations typically had unit testing in place as early as possible. Testing
was considered more difficult if unit testing was not done initially and as the software
was developed. The following items were considered part of unit testing in one industry
organization: path testing, boundary testing, and requirements flow down. For this
organization, a complete trace of requirements through testing was done and a
requirements traceability tool, like the IBM Rational Dynamic Object-oriented
Requirements System (DOORS), facilitated requirements traceability. Off-nominal
testing was included by some organizations because it was considered more productive
in finding problems than nominal testing. One organization completed a test readiness
review and a dry run of the testing before formal testing started. Inspections were also
discussed as having a significant and possibly greater impact on defect removal.

Some interviewees recommended having adequate test resources to facilitate more test
cases, faster turnaround and ability overall to complete more testing. It is critically
important to have software simulations and hardware in the loop for testing, and
simulation skills were considered vital to enable testing. Also noted was the importance
of verifying test software. In at least one instance, test software was verified by doing
peer reviews and using the software.

With respect to COTS, many industry organizations tested COTS. Requirements
satisfied by the COTS were documented and then the software was tested against
those requirements. Some regression testing was also found and one group validated
COTS in the context of the system only.

5.3.2.2. Universities and University Research and Development Labs

The universities and university R&D Labs interviewed provided a number of useful
lessons learned and good practices in software testing.

Generally most university and university Labs did not use path or test case coverage
tools nor did they use automated testing techniques. Inspections were relied upon
heavily and it was noted that testers should know static and dynamic testing and
analysis tools.

One of the university/university lab organizations explained that test plans are done by
PDR, including development test plan and ground test plan. Another organization
created an “accredited” software development environment. And one of the biggest
challenges noted was getting enough instrument test time before delivery. Similar to the
defense services organizations, operators/users were often included on the test teams.

30

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.3.2.3. Defense Services

The four defense services organizations provided useful lessons learned and good
practices in software testing. There were slight variations in the test team compositions;
however, the test team comments were similar to those from industry and the NASA
Centers. Almost all defense services organizations had independent test teams with
many of them including users. One organization noted that testers for small projects
could include a developer but not for the portions that developer had developed.

At least one of the defense services organizations had standard procedures available
across the organization on how to write test plans, procedures and provide status
reports. Test plans were started as early as requirements were established. A few of the
best practices found include:

 Unit test data and results were delivered with the code.
 Progressive testing as modules were being built.
 Complete full regression testing in areas with changes and, when some aspect of

the code cannot be tested, notify the next test level to ensure it gets tested there.

Extensive use of peer reviews, including technical peer reviews at the unit code level,
and regression testing was common among the defense services organizations.
Predictive test tools were noted but not extensively or commonly used across the
defense services organizations. Some defense services organizations used some
predictive test tools, but most relied more on regression tests. One organization was
able to estimate defects from historical defect data and continued to compare estimated
with actuals. In one interesting discussion regarding COTS and GOTS, it was learned
that COTS and GOTS all go through the same QA process as in-house developed
code. In addition, sometimes test results on the COTS and GOTS are received from the
vendor.

5.3.2.4. NASA

The five NASA Centers provided useful lessons learned and good practices in software
testing, and most NASA software testing appears to be done well. Test plans are
started very early and follow NPR 7150.2A (SWE-104) requirements. Developers
typically write their own unit tests. Criteria for test completion are as follows: peer review
and inspection for build testing, coverage testing of requirements (100% or waiver
required), trending curve of test results for each module, and coverage metrics provided
by the Simulink tool. “Test-as-you-fly” or “Fly-as-you-test” is essential to the testing
approach (as well as end-to-end testing). Metrics are being used but have a limited
effect on organizational testing resource decisions and test planning decisions.

31

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

The COTS and GOTS testing approach is that the software test teams do not repeat
previous tests done by the COTS or GOTS developer, but instead run a comprehensive
set of tests in the context of the full build of the project's application of the COTS and
GOTS Software. Predicted software defect data is not generally used by NASA projects,
and automated test scripts (not including tools) are used at several Centers. Having
simulators is important to software testing success.

5.3.3. Observations

The main observations that arose from the benchmark visits on the topic of software
testing are:

 Some organizations considered inspections/peer reviews to have the largest
impact on defect removal, followed by testing.

 Better use of software metrics could highlight areas where software testing
productivity and software quality could be improved.

 Having software test personnel involved early can be effective from both a
technical and cost savings standpoint.

 Limited use of predicted software defect data is occurring across the community.
 The role of software assurance in software testing is not consistently defined.
 Hardware availability and simulator availability is necessary in software testing.
 Software COTS testing requirements, approach and guidelines are not clearly

defined. They varied from complete requirements testing, to testing as part of a
system, to no testing, and just requesting test data from the vendor.

 Software test activities should include users and operators.
 Software simulation skills are a critical skill for software testing.
 There is reduced risk and reduced cost in software testing when using higher

CMMI rated organizations (level three or higher) on software projects. Higher
CMMI rated organizations seemed to be able to test more efficiently and had
reduced defect rates.

 Static analysis tools have become commonly used across the software
development community.

5.3.4. Recommendations

Recommendations for improving existing NASA software testing techniques include:

TE1 Develop a set of predictive software defect data and a process for assessing
software testing metric data against it. Use the set to status progress during

32

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

NASA software testing phases and in software test reviews.

TE2 Identify a recommended set of test metrics for NASA software development.
Assess whether code coverage is a viable metric for use in software testing
reviews. Better use of software metrics could highlight areas where software
testing productivity and software quality could be improved.

TE3 Review options for improving the NASA software COTS testing requirements and
guidelines when the NPRs for software engineering and the associated NASA
handbook are updated in FY14.

TE4 Assess the option of buying Agency-wide licenses for commonly used software
test and static analysis tools.

TE5 Clarify the role of software assurance in NASA’s software testing activities.

TE6 Perform a workforce assessment of the software simulation skills of NASA
personnel and provide recommendations based on the findings from the
assessment.

5.4. Assurance

5.4.1. Questions

While this benchmarking activity emphasized software development, the following
software assurance topics were touched as part of the discussion:

 How is software engineering integrated with software assurance?
 What software quality, reliability, and safety activities take place – and who

performs them?
 Is there a software assurance role for supplier software?
 How are the software assurance personnel trained?
 What software assurance tools are used?
 What software assurance metrics are gathered?

5.4.2. Discussion

Software assurance at NASA appears to be a well-defined set of disciplines. These are
given as software quality, reliability, safety, verification and validation (V&V), and IV&V

33

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

in NASA-STD-8739 NASA Software Assurance Standard. Assurance requirements and
practices are further elaborated over additional key assurance documents:

 NASA-STD-8719.13B NASA Software Safety Standard.
 The Software Assurance, Software Safety and Complex Electronics Guidebooks.

Software assurance at NASA also has strong institutional backing, including support
from OSMA at NASA headquarters, NASA IV&V and the NASA Safety Center (NSC). It
also has the Safety and Mission Assurance Technical Excellence Program (STEP) for
assurance education and the Software Assurance Research Program (SARP) to
advance the practice. In addition, it has a strong relationship with the OCE and the
SWG, and has its own working group, the Software Assurance Working Group (SAWG),
to address issues through the practitioner community.

Yet despite these resources, there are questions about how software assurance is
actually practiced at the NASA Centers, their suppliers, and in the industry at large.
Issues are often raised at SAWG meetings about what should or should not be included
in the practice, about the adequacy of funding, about relationships with the projects and
the software developers, and even about “how to sell software assurance.” All of these
raise broader questions about what is and is-not software assurance and its value and
place in developing NASA’s software-intensive systems. Results from this
benchmarking activity provide some insight into these questions.

The main assurance activities reportedly performed by the benchmarked organizations
can be seen in Figure 2, below. The numbers show how many of the 18 benchmarked
organizations reported having software assurance involved with each activity listed.
Note that two universities had no formal assurance role at all. Also note that the
activities are not counted if performed by other roles. For example, engineers rather
than assurance personnel are often assigned to software safety and reliability.

Although some activities may not be reflected in the numbers (topics missed in the
discussion), they provide a starting point for examining software assurance as
documented versus the actual practice of it.

34

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Figure 2: Activities Performed by Software Assurance

5.4.2.1. Aerospace Industries

The Five Industry organizations interviews can be summarized as follows:

 All industry organizations reviewed saw the main function of software assurance
as performing process and product quality assurance (PPQA) and maintaining
software compliance with institutional standards. Safety and reliability were seen
as engineering roles.

 These organizations also tended to have a low ratio of software assurance
engineers to the number of developers. For example, one organization had five
to six software assurance engineers for about 200 developers. At the far end, an
organization had only one “SQA person” for a 100-person software engineering
project.

 The high CMMI process maturity of most of these organizations might be a factor
in their perceived need for assurance. All but one had been appraised at CMMI

35

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

ML3 or higher and, as one noted, greater process maturity means more
repeatable, institutionalized processes and fewer audit findings. The one
organization that hadn’t used the CMMI also used one assurance person for a
team of 15 developers and 4 testers – the highest ratio in the group.

 The industry organizations tended to use tools and metrics on the engineering
side. Two of the organizations mentioned wide use of six-sigma, which also
correlates with high CMMI maturity.

 Three out of four organizations mentioned receiving support from NASA’s IV&V
center.

5.4.2.2. Universities and University Research and Development Labs

Two of the university organizations interviewed were in a typical university environment,
while the other two were specialized off-site R&D laboratories run by universities.
Notable information from these organizations include the following:

 This group tended to have less awareness of software QA. Two of the
organizations had no independent software assurance. The first stated that they
“had no formal QA,” but try to have developers define and check their own
processes.

 The second organization said they were “not sure what software quality means,”
but did run V&V tests and had external peer reviews.

 The other two organizations work with NASA Centers and have development
processes and independent assurance organizations. Both of the latter two
organizations have process/PPQA audits and witness or otherwise assure
testing.

 The largest of the university organizations has a CMMI ML 3 rating. It also had a
post-launch Software Systems Assurance Manager, which was unique among all
the respondents.

5.4.2.3. Defense Services

Defense services organizations were interviewed, and their inputs on this topic can be
summarized as follows:

 All the defense organizations had been appraised to some CMMI level; two had
achieved CMMI ML 5 at some point, with one maintaining certification.

36

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

 Following a similar pattern to the industry organizations, all four organizations
used software assurance primarily in a PPQA role and did not discuss their role
in reliability or safety.

 Three out of the four organizations also used software assurance to witness or
otherwise assure software testing.

 The one CMMI ML5 organization maintained a process assurance group,
dedicated to process compliance, and QA and IV&V groups for checking
products.

 Of the three organizations that discussed FPGAs, none mentioned software
assurance.

5.4.2.4. NASA

Five NASA Centers were interviewed in this Benchmark. The following trends were
identified, based on these interviews:

 NASA Centers tended to involve software assurance in a greater range of
development activities. Four of the five assurance organizations were involved
with process tailoring, in addition to the PPQA audits.

 Four out of the five (not the same four) were witnessing or otherwise assuring
that tests were performed properly.

 Four out of five NASA Centers also performed some assurance activity related to
software safety, even if only to run the litmus test.

 Three out of five of the NASA Centers used assurance personnel to monitor
suppliers or software contracts in some way.

 Tool use and metrics collection seemed to apply mainly to the engineering side
of the house rather than assurance. This was common across all the
benchmarked organizations, regardless of type.

 All the NASA Centers have either started using or said they intend to use the
NASA STEP program for training (see strengths, below).

5.4.3. Observations

 It is commonly observed that software assurance is resource limited. However,
the scope of assurance activities varied widely across the benchmarked
organizations.

 Software assurance organizations are involved to varying degrees in the
software assurance disciplines as defined by NASA. The software quality

37

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

discipline is the most established as part of assurance; reliability and safety are
the least, often assigned to engineering; V&V is in the middle, if it is taken to
mean assuring/witnessing the tests rather than performing them; and IV&V
seems to have found a place for large, mission/safety-critical systems.

 Software assurance requirements, like engineering ones, need to be consistently
flowed down to contractors. More assurance involvement with supplier contracts
would help.

 There are questions about engineering versus assurance use of tools and
metrics. The practices seem more developed on the engineering side, but there
are questions about who is chartered to do what. For example, are static code
analyzers assurance or engineering tools, and who should collect the defect
metrics?

 As mentioned in the Policy section (Section 5.1), universities were weak in
internal software policies, requirements, procedures, and processes. This
extends to software assurance, with two organizations having no real assurance
at all.

 There is still confusion about whether or how software development and
assurance requirements apply to PLDs.

 There appears to be a lack of awareness of the relationship between software
and safety.

 Strengths:
o NASA Centers are adopting the NASA STEP program for their assurance

training.
o NASA IV&V is being utilized for large, mission/safety-critical systems.

5.4.4. Recommendations

The following are recommendations for NASA Software Assurance:

AS1 Follow up this benchmark study with a deeper look into what organizations
perceive as the scope of software assurance, the value they expect to obtain
from it, and the shortcomings they experience in the current practice.

AS2 Improve QA awareness at universities as well as among project managers and
engineers at organizations interfacing with NASA:

 Work needs to be done to better communicate the definition and scope of
software assurance, with an emphasis on its value to projects, so that
adequate resources can be allocated to it.

38

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

 Consider using the NASA STEP program and other means to reach out to
workplace training and university software engineering/computer science
programs. This is an opportunity for NASA to infuse its view of software
assurance, educate its suppliers, and cultivate the next generation of
practitioners and users.

AS3 Identify the tools and metrics needed to do a better job of assurance, and work
out with engineering the best way to share them.

AS4 NASA RFPs should request information about the supplier’s QA capabilities and
use that information in deriving risk exposure and assessing the degree of
supplier surveillance needed.

5.5. Training

5.5.1. Questions

 How does your organization train and develop software engineers and software
quality engineers? Would you describe the 3 most beneficial classes for
software engineers?

 Organizational responsibility for development or acquisition of training curriculum.
 Type of training given: in-house versus external training programs (or

combined)? What has led to using in-house versus external training?
 Who has responsibility for identifying the training needs, how and when training

is given?
 Is training given at individual, group or project level, career levels? If so, what

kind and when?
 Is training mandatory or optional? How much time is allowed or expected for

training per person?
 How is mentoring and on-the-job training (OJT) included in developing individuals

(informal, structured, required)?
 What are your preferred methods and media for training?
 Describe how your training program addresses proficiency training, system

engineering, metrics, risk management and project management.
 Describe any training provided to management (line management and/or project

managers)?
 How does your organization manage training that might be needed for a specific

project (just in time training)?

39

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.5.2. Discussion

The chart below shows some of the training characteristics discussed by the
organizations interviewed. The chart shows that most organizations used several
methods of training. A few organizations relied more heavily on hiring in the appropriate
skills and mentoring the new hires.

Table 4: Organization Training Characteristics

5.5.2.1. Aerospace Industries

Of the aerospace industry organizations benchmarked, four of the five had many similar
practices and all four of them used a variety of different training delivery methods and
types of training. All four mentioned having common training across their enterprises (in
one case covering 12 different sites). The common training ranged from providing a few
basic classes like IT security or ethics to a more complete set covering organizational
processes. Several of the industry organizations had role-based training developed by
their software engineering process groups (SEPGs). Several of the organizations had a
skills assessment process to determine whether training in a particular skill was needed.
One organization mentioned a training tool that sends out reminders on required
training.

Training delivery methods among the group of four aerospace industry organizations
included classroom training, on-line training, and lunch and learn seminars. One of the
organizations commented that the method of training depended on the situation and the

N1 N2 N3 N4 N5 I1 I2 I3 I4 I5 G1 G2 G3 G4 U1 U2 U3 U4
Mentoring/OJT X X X X X X X X X X X X X X X X
On-line training X X X X X X X X X
Classes with exercises X X X X X X X X X
Tiered training program X X X
Required periodic training X X X X X X X X X
Lunch time seminars X X X X X
Continuous training program X X X X X
Relies on hiring knowledge X X X X X X
Role-based training X X X X X X X X X
Certifications for software X X X

Nx NASA Centers Ux
Ix Industry Organizations Gx

University, Univ. R&D Labs
Defense Services

Organizations

40

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

class. A new hire was more likely to be given classroom training while someone more
experienced would take the class online when he needed it.

Mentoring, cross-rotational assignments, and the peer review process also played a
significant part in the four aerospace industry organizations’ training programs. Three of
the four had formal mentoring programs, pairing a more experienced developer with
someone less experienced. The other aerospace industry organization used a much
less formal mentoring approach and identified subject matter experts who could be
consulted for guidance. On-the-job training, such as participation in inspections or use
of a new tool also played an important part in completing the training picture.

The most impressive aerospace industry organization in terms of training had training
built into their culture, so that it was available when the software personnel needed it.
They used both in-house developed classes and externally procured classes and
conducted a mix of classroom courses, on-line classes and seminars. Their training was
broken up into small “chunks” and provided as part of the daily work, so a training
module might be part of a regular meeting. They also stressed one-on-one mentoring.
One of the key elements in their training program was training on the organization’s
expectations, so that the software community learned that the organizational process
was “just the way things were done,” and they stressed a desire for perfection in their
software. Their training program also included a flight software certification program and
training for project managers.

The fifth aerospace industry organization used an entirely different philosophy on
training for software personnel. Instead of having a highly structured training program,
they focused on a very rigorous hiring program where potential employees were given a
series of programming tests before they were hired. Once these skilled people were
hired, they were mentored and carefully monitored by more experienced team
members. The organization’s peer review process was one of the OJT activities used by
this organization as a training mechanism for software developers. The organization
also used a wiki to promote communication and sharing of lessons learned and best
practices among developers.

5.5.2.2. Universities and University Research and Development Labs

In general, the university organizations had much less structured training programs
targeted for their software personnel. The exception was one of the university laboratory
organizations. Like many of the other organizations, they tried to hire people with the
right skills, but they followed that up with a program consisting of three types of training
and formal mentoring:

41

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

 Global: The first type was similar to the organizational training seen in many of
the industry organizations. Examples were quality, record-keeping, configuration
control.

 Functional: The second type was by function where each software group
decided on the needed training. This type of training included process training
and was required every three years.

 Certifications: The final type of training was for technical certifications, like
electro-static discharge (ESD), crane operators, etc.

 Formal Mentoring: Their formal mentoring program was somewhat unique in
that it included members of every area of the organization including employees
with 20 years or more of service. The program covered a broad range of skills
and provided opportunities for experiences like giving a software engineer
enough face time with a seasoned mission project manager to help him/her
understand some of the software development problems.

The second university laboratory organization did awareness training on their
processes, primarily using self-training modules. They kept training logs and had an
informal mentoring program to supplement their training.

Both of the university laboratory organizations commented that they would like to be
able to take advantage of some of the NASA training. Software safety was one class of
interest.

One of the university organizations interviewed didn’t offer any sort of formal software
training program. They did have an internal wiki site that provided documentation to
help the software developers come up to the desired knowledge level. In this particular
case, the employees were not even hired with software engineering experience, but for
their advanced knowledge in other scientific areas, such as physics. This type of
expertise was sought to provide a good knowledge of the domain, a better
understanding of the operational needs of the hardware, and a good perspective on the
type of information useful to the researchers.

The fourth university organization operated their software development projects in the
context of a four-semester course where the students learned the best practices as they
went through the life cycle. Initially, they were given classroom instruction on project
management, different software methodologies and best practices. They were not
required to use any particular processes, unless the customer specified them. The
students developed their own processes. A mentor was assigned to each project group
to point out potential risks or consequences associated with their choices. The
university asserted that the learning occurred by actually doing the software project and
dealing with any of the consequences of their project management choices.

42

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.5.2.3. Defense Services

The defense services organizations also used a variety of different training methods and
had a number of organizational classes available to them. For this set of organizations,
many of the organizational classes were required. One organization mentioned classes
in engineering, CMMI, tool training, contract management, and process awareness as
examples of organizational software training. They also mentioned that they try to hire in
people who already have the right skills for the job.

A second defense services organization described a set of videos that were shown to
new employees before they were allowed to work on any projects. Then they
progressed into classroom training with exercises and then computer-based training
(CBT). For this organization, mentoring was the preferred method of training, even
though they used a variety of other methods. Their mentoring included structured OJT
and the use of a mentoring checklist.

The two other defense services organizations used a training point of contact called an
advocate or a coordinator to develop the tactical and strategic plans. In one case, the
training advocate collected training needs from the projects and if the need was
common across the organization, the organization would provide the training. Otherwise
the project would provide it. They used automated forms to request and record training.
Part of the training included in this organization focused on the good process in the
PAL, the monthly lessons learned exchanges, as well as interactive training, on-line
training and mentoring. In the other case, there were three types of training, including
continuing education, organizational-mandated training, and specialty training, like cost
estimation. Most of the training was role-based and on-line training. Eighty hours of
continuing education a year was required for software personnel.

5.5.2.4. NASA

The overall training programs at the five NASA Centers interviewed varied considerably.
All the Centers have some NASA-required training like IT security and ethics in place. In
addition, all the Centers interviewed take advantage of the software classes sponsored
through the software area of the OCE. A yearly “wish list” is submitted by the Centers
and training dollars are divided among the Centers to try to provide as much training as
possible with the limited funding. Centers are expected to augment these training
classes with Center-funded training. One Center reported that their Center does not
provide technical classes with their training budget, but there is some training funding
available at the directorate and project levels where some classes can be procured.
There is no overall training plan for coordinating this training and there is no mentoring
program at the Center level. Some mentoring occurs in the divisions. At this Center

43

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

some software personnel have taken advantage of the software assurance STEP
program classes.

A second NASA Center also took advantage of the STEP classes, and the OCE
software funded classes, as well as bringing in some of their needed classes through
their Engineering Directorate funding. They had no mandatory training at the branch
level, but they did have a good mentoring program for the newer employees. They also
developed a few of their own classes, like very high-level design language (VHDL) for
FPGAs. No software training is available for their mission project managers. This Center
stated a preference for classroom classes with exercises.

The remaining three NASA Centers seem to have a more coordinated training program
at their software organizational level. One of those Centers reported that they brought in
classes on a regular basis, as funding allowed. Most of these classes were role-based
classroom instruction. This Center developed some of their own training, including their
process training and tool training. Even executives received tool training. Most of the
process training was done online. Some training was accomplished through mentoring,
where the software leads mentored the new employees. They did not provide software
training for the mission project managers.

The remaining two Centers of the three with more coordinated training programs had a
structured approach to their software organizational training. Both of the Centers
developed their own process training and a series of other classes or workshops, which
were offered in the classroom setting. In addition, they conducted short lunch-time
seminars on selected topics. There were other required classes in addition to the
NASA-required classes at these Centers. One of the Centers mentioned that they had
started doing more on-line classes and the other said some of their classes had been
video-taped so that students could watch the classes when they needed them. Both of
these Centers had developed software awareness classes for project managers. One of
the Centers had begun a flight software certification program consisting of three
classes, spanning 24 hours of instruction. Topics in Class 1 included data through-put,
theories of computing, and finite state machines; Class 2 focused on best practices,
design principles, and lessons learned and Class 3 covered managing software risks via
the use of good coding standards, static analysis and modeling. The flight software area
at the other Center had a very structured mentoring program in place where an
employee new to a role was assigned a seasoned mentor who ensured that the mentee
mastered a list of pre-defined skills for the role.

5.5.3. Observations

 Most organizations used a variety of training delivery methods, depending on the
training topics and the experience of the personnel. Classroom training with

44

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

exercises was more likely to be used with new employees while video and on-
line training seemed to be preferred by more experienced students, particularly if
training is required periodically.

 Alternative training methods including mentoring, on-the-job training, and
participation in events like peer reviews, and lessons learned sharing played a
key part in producing a well-trained workforce. The most impressive
organizations with respect to training used structured approaches to mentoring
such as the use of checklists or verification of skills during mentoring and
alternative training opportunities like peer reviews where newer employees can
benefit from the experience of more seasoned employees.

 Setting the expectations for the software teams and training to meet those
expectations is a key aspect of supporting a well-trained, process-oriented
software workforce. Organizations that included training on expected customary
practices seemed more likely to define their processes as “just the way they do
business.”

 Software training is needed at a variety of levels. Certain types of training like IT
security and ethics were generally required of everyone. Managers often were
given software process training and awareness training on software development
and issues. More critical software areas often had required certification
requirements. Many organizations had required periodic training.

 For the NASA Centers, the OCE/Software-sponsored training and the STEP
program training greatly enhanced a Center’s ability to provide the needed
software training. In a few cases, the training provided by OCE/Software and
STEP were essentially the bulk of software training available for software
personnel at those Centers.

 The use of on-line training, videos and the practice of breaking training into small
modules to be offered separately, allows the training to be provided exactly when
it is needed and with minimal disruption to project schedules. In one case, project
members received regular modules of training during team meetings and
considered that part of their regular work without even considering them part of a
training program.

 Two of the organizations doing mission critical software considered it important to
have a certification program for flight software personnel. The flight software
unique aspects of doing mission critical or safety critical software and the flight
software lessons learned were emphasized in these programs.

45

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.5.4. Recommendations

TR1 Continue to develop and enhance the NASA OCE Software Engineering
Curriculum classes and provide them on a regular basis. These types of classes
form a good training basis and greatly enhance the software training program at
most NASA Centers.

TR2 Develop some of the software classes for the more experienced software
developers as on-line training, videos, or small separate modules of training that
can be offered as needed throughout a project. Particular skills can be learned or
reinforced at the point where they can immediately be put to use on the project,
with the fresh knowledge in mind; project members are more likely to apply
consistent approaches for project activities in those skill areas.

TR3 Include training on desired set of expected practices in all classes, particularly
process classes. Then process isn’t thought of as “something extra”, but it
becomes “the way the organization does business.”

TR4 Develop some guidelines for a more structured approach to some of the non-
classroom training opportunities, such as mentoring, peer reviews, lessons
learned sessions and other on-the-job training opportunities.

5.6. Metrics

5.6.1. Questions

 Could you share some of your metrics programs currently in place?

The question above was the only one consistently asked regarding metrics and it was
asked primarily for the CMMI high maturity organizations. In many cases, the topic of
metrics came up in the discussions, so information was also collected from most of the
other organizations interviewed, including those who were not organizations with a high
level of CMMI maturity.

5.6.2. Discussion

As noted in the Questions section above, the information on metrics was not collected
consistently across all of the organizations, and in some cases, follow-up calls were
made to get additional information. Since this area was not a primary focus area of the
benchmarking, the information in this section is incomplete for some organizations, but

46

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

overall, the interviews yielded a great deal of information on the metrics practices of the
various organizations. In several cases, organizations commented that a strong metrics
collection and analysis program is a key factor for successful software projects and
references were made to “managing projects by metrics” as an ideal state.

The table below is intended to show common trends in the types of metrics being
collected and in the practices performed.

Table 5: Commonly Collected Metrics and Metrics Practices

N1 N2 N3 N4 N5 I1 I2 I3 I4 I5 G1 G2 G3 G4 U1 U2 U3 U4
Metric Collected
KSLOC X X X X X X X X X X X X X X X X
Requirements/size X X X X X X X X X X X X X X X X X
Defects X X X X X X X X X X X X X X X X X
Defect density X X X X X X X X X
Planned vs. actual size X X X X X X X X X X
Peer review data X X X X X X X X X X X X X X X
Peer review coverage X X X
Phase containment X X X X X X
% reuse X X X X X X
% new X X X X X X
Planned vs. actual effort X X X X X X X X X X X
Cost data X X X X X X X X X X X
Effort /phase X X X X X X
Effort/activity or process X X X X X X X
Tests performed/passed X X X X X X X X X X X X X X X
Requirements verified X X X X X X X X X X X X X X
Schedule variance X X X X X X X X X X X X X
Cycle time X X X X
change reports X X X X X X X
Requirements volatility X X X X X X X X X X
Productivity X X X X X X X
QA audit findings X X X X X X X X X X X X
Development progress X X X X X X X X X X X X X X X
Resource utilization X X X X X X X
Non-compliance delinquency X X X X
Test coverage (% code tested) X

Metrics Advanced Practices
Historical database X X X X X X X X X
Organizational set of measures X X X X X X X
Process performance baselines X X X X X X X
Prediction models X X X X
Collection tools X X X X X X X

CMMI level - at interview 2 2 2 3 3 3 5 3 3 - # 2 5 3 - - - 3
Previous CMMI level 5 org. X X X

Nx NASA Centers Ux
Ix Industry Organizations Gx

Note: X's in matrix indicate practices or metrics mentioned in interviews. Lack of X's in boxes DO NOT indicate metric is not collected or practice is
not performed. The chart should be viewed merely as an indication of the practices mentioned often and the metrics that seemed to be commonly
collected. For U1, no information was received. # indicates organization had a previous CMMI Maturity Level 2 rating, which was expired at time of
interview.

University, Univ. R&D Labs
Defense Services

Organizations

47

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.6.2.1. Aerospace Industries

As a group, the aerospace industry organizations seemed to have the strongest metrics
programs, with most organizations focusing on a multi-level metrics approach. The top
level metrics program consisted of having some senior management, high level or
cross-project measurement objectives and a corresponding set of metrics, collected by
all of the projects in the organization. This set of metrics usually consisted of six to 20
items and focused on items of interest to the business interests of the organization such
as: effort and cost data, on-time delivery data, cycle time, productivity, defects/KSLOC.
These top-level metrics were typically used to improve cost estimation and to assist with
the delivery of on-time, high-quality software, as well as to improve cycle time and
productivity. One organization mentioned that their 14 organizational metrics were
collected consistently across 12 of their sites.

Four of the five aerospace industry organizations had historical databases of cost data
and mentioned having other process performance baselines, such as the expected
number of defects/KSLOC at key points in the development cycle. One organization
stated that they were able to always get within 10% of their planning parameters, doing
their cost estimation based on their historical database. One organization mentioned
having a home-grown tool and some common spreadsheets to help collect the metrics
required at the organizational level, as well as a specific class on analyzing the metrics
data collected.

A lower level tier of metrics collection was typically done at the project level and focused
on the types of items that enabled a project manager to measure the health of his
project. Typical items collected and analyzed at the project level included: software
planned versus actual size (KSLOC), percent of reuse versus new KSLOC,
requirements volatility, phase containment data for defects, defects open/closed, test
completion/requirements verification data, peer review data, development progress or
earned value data, QA audit findings, delinquency in audit closures (and in error
closures), and resource utilization. Project level measures were typically reviewed on a
monthly basis to identify any potential issues that needed attention.

For one aerospace industry organization, there was not as much metrics information
available, but they mentioned that their projects relied heavily on peer reviews, and that
they tracked such items as code coverage during testing, and discrepancies and
change requests, along with corresponding severity levels.

48

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.6.2.2. Universities and University Research and Development Labs

There was very little commonality among the university organizations interviewed
concerning metrics practices. Measurement was not a focused topic of discussion with
any of the university organizations, so the data presented here is partial at best.

There seemed to be more emphasis on metrics collection and analysis at the two
organizations that were actually separate laboratories affiliated with universities, but not
in the main university setting. In one of the university laboratories, the organization had
been collecting metrics for over ten years and had a large amount of data including
defect data, costing data, effort data on activities and audit information. However, they
indicated that they had not really done much analysis on the data and felt that it would
benefit them to spend more time analyzing what they had collected. Not much metrics
data was received from the other university laboratory organization, but they indicated
that they collected error data, peer review data and data on requirements verified. They
commented that they have metrics, but felt they could be improved.

One of the university organizations indicated that they tracked defects and actual cost of
the project versus the proposal cost. No other information was discussed. The other
university organization indicated that the projects were done strictly in a classroom
exercise type of setting with an instructor as a mentor. Each project chose their own
metrics to collect and they varied greatly by project.

5.6.2.3. Defense Services

Among the defense services organizations, there was less commonality among the four
organizations interviewed than there was among the aerospace industry organizations.
One defense services organization stood out as the best example of an organization
with a strong metrics program. They also used a tiered metrics program approach
similar to that of the aerospace industry organizations and they showed us several
examples from their project historical performance database. This organization had
developed many baseline models and was able to use them to predict the expected
performance of their projects in many areas. The measures they mentioned collecting
were similar to the ones mentioned for the aerospace industry organizations, with the
addition of process adherence, customer satisfaction and defect removal rate. They
used an on-line measurement collection system to ensure collection of a consistent set
of organizational measures.

The other three defense services organizations seemed to collect fewer measures but
all mentioned collecting peer review metrics, defect data, and audit results. Two of the
organizations mentioned software volatility, latency in resolution of errors, cost and
effort data, and progress tracking measures such as tests run/completed, code review

49

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

metrics. One defense services organization was just beginning to do some collection of
metrics at an organizational level, another had been collecting them for about three
years and the third had a fairly extensive historical database, including some process
performance models. One of the organizations mentioned using a web-based metrics
collection tool for consistency and another used a process dashboard that collected
time spent on activities. One of the organizations described a set of their projects that
were using the Software Engineering Institute’s (SEI) Team Software Process (TSP)
and talked about the detailed set of metrics they keep with TSP. Their metrics included
the amount of time each programmer spent on each activity, defect data, cost history,
source lines of code (SLOC)/hour, average time/cost to close defects, and rework. A
special tool called TIMER helped the programmers track their activity times.

Within the defense services organizations, two mentioned metrics tailoring for small
projects. The organization whose metrics stood out the most used a different set of
metrics for the small projects, where the set was smaller and more suitable for the
smaller teams. One of the other organizations had the small projects record their
metrics in a log as they went along so there was less overhead involved in collection.

5.6.2.4. NASA

The NASA Centers interviewed are at varying levels of maturity in their metrics
programs. Generally they compare well with the other defense services organizations.
No NASA Center has a metrics program as extensive as the defense services example
mentioned earlier, but one NASA Center has a maturing set of organizational measures,
along with a fairly extensive historical database and some initial process baseline
models. The projects at that Center are collecting metrics similar to those mentioned by
the aerospace industry organizations and in compliance with NPR 7150.2. Another one
of the NASA Centers has a consistent set of metrics that are collected across their flight
software branch and a historical database for cost estimation. Using this set of metrics,
they have been able to do some analysis across projects and see some organizational
trends. Their projects also collect NPR 7150.2 compliant metrics. The other three NASA
Centers collect and analyze metrics mostly on a project by project basis, with the set of
metrics collected varying by project. Two of the Centers have a specified set of metrics
for the projects to collect and have spreadsheets that assist their projects with this
collection. In general, project metrics are presented at monthly reviews and discussed
to identify any needed corrections.

Typical metrics for NASA projects to collect are: requirements volatility, progress data
(planned milestones versus actual, units of code designed, completed, tested, etc.,
functionality delivered versus planned, defects open/closed, defect severity, software

50

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

size, resource utilization, peer review data). Several Centers collect defect containment
data.

5.6.2.5. CMMI and Metrics

The aerospace industry organizations and the defense services organizations that were
CMMI Maturity Level 5 or had been CMMI Maturity Level 5, as well as some of the more
mature CMMI Maturity Level 3 organizations stood out in terms of the quality of their
organizational measurement programs. In general those organizations had historical
databases that included metrics data from previous projects, including information such
as cost data, effort data, cycle time, productivity, defect data, time to close defects
reports, etc. This data enabled these organizations to get more realistic cost estimates
as well as a better picture of the quality and performance characteristics of their projects
across the organization. They also had sufficient data to enable a determination of the
areas where process improvement would yield the most benefit.

5.6.3. Observations

 A good metrics program provides key critical objective information needed to
adequately manage projects. The majority of the organizations interviewed, with
the exception of the university organizations, had strong metrics collection and
analysis programs within their projects.

 The organizations with CMMI higher maturity levels had better measurement
collection and analysis programs at the organizational level that included
historical databases for cost estimation, and data for establishing project
performance trends. This information allows the projects to compare their
project’s performance with the typical performance of similar types of projects in
order to highlight potential problem areas and to predict the project’s future
performance, based on the current project data and typical patterns of previous
projects.

 The measurement and analysis programs in place at the higher CMMI level
organizations provided them with the ability to measure trends in their
organizational performance and identify areas where process improvement
activities would provide the most benefit.

 Several organizations mentioned that a strong metrics collection and analysis
program at an organizational level is a key enabler for achieving higher CMMI
maturity levels.

 Tool support is helpful in collecting measures, particularly in collecting a
consistent, organizational set. Many organizations had developed specific tools

51

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

to collect the metrics they wanted or had tailored their development tools to
capture the desired metrics as a part of performing the development work.

 Some metrics, such as percent of code tested (test coverage) and peer review
coverage, were not collected by the majority of the organizations interviewed.
This may be a topic for follow-up investigation.

5.6.4. Recommendations

ME1 Continue to improve measurement activities at the Centers, at both the Center
organizational level and at the project level. This will support better management
of software throughout the life cycle and provide the organizational information on
current software capabilities and potential improvement opportunities. Provide
training to the projects on analyzing metrics data. Ensure that key metrics are a
part of project reviews.

ME2 Establish a set of consistent software metrics at the Agency level that extend the
current inventory metrics so key trends can be identified and models can be
established:

 Determine what the real objectives for measurement are.
 Identify and collect a few key metrics that can be collected consistently

across the Agency to help answer questions such as: Are software costs
increasing or decreasing? Is productivity increasing or decreasing? Is
defect containment improving? Is NASA software cost estimation
improving? Are NASA defect rates increasing or decreasing? How many
defects/KSLOC should be expected in each phase of testing? How
accurate is NASA cost estimate at initial concept? At project approval? At
SRR? At PDR? At CDR?

ME3 Investigate the use of tools to help collect a more consistent set of organizational
measures. A consistent set of tools and basic metrics will allow the development
of project performance baselines and cost baselines.

ME4 Provide organizational measurement feedback to projects so they understand the
benefits of an organizational metrics program and use this information more
effectively to benefit their projects and to add value to their project reviews.

52

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.7. CMMI

5.7.1. Questions

 Who decided and how did your organization decide to ascertain your current
CMMI maturity level?

 How were impacts to policies, requirements, training, and other organizational
structure handled?

 Have you been able to measure or identify any benefits at previous and current
maturity levels?

 What are your top three areas of improvement and what impact did they have?
 How have you overcome major challenges that you have faced with pursuing

maturity levels?
 How have you been able to reduce the cost of appraisals?
 Does your CMMI include or exclude small projects?
 (For Maturity Levels 4 and 5): Could you share some of your measurement

program currently in place?
 Does it cost less to operate at a higher maturity or are other benefits more

significant?

5.7.2. Discussion

All but one of the organizations benchmarked had at least considered CMMI and most
had a current or previous CMMI rating. Of those who did not have a rating history, the
organizations had compared their practices against CMMI and were familiar enough
with it so that the CMMI best practices made a good common basis for discussions on
practices. Several of the organizations benchmarked have achieved CMMI ratings since
they were interviewed and several organizations interviewed had previous CMMI Level
5 ratings which had either expired or had been renewed at a lower CMMI maturity level.
In Figure 3 below, the blue bars show the ratings of the organizations when the
interviews were done, and the red bars indicate where organizations held different
ratings previously.

53

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Figure 3: CMMI Levels of Organizations Pre-Interview and At Interview

The majority of the organizations had initially decided to work towards CMMI ratings
based on either agency or DoD requirements/mandates or because their senior
management felt that the CMMI ratings were a good business discriminator. One
organization began to work on improving their practices and achieving a CMMI rating
following difficulties with some of their projects. In the organizations with CMMI ratings,
there was a good level of support by the senior management.

Within the aerospace industry organizations, three of the four with CMMI ratings
achieved the CMMI rating in order to have a business advantage over their competitors.
The fourth industry organization achieved the CMMI rating because it was required to
do DoD work. The fifth industry organization did not have a CMMI rating and said they
had not investigated CMMI enough to determine whether it would provide sufficient
benefit for their organization. However, they did state that the CMMI knowledge they
had provided them with a common language when dealing with its customers.

Table 6 below lists benefits and challenges that were mentioned by a number of
organizations.

54

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Table 6: CMMI Benefits and Challenges Mentioned in Interviews

N1 N2 N3 N4 N5 I1 I2 I3 I4 I5 G1 G2 G3 G4 U1 U2 U3 U4
CMMI Benefits
Projects do better planning X X X
Better cost estimation (more
credibility) X X X X X
Quicker start-up of projects (less
effort with tools and templates) X X X
Better progress tracking X X X
Errors found earlier (peer reviews
and inspections) X X X X X X X X
Better cost and effort predictability X X X X X
More personnel flexibility with
common processes X X
Systematically done testing X
Causal Analysis Resolution (CAR)
helps prevent future errors X X
More standardization/consistency of
processes across projects X X
Standard Quality Assurance (QA)
checklists/better QA X X X X X X
Helps optimize cost savings X X X X
Better project performance/lower
error rates X X X X X
Process ingrained in organization X X
Many common templates and tools
across projects X X X X X X X

Less rework, improved cycle time X X
Business advantage X X X X
More control over requirements
changes X X X X

CMMI Challenges
Having projects in right stage to
appraise X X
Getting good management
support/funding X X X X X X
Having adequate funding to make
progress X X X
Need buy-in from projects X X X X X X
Getting projects to follow consistent
or common processes X X X
Need to evaluate cost/benefit of
correcting every weakness to avoid
over-achieving for rating X X
Subjective interpretation of CMMI
practices across Lead Appraisers X X X Xg g (
change) X X X
Changes in CMMI model X X X
CMMI on small projects X X
Collection of good quantitative
measures (in lower maturity
organizations)

X X

CMMI Levels
CMMI level - at interview 2 2 2 3 3 3 5 3 3 - # 2 5 3 - - - 3
Previous CMMI level 5 org. X X X

Nx NASA Centers Ux
Ix Industry Organizations Gx

-

Note: X's in matrix indicate practices mentioned in interviews. Lack of X's in boxes DO NOT indicate the lack of the characteristic. The chart
should be viewed merely as an indication of the characteristics mentioned. For N1, benefits of CMMI were not discussed during the
interviews. # indicates organization had a previous CMMI Maturity Level 2 rating, which was expired at time of interview.

University, Univ. R&D Labs
Defense Services

 Not Applicable

Organizations

55

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.7.2.1. Aerospace Industries

Of the four aerospace industry organizations with CMMI ratings, three were either CMMI
Maturity Level 5 or had previously been CMMI Maturity Level 5. In addition to Table 6,
comments on CMMI benefits include:

 Well-disciplined project teams: Processes are engrained in the project teams
so that they are followed as part of their everyday work. One organization
commented that the teams strived “to be perfect.” Process training was part of
the regular training programs and training was provided periodically for many
roles, including roles such as configuration control board (CCB) members, and
managers.

 Better planning, quicker start-up: Standard templates and tools enabled the
projects to start-up more quickly and provided more flexibility for project team
members to be able to move from one assignment to another with less learning
curve time necessary on the new project.

 Systematic testing and peer reviews: One of the organizations felt some of
their largest quality increases from CMMI practices were due to their process of
doing inspections and re-inspections using checklists in conjunction with a
systematic testing approach. After a round of testing had identified and removed
some errors, the team went back and did a re-inspection before resuming testing.
When errors were found, the team checked to see if the error was in any generic
parts of the code or if it might appear in other similar places in the code.

 Errors found earlier: One organization stated that they had metrics on the
number of errors found in different phases and numbers of phase escapes. They
were finding fewer phase escapes and were identifying more errors in earlier
phases of the projects after following CMMI practices.

 Cost savings: One organization estimated the cost savings with CMMI to be
about 15%.

 Management by metrics: One organization felt CMMI’s emphasis on useful
measures contributed significantly to good project management since the
collected measures provided the project managers with the information to
qualitatively evaluate their status and progress. The measures collected at the
organizational level provided the necessary information to determine what areas
could benefit the most by process improvements.

 Agile: One organization used Agile/SCRUM for some of its projects but said that
their processes were “overweight” for a typical Agile project. Their projects had
made adjustments in the typical Agile methodology to ensure that they could
meet even the CMMI Level 5 practices. One of the areas necessary to expand

56

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

was the emphasis on metrics. They felt this approach contributed to the quality of
their software.

 Common processes: Four of the five industry organizations had some level of
common processes across their organizations or business units. One of the
organizations listed standard processes and standard software assurance
checklists as one of their top areas of improvement. Another organization used
common processes over multiple sites. They also had over 100 common tools
and many common templates. Another organization stated that they have
consolidated processes across all their business units. They had retired many of
their local processes in favor of the organizational ones. Where they had specific
local processes that were considered of benefit to the organization, they were
allowed to keep the local processes. The organizations felt that having these
common practices had many benefits including more consistency across
projects, easier start-up, more flexibility of staffing, and lower costs to maintain
processes.

All of the industry organizations with CMMI ratings stressed that strong support from
higher-level management was a key factor in achieving CMMI maturity levels. Funding
for the infrastructure and process maintenance is also necessary for continued CMMI
compliance. One of the organizations that had decided to renew its rating at a CMMI
Maturity Level 3 instead of CMMI Maturity Level 5 commented that they needed
additional funding for someone to help with the analysis of their metrics in order to
achieve CMMI Maturity Level 5. At CMMI Maturity Levels 4 and 5, the measures across
projects need to be analyzed in order to determine process performance and to
determine those areas where process improvement would provide the most benefit.
This was generally a function that had been supported by the organization’s SEPG, but
without adequate funding they had been unable to continue it. The organization
commented that they missed the additional insight into the performance of their projects
and organizational processes that had been provided with the level of metrics emphasis
they had while they were rated CMMI Maturity Level 5.

Another industry organization commented that they might not try to renew their current
CMMI Maturity Level 5 rating because they didn’t think maintaining Level 5 was cost
effective. They thought a majority of the benefit had been achieved by obtaining the
rating initially and that they could maintain the benefits achieved without renewing the
rating at the same level. They felt the processes had been ingrained into the
organization to such a degree that they would continue without the burden of the
appraisal at Level 5.

57

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.7.2.2. Universities and University Research and Development Labs

CMMI was much less of a factor in the software development areas of the universities
and university laboratories. One of the university organizations had not heard of CMMI.
The other university, where projects were done in the context of a class, gave the
students a class in CMMI before the project. Thus the students were familiar with the
CMMI process areas, goals, and practices, but they were allowed to choose their own
set of processes and were not required to follow those in CMMI.

One of the university laboratories did not have a CMMI rating, but had compared their
practices to the practices in CMMI. They felt that their practices were adequate and they
considered themselves a “best in class” provider. The interviewees stressed the
difficulties and expense of trying to obtain and maintain a CMMI rating for very small
projects that are devoting all of their limited time to their software projects. They felt the
requirements in NPR 7150.2 were too restrictive for an organization of small projects
like theirs.

The other university laboratory had a CMMI Maturity Level 3 rating that had been driven
by a senior management decision to enable them to be more competitive. Before
deciding to implement CMMI, this organization had started to make the types of
improvements they felt would help them develop better quality software. Once they
started to implement the CMMI practices, they found that they didn’t really have to
change very much because the practices they were already implementing were the
types of practices needed for CMMI. They had small projects and have been able to
tailor their processes well for CMMI. Other than the business advantage, they did not
talk about the specific benefits of CMMI for them.

5.7.2.3. Defense Services

Of the defense services organizations interviewed, one was CMMI Maturity Level 5.
One had a previous CMMI Maturity Level 5 that had expired and was working toward a
CMMI Maturity Level 3. One organization was a CMMI Level 2 and obtained a CMMI
Maturity Level 3 shortly after the interview. The fourth organization had an expired
CMMI Maturity Level 2 and was working to regain that level. All of the organizations
listed a number of benefits to obtaining a CMMI level and many were very similar to
those mentioned by the industry group of interviewees. Other comments received in
addition to those noted in Table 6 include:

 Better cost/quality/schedule performance: Several of the organizations
claimed their projects:

o Produced a “high quality product in a timely fashion.”
o Completed “within budget and on schedule.”

58

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

o Saw “improvements in cost and cycle time.”
 TSP and CMMI: One organization using SEI’s TSP in conjunction with CMMI

recovered the $100K cost of establishing TSP within their first 18 month cycle
period due to the increased productivity they measured.

 Better project management: One project said that the use of CMMI had made
their personnel more aware of cost and effort management and the people
became more vigilant in managing their projects.

 Errors found earlier: One organization reported that they had a 240%
improvement in the number of defects captured within phase as they moved from
CMMI Maturity Level 3 to CMMI Maturity Level 5.

 Small projects and CMMI: One organization reported that they didn’t see a
business case for moving small projects from CMMI Maturity Level 3 to CMMI
Maturity Level 5. The additional support of the common templates and tools at
CMMI Maturity Level 3 was worthwhile for their projects, but the additional levels
of metrics collection and analysis didn’t seem to provide enough benefit for the
small projects.

 Better reporting and progress tracking: The projects in the CMMI Level 3 or
higher organizations collected a good set of metrics on their project status and
the organizations provided cost models, prediction models and performance
models, allowing the projects to do better assessments of their status and
probable future performance. Regular management status reports reported these
metrics to provide better visibility into project performance.

Several of the defense services organizations mentioned the change management
aspect of implementing CMMI as a major challenge. One of the ways they addressed
the change management was to employ a number of full time process consultants,
sometimes including certified CMMI Lead Appraisers. These consultants could then
teach classes or serve as coaches for the projects to help get the processes
institutionalized. One organization thought the use of tools to support the processes was
helpful and they had used Process Max for process control and document review. One
of the organizations commented that the efficiencies achieved by using CMMI had
allowed them to reduce their support level significantly. One of the organizations said
moving from CMMI Maturity Level 2 to CMMI Maturity Level 3 was much more difficult
for them than achieving the original CMMI level because CMMI Maturity Level 3
required more infrastructure.

59

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.7.2.4. NASA

Of the NASA Centers that were interviewed, three had CMMI Maturity Level 2 ratings
for most or part of their organizations. The other two NASA Centers had Maturity Level
3 ratings for most or part of their organizations. One of the Maturity Level 3
organizations said they did not feel they had enough data collected to quantify all of the
benefits yet, but they did list some subjective improvements they had noticed. Other
Centers also had limited quantitative data, but listed a number of areas where they had
noted improvements. Some of the benefits they mentioned include:

 Available templates and tools improved project consistency and allowed projects
to start up more quickly.

 The scope of software assurance has expanded and over time the number of
findings is declining. Software development and software assurance are working
together better.

 Projects were doing better planning and were able to track their progress with
more accuracy.

 One Center commented that they were finding errors earlier in the life cycle with
their peer reviews and another Center felt that they were seeing a huge benefit
from the inspections.

 Several Centers said their cost estimation had improved and that their cost
estimates had achieved more credibility with the mission project managers.

 Several Centers have measured increased productivity since implementing
CMMI practices, but one of the Centers observed that other factors may also
have contributed to the improvement.

Some of the challenges noted by the NASA Centers were funding and resource issues
to develop the tools, templates and processes and to mentor the projects on their use.
Another major issue for some Centers was the availability of projects for inclusion in an
appraisal. Many projects were cancelled following the change of direction away from
Constellation. One Center noted that it was more of a challenge to apply some of the
CMMI practices on small projects, but several of the Centers had included one or more
small projects in their appraisals.

5.7.2.5. CMMI Maturity Level 5 Organizations

Across the whole set of organizations interviewed, there were certain common
characteristics noted in the organizations with the higher CMMI maturity levels. These
were particularly obvious in the organizations that were rated CMMI Maturity Level 5
and in those with previous Level 5 ratings. Characteristics noted include:

60

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

 Strong metrics programs: All of the high maturity organizations had
organizational metric programs that provided much more insight into the status of
their projects as well as information on their project characteristics such as cost,
effort, cycle time, and productivity. These organizations had historical databases
of past project costs to use in their cost estimation for future projects. They also
had data such as expected number of defects across the life cycle, based on the
size of the project so their projects could compare their performance with the
typical number for a project similar to theirs. Other process performance models
allowed the prediction of items like time and effort to complete the project,
expected expenditure, etc. Because these organization measurement assets
were available, the projects were really able to “manage by metrics.” The projects
were able to use the organizational resources to do a better analysis of the
implications of the metrics they were seeing on their own projects.

 Comprehensive training programs: The higher maturity organizations had
training programs that provided a variety of delivery types (on-line classes,
classroom classes, lunch-time seminars, structured mentoring and OJT, etc.)
Training was typically required periodically and was targeted for certain roles.
Possibly the most important aspect seen was that, in most cases, these
organizations arranged to have the training available when needed, and
sometimes the training was built in as a part of the project’s activities.

 Process-oriented personnel: The higher maturity organizations had made clear
their expectations in terms of process behavior and their personnel made
comments like, “Process isn’t extra – It’s the way we do things.” One small
project member commented that it was just easier to follow the standard process,
even on the small projects.

 Organizational assets and tailoring to suit their projects: These
organizations had standard sets of process, templates, checklists and tools
designed for their types of projects and a method of tailoring the assets for
particular projects.

 Strong peer review culture: All of the higher maturity level organizations relied
heavily on the use of peer reviews to help find errors early in the life cycle.

5.7.3. Observations

 Across all of the organizations with CMMI experience, the top three most
mentioned benefits were:

o Errors were found earlier in projects.
o Many common templates and tools were used across multiple projects.

61

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

o Better QA on projects, as well as QA checklist.
 Although many of the organizations interviewed listed challenges in the

implementation of CMMI maturity levels, including obtaining funding, and getting
project buy-in and senior level support, the organizations also realized many
benefits after achieving CMMI maturity levels.

 The benefits of achieving CMMI level seemed to increase as the CMMI maturity
levels went from 2 to 3 and from 3 to 5. The organizations at CMMI Maturity
Level 5 (or previously at CMMI Maturity Level 5) exhibited characteristics not
typically found in the other organizations interviewed. (See previous section for
characteristics).

 Several higher maturity organizations did not feel that it was cost effective to
maintain their CMMI Maturity Level 5 rating.

 A number of the organizations had developed common processes, often
including common tools, templates, checklists, etc., to help obtain consistency
across projects, to lower overall process maintenance costs and training costs, to
enable faster project start-up, and to provide more personnel flexibility.

 NASA Centers have improved in a number of areas since implementing CMMI.

5.7.4. Recommendations

CM1 Continue to require CMMI for critical NASA projects as a method of promoting
high quality mission software. Also use CMMI as a standard yardstick to measure
the capability of organizations who are/will be developing NASA software.

CM2 Develop/consolidate/collect common processes, principles and other assets
across the Agency in order to provide more consistency in software development
and acquisition practices, and to reduce the overall cost of maintaining or
increasing current NASA CMMI maturity levels.

CM3 Pursue collaborations with other organizations that have strong programs in
areas where NASA could benefit from additional improvement and continue to
improve NASA programs in those areas. Areas where NASA could improve
include:

 An organizational metrics program.
 Improved cost estimation for both in-house developments and for in-house

estimates for acquired software.
 More consistency of process performance across projects.
 A more comprehensive, training program with modules available

62

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

whenever needed.
 Development and application of appropriate levels of rigor for small

projects.

5.8. Small Projects

5.8.1. Questions

 Please describe the scope (size and criticality) of small projects.
 Are small projects (all criticality levels) required to comply with software policies

and requirements? If so, what are some of the key ways in which small projects
are able to comply? If small projects are not required to comply, how are small
projects governed?

 Does your CMMI statement of work include or exclude small projects?
 Does your organization have any infrastructure to support a collection of small

projects?
 What methods or tools have you found that work well for small projects?
 How does your organization satisfy good software practices with limited

resources and funds allocated to small projects?

5.8.2. Discussion

For the purposes of obtaining consistent information in the interviews, small projects
were defined as projects with five Full Time Equivalents (FTEs) or less. Most of the
organizations used similar definitions for their small projects. Variations in the definition
ranged from less than ten FTEs to less than two FTEs in a 24-month period. Of the 18
organizations interviewed, only one said they really didn’t have any small projects and
four of the organizations had only small projects. One large organization said three-
fourths of their projects were small projects. Table 7 shows some of the characteristics
of the organizations interviewed. It is interesting to note that the large majority of the
organizations with both large and small projects followed essentially the same set of
processes for both the large and small projects.

63

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Table 7: Organizational Practices for Small Projects

5.8.2.1. Aerospace Industries

Of the five aerospace industry organizations interviewed, one had no small projects and
one had only small projects. Two aerospace industry organizations reported that the
majority of their small projects were research projects such as pilot projects or
independent research and development (IRAD), with only a few actually developing the
more critical software. The small projects that were not research (defined as less than
1000 hours or one to two people) were still required to follow the same processes, but
their processes were pre-tailored by the organization to reduce the overhead. In one
case, the smaller projects were put under the umbrella of larger projects to reduce their

N1 N2 N3 N4 N5 I1 I2 I3 I4 I5 G1 G2 G3 G4 U1 U2 U3 U4
Organizational Characteristics
Had no small projects X X
Had only small projects X X X X
Excluded small projects from CMMI X X
Included small projects in CMMI appraisals X X X X X X X
Don't know if small projects were included in
appraisals

X X X

Practices for Small Projects
Used same processes (tailored) for small projects
as large projects X X X X X X X X X

Pre-tailored by organization X
Under large project umbrella X

Tailoring help from Technical Authority X X X X X X X

People indoctrinated in process-"They just follow it" X X

Used umbrella SMP X
Tool support (availability, set-up, sys.admin.) X X X X X X X X
Outside support for testing, peer reviews X X X X X
Extra documentation support X X X
Close relationship with hardware team X X X
Heavy reliance on peer reviews X X X
Process tailoring workbook X X X
Special small project templates X X
Special small project tools X X X X X
Use of wiki for communication X X X X
Less formal reviews, reduced scope or combining
of documentation X X X X X X X X X X X

Single manager for multiple projects X
Use Of TSP/PSP X

Nx NASA Centers Ux
Ix Industry Organizations Gx

-

Note: For U1, each project chooses its own processes
For N5, very few small projects in organization

 Not Applicable

Organizations

University, Univ. R&D Labs
Defense Services

64

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

paperwork. Then the larger project would include information for the small project in
most of its documentation, for example, in the Software Management Plan (SMP). For
the other industry group, an umbrella SMP was developed that covered several of the
smaller projects to reduce the paperwork overhead.

One of the aerospace industry organizations with small projects had several
approaches in place that seemed to work well for their small projects:

 Although the small projects used the same basic processes as the large projects,
the Technical Authority (at the level of a NASA Branch Head) worked closely with
them to help tailor the process. It was the responsibility of the Technical Authority
to make sure that the tailored processes met all the required key points and any
project risks were reviewed with the Technical Authority regularly.

 The organization provided tool support for the small projects including not only
the purchase of the tools, but also the initial set-up and tool administration
throughout the project. Generally one tool guru supported several small projects.

 Small projects still had an independent tester for formal tests and they performed
peer reviews. Special arrangements were made to have an external person
assigned to support these activities.

 Software assurance was still involved in these small projects doing process
audits, review and signature of documents, and after-the-fact review of peer
reviews.

 Process training seemed to be a key for the small projects. The personnel had
been well-trained and indoctrinated into the culture of the process used for the
large projects and they commented, “It’s just the way we do business.”

The aerospace industry organization with all small projects also had some practices that
were very supportive of the small project environment. Some of their characteristics are:

 Personnel for small teams were carefully chosen to ensure that team members
had the best possible skills for the project. New team members were carefully
mentored and monitored before allowing them to submit code.

 The small project software team worked closely with the hardware team.
Software and hardware requirements were refined iteratively.

 Team members reviewed each others’ code and the whole team relied heavily on
team peer reviews. This organization felt that the constant communication and
shared familiarity with the project details enabled the team to keep
documentation and formal reviews at a minimum.

 The teams used tools to assist them in many areas of the project. They
mentioned tools to track and plan their work, as well as tools for automated unit

65

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

testing, program documentation, static analysis, configuration management,
issue tracking, peer reviews and code coverage.

5.8.2.2. Universities and University Research and Development Labs

The group of university and university laboratory organizations had mostly small
projects, often with only one or two people on a project. One organization commented
that small teams can often help them do projects quickly without losing quality. One
university laboratory described a set of projects done by one person, who participated in
their CMMI appraisal. Several key characteristics were noted:

 The software person worked very closely with the hardware team and
requirements were developed iteratively.

 The software person documented very carefully so someone else could take
over, if necessary.

 The software requirements specification was started early in the life cycle and
became the primary multi-purpose document as the project developed.

Several of the university organizations commented that NASA processes, reviews, and
CMMI put too much burden on the small projects. Two of the university organizations
mentioned using different levels of rigor on their small projects, depending on the types
of projects. One of the university laboratories commented that they used inspections
heavily and that they sometimes used developers as testers, but not for their own code.
Other developers were often brought in for reviews and operations people often did the
independent testing.

5.8.2.3. Defense Services

The defense services organizations with small projects all essentially expected their
small projects to follow the same processes as the large projects with some tailoring.
One organization said they did not require their smaller projects to participate in the
CMMI activities and another organization said they expected the small projects to
operate at CMMI Maturity Level 3 instead of CMMI Maturity Level 5. Several of the
organizations described the tailoring for small projects as a matter of scope (“Doing the
same thing, but in a simpler manner”) or a matter of degree (where an SMP may have
the same number of sections, but they are “lighter-weight”.)

Two of the defense services organizations mentioned having a process tailoring
workbook or customization workbook that listed what could be tailored and described
how much it could be tailored. Typically, the project then documented exactly what they

66

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

planned to use in their tailoring and this project tailoring needed approval or a waiver.
The tailoring workbook might say that bugs needed to be tracked and the project might
specify that they planned to use Bugzilla. Types of tailoring mentioned included less
documents or documentation with less detail; combined reviews or less formal reviews;
little or no regular software assurance; less independence of testing.

One defense services organization assigned one technical manager to manage multiple
small projects. Common support for the small projects was also provided, such as a
common set of tools, a common configuration management group or in the case of
another organization, a common test group. It was noted that it is more difficult for one
manager to manage multiple small projects than one larger one.

One defense services organization used Team Software Process/Personal Software
Process (TSP/PSP) on a number of their small projects. It was noted that this is a very
structured way of working with small projects and they felt they got excellent results with
the process. They did comment that TSP/PSP probably wouldn’t work well for everyone
since it is quite metrics intensive and requires a fair amount of personal diligence in
record-keeping.

5.8.2.4. NASA

The NASA Centers interviewed expressed some of the same issues with small projects
as many other organizations interviewed. Their projects felt challenged to maintain the
same level of rigor as the large projects when they were very resource-constrained. All
of the NASA Centers interviewed except one had small projects with mission critical
software and these projects were required to follow the same processes as the large
projects. Three of the Centers had small projects that shared tools, or were able to get
tools from the organization or a tool service. One Center had developed a number of
tools that were designed for use by the smaller projects. In all these cases, the
availability of appropriate tools for the small projects was considered beneficial in
helping them maintain a greater level of rigor with less overhead.

Two of the Centers allowed the smaller projects to tailor their processes and provided
some guidance for tailoring in their process documents. One Center wanted to write a
tailoring guide, particularly for small projects, but had not yet done so. The other Center
also commented that more tailoring guidance would benefit their small projects.

A third Center used an approach similar to one of the industry organizations
interviewed. Their Branch Head, who was also the Technical Authority, worked with the
small projects in the branch to help them develop a reasonable tailoring of their
processes. Consolidation of documentation was one example of the tailoring cited. The
projects at one Center were given some additional documentation support to help
alleviate their resource problems.

67

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.8.3. Observations

 The issue of maintaining rigorous processes in small projects with limited
resources is not a NASA-unique issue. The majority of the organizations
interviewed had small projects that followed processes similar to those of large
projects, but usually were tailored and often the small projects received additional
support from their organizations.

 When tools appropriate for small projects are made available, it is easier for the
projects to follow a rigorous process with less overhead.

 Organizations often give their small projects other forms of support such as
providing common services like configuration management, additional
documentation support, a common test team, or an extra resource for peer
reviews.

 Tailoring of processes for small projects is key and can be accomplished in
several ways:

o With the use of assets pre-tailored for the small projects.
o Through the use of process tailoring workbooks or a customization

workbook.
o Through the use of a Technical Authority close to the small projects, who

can help develop a tailoring plan that works well for the project.

5.8.4. Recommendations

SM1 Develop an Agency-level set of recommendations on tailoring for small projects
or develop a process tailoring workbook that lists those items that can be tailored
and describes allowable tailoring.

SM2 Provide tool support for small projects. Small projects should be able to get
access to the tools they need for rigorous processes, as well as support for their
use and administration. Most small projects do not have the budget to purchase
many of the tools that would benefit them and they do not have the expertise or
manpower to set up the tools for their projects and perform the needed
administrative activities.

SM3 Focus on educating technical authorities or their designees and advisors who
may be managers closer to the small projects so that they can assist the small
projects in developing a good set of tailored processes for their project.

68

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

5.9. Tools

5.9.1. Questions

 No specific questions were asked regarding this topic.

5.9.2. Discussion

A listing of the software tools discussed during the NASA Software Engineering
Benchmark meetings is included in Appendix F. This table should not be considered all-
inclusive, nor is it an endorsement of any particular tool by NASA. The purpose of this
table is to provide a list of the tools reported to be used by participants in the software
engineering benchmark study. General noteworthy software tool lessons from
interviewees during the software engineering benchmark include:

Availability

 Having software tools available for small projects is very important.
o Most organizations have been successful in having centralized tools for

small teams to use since small projects lack the resources to acquire
tools.

o Small projects also benefit from institutionally-provided tool set-up and
administration.

o On-line tools are very helpful for small projects.
 It is important to coordinate with information technology (IT) organizations to

create locations on servers that can be used to host software tools.
 Industry organizations provide more institutional software tool support.
 Some organizations are pushing towards standard tools for all programs.
 When multiple tools are available that can be used, and options are available, do

a risk analysis to make a choice and to determine whether multiple tools are
needed.

Analysis and Testing Tools

 Industry is looking at tools that will help with continuous integration and
automated testing. For example, verifying the 1553 communications at the bit
level is time consuming.

69

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

 NASA IV&V has been very helpful in running static analysis tools and sorting
through all of the false positives.

 Most organizations use two compilers with all warnings turned on.
 Most organizations have developed some of their own specialized tools for

performing testing and regression testing.
o Most organizations don’t use many automated test tools.

 Home grown tools are used for software testing… as opposed to automated
commercial tools.

COTS and Open Source Tools

 Some organizations use a decision analysis resolution (DAR) process to
determine whether to use COTS tools.

 In-house tools may be considered better than having COTS tools, since having
someone local who knows the code and the tool capabilities is important.

 Defects in COTS tools have the potential to ripple into the software being
developed.

 Need to have someone in-house who is very familiar with the tool, so use is not
limited by reliance on the vendor.

 Vendors do go out of business; have access to the source code in case a vendor
goes out of business.

 Some organizations test software tool kits, library software, and open source
software at same level as in-house developed software.

 Increased use of open source software tools was seen, particularly by small
projects.

Training and Additional Comments

 For a new project and or new tools, provide structured training on tool usage.
 Starting to see an increase in use of integrated software tools performing multiple

functions.
 Organizations are interested in using a NASA “tool shed” concept and would like

to be given access to the more expensive static analysis tools.

5.9.3. Observations

The following observations arose from the benchmark visits on the topic of software
tools:

70

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

 An increased use of open source software tools was noted however, testing
requirements, approach and guidelines were not clearly defined.

 Static analysis tools are commonly used across the software engineering
community.

 Common software tool repositories are considered a benefit when used on most
projects.

 Larger and more mature organizations are pushing towards standard software
tools for all programs with a standard schema for the tools, and for most tools to
be organizationally supported.

5.9.4. Recommendations

Recommendations for NASA to improve existing software tools include:

TO1 Assess the option of providing Agency-wide licenses for high-cost commonly
used software test tools and static analysis tools.

TO2 Assess the need for a NASA policy on the use of Open Source software tools.

5.10. Programmable Logic Devices

5.10.1. Questions

 No specific questions were asked regarding this topic.

5.10.2. Discussion

Programmable Logic Devices (PLDs), also known as complex electronics (CE), policies
and requirements were not a primary focus on the software engineering Benchmark
activities, but the subject did get discussed in some of the Benchmark visits. Enough
consistent data was not gathered to have any findings or recommendations in this area.
In the few organizations that did talk about PLDs, the approaches were mixed on how
the devices are handled from a policy, requirements, and process perspective. Based
on the limited data received, it was observed that PLDs were developed by a number of
different organizational approaches. Some were developed in hardware electronics
groups, some were developed in software organizations and some used a hybrid
approach with both software and hardware organizations participating in the
development processes.

71

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

NASA usage of the term PLDs encompasses programmable and designable complex
integrated circuits. They can be programmed by the user and range from simple chips
to complex devices capable of being programmed “on the fly.” “Designable” logic
devices are integrated circuits that can be designed but not programmed by the user.
The design is submitted to a manufacturer for implementation in the device. Some of
the primary types of programmable devices used are:

 Field programmable gate array (FPGA).
 Complex programmable logic device (CPLD).
 Application-specific integrated circuit (ASIC).
 System-on-chip (SoC).

A PLD is an electronic component used to build digital circuits. Unlike a logic gate,
which has a fixed function, a PLD has an undefined function at the time of manufacture
and is defined prior to use. An FPGA is one of the most commonly used PLDs in space
flight applications. The FPGA design is captured using a hardware description language
(HDL) which defines how the chip will work, equivalent to a circuit schematic diagram. A
fuse or bit file is created using the HDL design and used to configure the FPGA to
perform its intended functions. Typically, modern FPGAs that have been qualified for
space flight contain thousands of logic gates and memory cells, and they can perform
highly complex digital logic functions. At a systems-engineering level, there are many
similarities between a PLD integrated circuit development process and a software
product development process; however there are also many critical differences between
the two products. A recent NASA Engineering and Safety Center (NESC) assessment
found there is a great deal of effort being made by the PLD engineering community and
safety community to ensure robust PLD development. However, the lack of consistency
in terminology and/or definitions, the various project specific or Center-specific
development requirements, as well as differences between the software engineering
processes and the PLD engineering processes put robust development of PLDs at risk.
The issue is a combined hardware and software issue that needs to be evaluated from
a systems perspective. The NASA NESC study developed a recommended approach
for policy, requirements, and/or guidance that should be applied at the NASA level to
ensure robust development of these types of devices used in future space flight
systems. The NASA NESC assessment team recommended that a NASA-level PLD
handbook be created. The NASA-level PLD Handbook is being developed using
existing NASA Center PLD documentation. Similarly, a community of practice (CoP) of
subject matter experts has been established to clarify and document best design
practices and to improve communication and sharing between the NASA Center’s PLD
experts in this dynamic technical discipline.

72

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Currently, NASA has established a PLD CoP, under the NASA Avionics Technical
Fellow to enhance informal networks between NASA Centers and other government
agencies, industry, and academia to encourage communications, transfer knowledge,
and share lessons learned and peer reviews. NASA has started the development of a
NASA PLD Engineering Handbook through the PLD CoP. NASA has also developed a
NASA Complex Electronics Handbook for Assurance Professionals. This handbook
provides an overview of complex electronics, the design process, and assurance
activities.

5.10.3. Recommendations

PL1 Continue with the NASA proposed plan.

73

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

6. Benefits
Among the anticipated benefits, the study also produced two unexpected results:
requests to collaborate with NASA and feedback on working with NASA.

6.1. Feedback
The university and university R&D labs, and at least one industry organization provided
feedback on working with NASA. The NASA SWG regularly participates in surveys to
collect NASA Center feedback, but it does not have a mechanism to collect feedback
from contractors or partnerships that provide software to NASA projects. This feedback
is helpful information that suggests a need to understand and seek some amount of
feedback to improve the overall software process while potentially improving the
results/costs associated with software acquisitions. Some of this feedback is
incorporated into the resulting recommendations and actions.

A few comments were collected regarding participation in the improvement of NASA's
requirements and expectations. Requests were primarily:

 To be able to provide comments on the NPR’s while in development so the NPR
requirements are also a reasonable set for the contractors to implement.

 For NASA representatives to make sure the standard Mission Assurance
Requirements and NPRs are in agreement.7

 To consolidate or coordinate NASA audits and surveys to minimize potential
schedule impacts to contractor’s schedules.

Many of the comments are extensions of the issues that NASA had identified and is
expecting to gain new ways to resolve through this study. What is helpful about these
comments is that they provide a more end-to-end picture of the problem and the
impacts. The conversations also led to information gathered in the previous discussion
sections on how these organizations work to meet the requirements and resolve issues
that are problematic. For example, two organizations suggested the need for NASA to
accept non-traditional documentation on small projects. There is merit in considering
new ways to provide the required documentation if the rigor and necessary content is
maintained.

7 NASA Office of Safety and Mission Assurance and the Office of Chief Engineer are working together to
eliminate redundancies and harmonize the updates of NASA-STD-8719.13, NASA Software Safety
Standard and NASA-STD-8739.8 NASA Software Assurance Standard with NPR 7150.2 NASA Software
Requirements. Approved updates of the two standards are scheduled for early 2013, while NPR 7150.2’s
update will occur in 2014.

74

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

 NASA reviews mean taking people away from a very small development and test
team and have them create and present review materials. NASA reviews
typically want Microsoft PowerPoint presentations. Data is available in other
(original) formats that are more detailed and would require less time to use.

 Some organizations would like to see NASA scale for smaller things; NASA Is
requiring more than necessary for smaller, cheaper efforts. For example, expect
a combined document instead of multiple documents to meet the requirements.

Another topic that has been an issue for NASA, and can be found on the Top Software
Issues list, is cost estimation. This topic was not included in the scope of this study
since cost estimation is competitively sensitive information and was not expected to be
shared.

A few of the organizations had concerns about their cost estimates not being accepted
or possibly not trusted at NASA. Quite frequently this also happens at NASA Centers
where project representatives may pressure the software organizations to provide the
software for less than requested costs. The non-NASA organizations that had these
concerns all claimed to have excellent ability to estimate software costs. If this is true, it
would benefit NASA to be able to estimate costs better for internal and external
software development to ensure the work can be done properly and on schedule.
Having better cost estimation for in-house software would help project managers with
cost and schedule decisions and also help determine if in-house or external software
development is the right development choice. Without strong cost estimation at NASA,
these comments imply negative impact to the quality, on-time delivery, and cost of
software on a project, including:

 Concerns about NASA projects challenging (and cutting) the amount of code,
time, or schedule even with a measurable process estimation that has only a
10% variance.

 Concerns about requirements creep and requirements definition. NASA forces
projects into a “smaller” box then forgets who made the decisions.

 Concerns that NASA starts with a budget to develop a project instead of finding
out how much budget will be required for the project.

6.2. Collaboration and Continued Opportunity
The conversational aspect of the interviews allowed for comments and feedback in an
open and objective manner. Some of the comments were requests to help improve
internal processes or NASA processes. Several organizations asked to collaborate with

75

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

NASA, which would help improve the organization's internal processes, and more
closely align their processes with NASA's. The key collaborative requests were focused
on:

 Metrics
 Software training (specifically software safety)
 NASA’s tool shed
 Static analysis tools
 Software processes
 NASA's Engineering Network, which hosts NASA’s software CoP
 CMMI expertise

Several of the interviewed organizations have requested to work with NASA on specific
subjects. One organization suggested a Memorandum of Understanding
(MOU)/Memorandum of Agreement (MOA) to enable further sharing of information and
partnership development which could include sharing of Lead Appraisers for CMMI
certifications. These relationships can lead to further success for NASA’s software
engineering. The interest to work with NASA or utilize NASA resources suggests that
NASA can be viewed as a leader or at least a strong contributor in these fields.

Anticipated benefits were also achieved. The objectives of the effort have produced
data that can be used to formulate action plans to further improve NASA’s software
engineering. Enough data was collected to pursue many new avenues beyond those
originally scoped for this project. With this study producing results that are incorporated
into positive changes to current software engineering organization and processes,
interaction with external organizations should be continued to find new ways to do
business from the external environment and obtain objective viewpoints.

76

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

7. Comparisons and Trends
To help determine what information from this study could be pursued in the near term,
NASA’s position among the benchmarked organizations can be analyzed to find the
largest differences between NASA and the external software engineering environments.
On the topics studied, NASA generally fared well among the organizations that
participated. The Benchmark Team rated NASA Centers as either among the strong
performers or between the strongest and weakest performers. For the topics where
NASA was in-between the strongest and weakest performers, the difference between
NASA and the strongest organization was most noticeable for the areas of software
acquisitions and metrics. Although the difference between NASA and the other
organizations is not as significant in other areas, there were still many valuable ideas to
consider and potentially pursue.

Overall, NASA, industry and defense services organizations were noted as more mature
than the universities and university R&D laboratories. This maturity was characterized
by stronger and better organized policies and processes and effective mechanisms to
communicate and ensure policies and processes were followed. Training programs and
the provision of tools were also noted as more organized and consistent; with the better
training programs able to routinely provide training through a useful variety of mediums.

Defense services organizations were stronger in software acquisitions, metrics and
testing than NASA. The Defense services organizations were better at ensuring
software acquisitions comply with software engineering policies and requirements.
Industry interviewees demonstrated a wide spectrum of acquisition capabilities: from
levying software engineering requirements to not needing any software acquisition
strategy since software was not subcontracted. (Note: It’s likely that universities and
university R&D laboratories were not as strong due to the limited number/lack of
acquisitions they executed.) Both groups had standard contracting language to ensure
compliance. Industry and some defense services organizations also had excellent cost
estimation capabilities to ensure the contracts were appropriately priced. These same
organizations were also better at using metrics to help manage testing and costs, giving
them an edge on cost estimation and helping to establish the credibility of their cost
estimates with the projects. This correlation is consistent with a higher CMMI maturity
level which was found in many of the industry and some of the defense organizations.
For those that had good metric and cost estimation abilities, the software
representatives had respected positions within a project such that project management
did not challenge them, but actually sought inputs from them to assist in determining
comprehensive project costs and schedules.

77

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

NASA software assurance was mature and appeared to be comparatively strong by
virtue of its well-established policies, processes, and training. No gaps were perceived
between NASA’s maturity and implementation of software assurance verses other
strong organizations, however a few of the industry organizations appeared to perform
basic software assurance functions more efficiently, using fewer people.

Although there was mixed information obtained for small projects and complex
electronics, the insight gained has helped confirm forward plans already in work to
address these topics.

A more substantial analysis could be performed comparing NASA to the benchmarked
organizations but only a few and only general comparisons were made. The value of
this analysis (comparisons) is not in how well NASA performs relative to others but in
what was learned and how NASA can continue to improve.

78

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

8. Recommendations
This software benchmark effort collected a wealth of data which translates into
opportunities that will result in key improvements to advance software engineering at
NASA. These improvements will come through near-term execution of the resulting
recommendations, summarized in section 8.2. There are many ideas and best practices
that were not incorporated into this final set of recommendations but are available for
development at a later time for additional actions or further study.

The data that leads to the suggested resulting recommendations, results from the topic
areas that were identified as areas for needed improvements, per the top software
issues. Once the data was gathered from the benchmarked organizations, both internal
and external, the comparative assessment pinpointed the most noticeable differences
between NASA and other organizational best practices. These differences highlight the
topics which should be focused on for near-term plans. Pulling this information together
leads to the specific recommendations that can be executed individually but preferably
will be executed collectively to maximize the benefits of any one action since there are
strong relationships and dependencies among the suite of actions presented.

These recommendations encompass a comprehensive forward plan which contributes
to satisfying the NASA Software Engineering Improvement Initiative and improvement
plans directed by NPR 7150.2A, sections 1.2.1 and 1.2.2, and fulfilling the original
purpose of this study “to identify, review and employ best practices relevant to the
software that supports NASA’s missions.”

79

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

8.1. Software Benchmark Study Recommendations from
Topic Sections
This section contains the complete set of recommendations that were suggested for
each of the topic areas. This set of topic recommendations was consolidated,
eliminating duplication and grouping the actionable areas together to form the final set
of actionable recommendations that appear in the Executive Summary and in Section
8.2.

 Recommendations

Policy

PO1 Improve NASA Policies and processes with regard to universities.
Although this is a small sample, there is an important distinction
between University versus University R&D Laboratory software
providers. It can’t be assumed that university graduates have a
firm foundation in the awareness and use of common software
engineering practices. This has implications for co-op assignments
and in-house training of new hires by NASA. Recommendations
include:

 NASA should be proactive in filling the knowledge gap in
common software engineering practices for new hires and
co-ops.

 Be aware of the risk of ad hoc software development
practices when evaluating proposals from universities.

 Work through the Science, Technology, Engineering, and
Mathematics (STEM) program with universities in
strengthening education in the use of common software
engineering practices and standards.

PO2 Improve the flow down of NASA’s SW NPR to Center xPRs.
Establish an Agency-wide 1 year time limit/grace period on flowing
down approved NASA procedural requirements (NPR) updates
into approved Center level direction via xPRs (i.e. NASA Center ‘x’
procedural requirements).

PO3 Improve contracts. Recommendations include:

 NASA should examine the details of how defense services

80

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

organizations maintain consistency in the flow down of
software requirements through contract vehicles, then
create and implement standard language with respect to the
Agency’s software requirements.

 Since in-house SQA plays a key role in compliance with
policies and standards, NASA request for proposals (RFP’s)
should request information on supplier’s QA capabilities and
use it as one of the evaluation factors in contract awards.

PO4 Establish corporate/enterprise-wide processes. The corporate-
wide software engineering strategy communicated by two
aerospace industries should provide a model for future NASA
software engineering improvements (with appropriate tailoring to
ensure it provides benefits within NASA’s environment). 8

PO5 Collect and publish a set of well documented software engineering
principles/rules from the NASA Centers, to promulgate software
lessons learned in a natural periodic manner available to all NASA
Centers and projects.8

Acquisition

AQ1 Standardize contract language for software. Develop standard
NASA contracting language to ensure software requirements are
consistently flowed down on contracts that include software
development or maintenance. Defense services and the ESA have
contract language for software that should be examined in the
development of standard NASA language. Contracting language
should reflect any pre-tailored requirements to enable allowances
for alternative documentation and review approaches (e.g., The
approach of using a standard set of compliant data requirements
documents was mentioned by a couple of NASA Centers, as were
PDLM tools approaches.). The contracting language should
address subcontracting situations to ensure software requirements
are flowed down to subcontractors from primes. This effort should
leverage and enhance the software acquisition guidance provided
in NASA-HDBK-2203 Software Engineering Handbook (Topic 7.3).
While the Handbook provides needed guidance among the

8 The NASA Headquarters Office of Chief Engineer began an initiative called Agency Processes and
Principles for Software (APPS) under the leadership of Sally Godfrey and Steve Larson to develop a
NASA capability in this area.

81

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

software community, the adopted standard contract language
needs to be institutionalized within the NASA acquisition
community set of common practices.

AQ2 Provide accurate and trusted software cost estimates. Improve the
fidelity of NASA’s cost estimates for software and utilize it to reach
agreement with industry partners. NASA needs to enhance its
capability in trusted software cost estimates to accurately evaluate
contractor software estimates and make smart project trades.
Adequate planning funds also need to be put in place by project
management to ensure there are resources to do perform better
software cost estimates on the defense services side.

AQ3 Improve the NASA contracting process to adequately address
software:

 Introduce a check in the contracting process to ensure
adequate software requirements have been included.

 When contracting for systems, knowledgeable software
personnel need to be involved to ensure adequate
agreements are put in place.

 Ensure representation or advice from software experts in
the acquisition of systems that depend on software.

 When applicable, use CMMI to better communicate NASA’s
software needs and expectations on contracts.

 Secure and maintain adequate budgets to fund trusted
software estimates.

 Clarify what is acceptable to NASA in terms of
“equivalence” and “meets or exceeds” in the area of
software requirements. Leverage the work performed in
2012 under the special NASA task which mapped the
Agency’s software requirements to voluntary consensus
standards.

AQ4 With regard to training and guidance, recommendations include:,

 Improve NASA acquisition training as it relates to supplied
software (train personnel in standard software contracting
language, applicable requirements, and cost estimation).

 Utilize the NASA Software Engineering Handbook and its
guidance on acquisition and contracts. Ensure the

82

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Handbook is available to contractors to facilitate better
communication and understanding of NASA’s expectation in
meting software requirements.

 When applicable, use CMMI to better communicate NASA’s
software needs and expectations on contracts. Including the
expectation of increased accuracy in software cost
estimates from organizations at higher maturity levels (3
and above).

 Better awareness and use of the FAR supplemental clauses
concerning software and data rights (at the Agency and
Center levels) available to place on contracts.

AQ5 Clarify NASA’s Software Requirements. In the 2014 update of
NPR 7150.2, NASA Software Requirements, it is recommended
that inherently governmental requirements be clearly labeled to
eliminate confusion when NPR 7150.2 requirements are put on
contracts.

Testing TE1 Develop a set of predictive software defect data and a process for
assessing software testing metric data against it. Use the set to
status progress during NASA software testing phases and in
software test reviews.

TE2 Identify a recommended set of test metrics for NASA software
development. Assess whether code coverage is a viable metric for
use in software testing reviews. Better use of software metrics
could highlight areas where software testing productivity and
software quality could be improved.

TE3 Review options for improving the NASA software COTS testing
requirements and guidelines when the NPRs for software
engineering and the associated NASA handbook are updated in
FY14.

TE4 Assess the option of buying Agency-wide licenses for commonly
used software test and static analysis tools.

TE5 Clarify the role of software assurance in NASA’s software testing
activities.

83

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

TE6 Perform a workforce assessment of the software simulation skills
of NASA personnel and provide recommendations based on the
findings from the assessment.

Assurance AS1 Follow up this benchmark study with a deeper look into what
organizations perceive as the scope of software assurance (SA),
the value they expect to obtain from it, and the shortcomings they
experience in the current practice.

AS2 Improve SA awareness at universities as well as among project
managers and engineers at organizations interfacing with NASA:

 Work needs to be done to better communicate the definition
and scope of software assurance, with an emphasis on its
value to projects, so that adequate resources can be
allocated to it.

 Consider using the NASA STEP program and other means
to reach out to workplace training and university software
engineering/computer science programs. This is an
opportunity for NASA to infuse its view of software
assurance, educate its suppliers, and cultivate the next
generation of practitioners and users.

AS3 Identify the tools and metrics needed to do a better job of software
assurance, and work out with software engineering the best way to
share the metrics that focus on project and process quality, safety
and reliability while improving on defining and collecting metrics for
improvements in software assurance.

AS4 NASA RFPs should request information about the supplier’s
software assurance capabilities and use that information in
deriving risk exposure and assessing the degree of supplier
surveillance needed.

Training TR1 Continue to develop and enhance the NASA OCE Software
Engineering Curriculum classes and provide them on a regular
basis. These types of classes form a good training basis and
greatly enhance the software training program at most NASA
Centers.

84

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

TR2 Develop some of the software classes for the more experienced
software developers as on-line training, videos, or small separate
modules of training that can be offered as needed throughout a
project. Particular skills can be learned or reinforced at the point
where they can immediately be put to use on the project, with the
fresh knowledge in mind; project members are more likely to apply
consistent approaches for project activities in those skill areas.

TR3 Include training on desired set of expected practices in all classes,
particularly process classes. Then process isn’t thought of as
“something extra”, but it becomes “the way the organization does
business.”

TR4 Develop some guidelines for a more structured approach to some
of the non-classroom training opportunities, such as mentoring,
peer reviews, lessons learned sessions and other on-the-job
training opportunities.

Metrics ME1 Continue to improve measurement activities at the Centers, at both
the Center organizational level and at the project level. This will
support better management of software throughout the life cycle
and provide the organizational information on current software
capabilities and potential improvement opportunities. Provide
training to the projects on analyzing metrics data. Ensure that key
metrics are a part of project reviews.

ME2 Establish a set of consistent software metrics at the Agency level
that extend the current inventory metrics so key trends can be
identified and models can be established:

 Determine what the real objectives for measurement are.
 Identify and collect a few key metrics that can be collected

consistently across the Agency to help answer questions
such as: Are software costs increasing or decreasing? Is
productivity increasing or decreasing? Is defect containment
improving? Is NASA software cost estimation improving?
Are NASA defect rates increasing or decreasing? How
many defects/KSLOC should be expected in each phase of
testing? How accurate is NASA cost estimate at initial
concept? At project approval? At SRR? At PDR? At CDR?

85

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

ME3 Investigate the use of tools to help collect a more consistent set of
organizational measures. A consistent set of tools and basic
metrics will allow the development of project performance
baselines and cost baselines.

ME4 Provide organizational measurement feedback to projects so they
understand the benefits of an organizational metrics program and
use this information more effectively to benefit their projects and to
add value to their project reviews.

CMMI CM1 Continue to require CMMI for critical NASA projects as a method
of promoting high quality mission software. Also use CMMI as a
standard yardstick to measure the capability of organizations who
are/will be developing NASA software.

CM2 Develop/consolidate/collect common processes, principles and
other assets across the Agency in order to provide more
consistency in software development and acquisition practices,
and to reduce the overall cost of maintaining or increasing current
NASA CMMI Maturity Levels.

CM3 Pursue collaborations with other organizations that have strong
programs in areas where NASA could benefit from additional
improvement and continue to improve NASA programs in those
areas. Areas where NASA could improve include:

 An organizational metrics program.
 Improved cost estimation for both in-house developments

and for in-house estimates for acquired software.
 More consistency of process performance across projects.
 A more comprehensive, training program with modules

available whenever needed.
 Development and application of appropriate levels of rigor

for small projects.

Small
Projects

SM1 Develop an Agency-level set of recommendations on tailoring for
small projects or develop a process tailoring workbook that lists
those items that can be tailored and describes allowable tailoring.

SM2 Provide tool support for small projects. Small projects should be
able to get access to the tools they need for rigorous processes,

86

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

as well as support for their use and administration. Most small
projects do not have the budget to purchase many of the tools that
would benefit them and they do not have the expertise or
manpower to set up the tools for their projects and perform the
needed administrative activities.

SM3 Focus on educating technical authorities or their designees and
advisors who may be managers closer to the small projects so that
they can assist the small projects in developing a good set of
tailored processes for their project.

Tools TO1 Assess the option of providing Agency-wide licenses for high-cost
commonly used software test tools and static analysis tools.

TO2 Assess the need for a NASA policy on the use of Open Source
software tools.

PLD PL1 Continue with NASA’s proposed plan.

87

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

8.2. Recommended Forward Plan
To facilitate the development of coordinated action plans that address several aspects
of a topic area, these final recommendations are consolidated and grouped into several
areas discussed below.

8.2.1. Project Management

To improve software engineering as an integral part of a project and not as a stand-
alone aspect of a project, the discussions in several areas led to best practices that
could have substantial impacts and improvements in software development but also in
project costs, schedules, and overall success.

1. Develop and implement standard contract language for software procurements
(AQ1, AQ3, AQ4, AQ5, PO1B, PO3, SA4).

By developing standardized language for procurement of software, the
purchased product will more efficiently meet NASA’s software engineering
requirements. To successfully develop and implement standard contract
language, changes to contracting process and to NASA’s software requirements,
communication and training will need to be addressed.

2. Advance accurate and trusted software cost estimates for both procured and in-
house software and improve the capture of actual cost data to facilitate further
improvements (AQ2).

If NASA Centers are able to accurately estimate software costs, software
procurement costs could be confirmed and both procured and in-house software
costs could be used in project decisions and ultimately to deliver software as
planned (improved baseline to negotiate requirement changes). An essential
piece of accurate and trusted cost estimates is to accurately track actual costs.

3. Establish a consistent set of objectives and expectations, specifically types of
metrics with examples at the Agency level so key trends and models can be
identified and used to continuously improve software processes and each
software development (ME2, CM3).

With a consistent set of information, projects will be able to rely on the software
engineering process to reduce risk of defects and failures and provide affordable
software. This information also enhances the accuracy of software and project
cost estimates.

4. Maintain CMMI Maturity Level requirement for critical NASA projects and use
CMMI to measure organizations developing software for NASA (CM1).

88

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

CMMI maturity levels (ML3 and higher) displayed stronger and more mature
software engineering processes and products, which is consistent with the quality
and dependability of software that NASA needs.

5. Consolidate, collect and, if needed, develop common processes, principles, and
other assets across the Agency in order to provide more consistency in software
development and acquisition practices, and to reduce the overall cost of
maintaining or increasing current NASA CMMI maturity levels (CM2, PO5).

6. Provide additional support for small projects that includes: (a) guidance for
appropriate tailoring of requirements for small projects, (b) availability of suitable
tools, including support for tool set-up and training, and (c) training for small
project personnel, assurance personnel and technical authorities on the
acceptable options for tailoring requirements and performing assurance on small
projects (SM1, SM2, SM3).

There is enough information captured through this study to provide guidance on
small projects, focused on tailoring requirements and processes, training
personnel on level of details/documents required and ensuring small projects
have access to needed tools. These small changes will improve the consistency
and success of small projects.

8.2.2. Processes, Practices, Training and Tools

Specific practices were found that could improve software engineering internally,
producing better software (quality and cost) thus increasing the success of the project.
These practices were focused on the process, people and tools.

7. Develop software training classes for the more experienced software engineers
using on-line training, videos, or small separate modules of training that can be
accommodated as needed throughout a project (TR2).

Skills can be learned and then practiced immediately, increasing retention and
proper implementation while using easily accessible training mediums to reduce
time removed from a project for training.

8. Create guidelines to structure non-classroom training opportunities such as
mentoring, peer reviews, lessons learned sessions and OJT (TR4).

Non-classroom training methods can take advantage of available resources to
improve software engineering skills across Centers and NASA. Guidelines would
introduce and strengthen the use of these methods which can be implemented
through development and performance plans.

89

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

9. Develop a set of predictive software defect data and a process for assessing
software testing metric data against it. Use the set to status progress during
NASA software testing phases and in software test reviews (TE1, ME2).

One of the best practices seen was to status software during reviews. This
recommendation suggests having statuses at software test reviews. To do this a
common set of data and a process must be available. An expected result of this
practice is to reduce software defects and development/testing costs. Once in
place, this process and information will strengthen the software engineering cost
and schedule inputs since they can be tracked and accurately estimated and in
the longer term provide the ability to explain/defend software cost and schedule
and the impact of changes. Although there are several areas within the software
life cycle where this approach could be applied, testing is a suggested starting
point and once the process is successful, the approach can be expanded.

10. Assess Agency-wide licenses for commonly used software tools (TE4, TO2,
ME2).

Since there were many tools identified in the study, further review and
assessment is needed but it’s clear that common software test and static
analysis tools can provide improvement to software development and testing,
potentially reducing software testing time; also tools to capture metrics would be
in line with the findings regarding development of metrics. Additionally, having a
common set of tools available across the Agency would then contribute to the
remedy of tool availability for small projects.

11. Fill the knowledge gap in common software engineering practices for new hires
and co-ops (PO1A, TR1, TR3, TR4).

Based on data collected through this study, university graduates may not have a
firm foundation in the awareness and use of common software engineering
practices. This has implications for new hire/co-op assignments and requires
NASA to share common software engineering knowledge with new hires and co-
ops.

12. Work through the STEM program with universities in strengthening education in
the use of common software engineering practices and standards (PO1C).

A corresponding approach to the previous action is to provide knowledge and
expectations of common software engineering practices to university software
engineering programs instead of waiting until the software engineer is employed
and in NASA training. This recommendation lends itself to other Agency goals of
outreach and involvement in the software engineering community of practice
(education).

90

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

13. Follow up this benchmark study with a deeper look into what both internal and
external organizations perceive as the scope of software assurance, the value
they expect to obtain from it, and the shortcomings they experience in the current
practice. This should include mutual action, with software assurance making its
risk mitigation capabilities better known as well as taking customer and
contractor inputs (SA1, TE5).

The software assurance role across NASA and other organizations was not
consistent with many of the software activities, including participation/role in
reviews, testing, acquisition, software safety, and reliability. The differing
expectations should be reviewed to see if one implementation is optimal thus
improving the quality while streamlining the software assurance work.

8.2.3. Collaboration and Further Interactions

There is one additional recommendation that should be considered. It captures the
success of this effort propelling it forward to create a continuous improvement
mechanism and keeps NASA Software Engineering at the forefront of the discipline.

14. Continue interactions with external software engineering environment through
collaborations, knowledge sharing, and benchmarking.

The NASA participants in this study felt that the data collected and the process of
collecting, connecting with other NASA Centers and external organizations, was
beneficial to their knowledge and understanding of the software engineering
community. It is an excellent catalyst for improvement and innovation. Many of
the external participants were excited to participate and were interested in
NASA’s results, suggesting that there are benefits for them as well. In addition to
sharing knowledge and awareness of what other organizations are doing, there
are opportunities for sharing other types of assets, such as services of personnel
with specific training or certifications, training classes, and even assets such as
process descriptions, templates and tools for improving software engineering
practices.

8.3. Summary
With software being a critical element of spaceflight, NASA must continue to advance
software engineering just as NASA continues to advance hardware technologies and
the ultimate prize of pushing the boundaries of flight. This benchmark provides the
guidance on where investment--not just dollars, but also attention and resources--will
continue the growth and innovation necessary to help keep NASA’s missions safe and

91

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

successful. The NASA Benchmark Team believes in continued improvement and will be
advocates and change agents where necessary. This report captures data that was the
most relevant and compelling for NASA’s use in today’s environment.

The report also analyzes the data so that it can be used, or more directly stated, put into
place by following through with the resulting recommendations. These
recommendations are within the scope of the NASA software engineering community
and the accompanying organizations such as the SWG, Mission Software Steering
Committee (MSSC), SAWG, NESC, NSC, and will be taken into consideration along
with the most current top software issues, and other software recommendations to be
folded into the yearly planning cycles for the various groups. As budgets allow, the
recommendations will be transformed into executable plans (action items with
assignees and due dates) to improve the overall state of software engineering at NASA.
The NASA Software Benchmark Team and the SWG look forward to resolving some of
NASA’s current software challenges and seeing what software engineering will look like
in the future.

92

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

APPENDIX A – ACRONYMS AND ABBREVIATIONS
Acronym Definition

AAO Audits and Assessments Office

APPS Agency Processes and Principles for Software

ASIC Application-Specific Integrated Circuit

CAR Causal Analysis Resolution

CASRE Computer Aided Software Reliability Estimation

CBT Computer-based Training

CCB Configuration Control Board

CDR Critical Design Review

CE Complex Electronics

CIO Chief Information Officer

CMMI Capability Maturity Model Integration

CoP Community of Practice

COTS Commercial off-the-shelf

CPLD Complex Programmable Logic Device

CSRM Certified School for Risk Managers

DAR Decision Analysis Resolution

DAU Defense Acquisition University

DFM Design for Manufacturability

DID Data Item Description

DoD Department of Defense

DOORS Dynamic Object-Oriented Requirements System

EPL Eclipse Public License

ESA European Space Agency

ESD Electro-static Discharge

FAA Federal Aviation Administration

FAR Federal Acquisition Regulations

FMEA Failure Mode Effects Analysis

FPGA Field Programmable Gate Array

FTA Fault Tree Analysis

FTE Full-time Equivalent

93

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

FY Fiscal Year

GOTS Government Off-the-Shelf

GPR GSFC Procedural Requirement

GRC Glenn Research Center

GSFC Goddard Space Flight Center

GUI Graphical User Interface

HDL Hardware Description Language

HQ Headquarters

IEEE Institute of Electrical and Electronics Engineers

IRAD Independent Research and Development

ISO International Standards Organization

IT Information Technology

IV&V Independent Verification and Validation

JPR JSC Procedural Requirement

JSC Johnson Space Center

KSC Kennedy Space Center

KSLOC Thousands (k) of Source Lines of Code

LDRA Liverpool Data Research Associates

MIL Military

ML# Maturity Level

MOA Memorandum of Agreement

MOTS Modified Off-the-Shelf

MOU Memorandum of Understanding

MSSC Mission Software Steering Committee

NESC NASA Engineering and Safety Center

NHB NASA Handbook

NMI NASA Management Instruction

NPD NASA Policy Directive

NPR NASA Procedural Requirements

NSC NASA Safety Center

OCE Office of the Chief Engineer

OCIO Office of the Chief Information Officer

OJT On-the-Job Training

OSMA Office of Safety and Mission Assurance

94

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

PAL Process Asset Library

PDLM Product Data and Life Cycle Management

PDR Preliminary Design Review

PLD Programmable Logic Devices

PPQA Process and Product Quality Assurance

PSP Personal Software Process

QA Quality Assurance

QAARS Quality Audit, Assessment and Review

R&D Research and Development

RFP Request for Proposal

RTOS Real-time Operating Systems

SA Software Assurance

SAWG Software Assurance Working Group

SCM Software Configuration Management

SEB Source Evaluation Board

SEER-SEM Software Evaluation and Estimation of Resources - Software

 Estimating Model

SEI Software Engineering Institute

SEPG Software Engineering Process Group

SLOC Source Lines of Code

SME Subject Matter Expert

SMP Software Management Plan

SoC System-on-Chip

SQA Software Quality Assurance

SRR Systems (or Software) Requirements Review

STD Standard

STEM Science, Technology, Engineering and Mathematics

STEP Safety and Mission Assurance Technical Excellence Program

SW Software

SWE Software Engineering

SWEBOK Software Engineering Body of Knowledge

SWG Software Working Group

TSP Team Software Process

V&V Verification and Validation

95

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

VCS Voluntary Consensus Standards

VHDL Very High-level Design Language

xPR Center-level Procedural Requirements

96

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

APPENDIX B –TOP SOFTWARE ISSUES AT NASA

B.1. Top NASA Software Issues of 2010

The following list comes from the Microsoft PowerPoint report entitled Top NASA
Software Issues of 2010 (August, 2010) compiled during discussion at the Software
Working Group (SWG) meeting at Kennedy Space Center (KSC) in April, 2010 and from
the SWG/MSSC Joint Sessions at Plum Brook in August, 2010.

1. Internal NASA-wide requirements [NPDs, NPRs, and NASA Standards (STD)].
2. Software Cost Estimation.
3. Software workforce level.
4. Systems engineering/software engineering interface
5. Small project implementations.
6. Empowerment of software personnel.
7. Software requirements.
8. Complex electronics.
9. Training and skill development.
10. Insufficient attention to software on contracts.
11. Prototype to operations transition and software class increase.

(Rolled up into issue #1 as this item’s concern is essentially the increase in
requirements when prototypes provide successful demonstrations.)

12. Lessons learned (software).
(Rolling the lessons learned from previous programs back into the NASA
standards, procedures, etc.)

13. Software architecture analysis and review*.
[Effective application of software architecture and architecture analysis/review
(from the Flight software Complexity study).]

14. Commercial off-the-shelf software.
[Incorporating COTS and open source products into mission critical software
developments (e.g., flight software, ground software, and the software
development environment) while maintaining rigorous processes.]

15. Model Based software Development*.
[Incorporating model-based development into the existing development and
design review process. Incorporating model-based development into
requirements, test, and software assurance and hazard analysis. For reviews
(PDR, CDR, etc.).]

Notes:*Top issue at one of the NASA Centers

97

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

B.2. Top Software
Engineering Challenges for
NASA over the last 8 years

Software Engineering Challenges 2013
Software workforce issues
Software requirements issues
Investment in software engineering issues
Small project issues
Software costing issues
Software reuse issues
Acquisitions that include software issues
Software security & cyber security issues
Software metrics
It related issues
Open source utilization
Model based software development
issues

Others Potential Challenges in 2013
Programmable logic devices (complex
electronics)
Software architecture analysis and review
Fault management
Improving the system engineering and
software engineering interface
Agile software development methods
Improving the interface between software
engineering and the center software
release authorities interface

Software engineering technical authority
Safety-critical software

Top Software Issues 2010
Internal NASA-wide requirements (NPD,
NPR, & standards)
Software cost estimation
Software workforce level
Systems eng. / software eng. Interface
Small project implementations
Empowerment of software personnel
Software requirements
Complex electronics
Training & skill development
Insufficient attention to software on
contracts
Software architectural analysis & review
Model based software development

Others Identified Challenges in 2010
Prototype to operations transition &
software class increase
Software engineering lessons learned
Software architecture, analysis & review
COTS software usage
Model-based software development

Top Software Issues 2007
Software requirements
Internal NASA-wide requirements (NPD,
NPR, & standards)

Software engineering training & skill
development
Programmable logic devices (complex
electronics), FPGA, PLD, etc. (blurring of
hardware – software boundary)
Insight/oversight of contractor software
development
Software engineering tools
Empowerment of program/project
software personnel
Software metrics/measurement
COTS software usage
Software cost estimation - need a
standard approach
Small project implementations
Empowerment of software personnel
Software requirements
Complex electronics
Training & skill development
Insufficient attention to software on
contracts
Software architectural analysis & review
Model-based software development
Internal NASA-wide requirements (NPD,
NPR, & standards)
Software cost estimation
Software workforce level
Systems eng. / software eng. interface

98

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

APPENDIX C – NASA PRESENTATION TO
PARTICIPATING ORGANIZATIONS

99

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

100

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

101

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

102

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

103

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

104

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

105

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

106

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

107

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

APPENDIX D – QUESTIONS ASKED OF
PARTICIPATING ORGANIZATIONS

D.1. High Level

This set of questions was provided to the participating organizations in preparation for
the interviews. The list is an abridged version of the full list of questions generation by
the Benchmark Team (D.2) and was shortened so that the participating organizations
did not feel the need to spend significant time preparing for the interview.

These questions/answers will gather data and best practices that can then be shared
throughout NASA and used/tested where they may be of benefit. The target areas
include: Software Policies, Level of Detail and Use of Industry Standards; How to
Maintain Rigor for Small Projects; How to Maintain Organizational Requirements in
software Acquisitions; In-house Training Programs; Testing; and, CMMI Maturity Level
Benefits and Benefits of Advancement. These questions are targeted for organizations
that develop and acquire software comparable to NASA flight software (criticality A, B
and C) including SQA and reliability functions. NOTE: Small projects at NASA are
defined as using five or fewer software engineers.

Background

 Please describe your software organization, structure and projects supported. An
example or two of projects being or previously worked would be beneficial.

o Structure – management and engineering roles, team responsibilities and
roles, team sizes and composition, support structure (integrated, matrixed,
distributed); Include SQA, safety and reliability activities take place, when
they are performed and who performs them.

o How is the software engineering organization integrated with software
assurance? Operations? Requirements development and management?
Systems Engineering? Project Management?

o How do you “classify ” your software? Explain the relationship between
classifications and QA guidance/requirements?

o How do you determine the criticality of your software and the safety
required?

o Projects – how many, types, sizes, length, maintenance vs new
development, criticality of sw (include definitions of criticality levels), in-
house vs acquisition.

o CMMI Maturity Level.

108

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

o Life cycle model and languages used, use of commercial, military, or
government off-the-shelf (COTS/MOTS/GOTS) software.

o Use of Agile, PSP/TSP.
 How does your organization train and develop software engineers and software

quality engineers? Would you describe the 3 most beneficial classes for
software engineers?

o Organizational responsibility for development or acquisition of training
curriculum.

o Type of training given: in-house vs external training programs (or
combined)? What has led to using in-house vs external training?

o Who has responsibility for identifying the training needs, how and when
training is given?

o Is training given at individual, group or project level, career levels? If so,
what kind and when?

o Is training mandatory or optional? How much time is allowed or expected
for training per person?

o How is mentoring and OJT included in developing individuals (informal,
structured, required)?

o What are your preferred methods and media for training?
o Describe how your training program addresses proficiency training,

system engineering, metrics, risk management and project management.
o Describe any training provided to management (line management and/or

project managers)?
o How does your organization manage training that might be needed for a

specific project (just in time training)?
 Do any of your projects include software acquisitions as a deliverable or as a

piece of the complete software project? If so, could you describe your acquisition
process, specifically how it integrates into your software organization?

Software Policies

 Please identify and summarize software policies, directives or requirements you
have that are implemented organization-wide (governing documents)?

 Identify the source of software policies, directives or requirements which are
applied to your organization’s software activities? Who (organizationally) is
responsible for these high-level documents and how/when are they updated?

 Describe how your organization ensures compliance with these governing
documents?

 Please explain how these documents are communicated to the users?

109

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

 How are policies and requirements included in contracted work (e.g.,
acquisitions)?

 How are project reviews and milestones coordinated with software reviews and
milestones?

Rigorous Software Processes for Small Projects

 Please describe the scope (size and criticality) of small projects.
 Are small projects (all criticality levels) required to comply with software policies

and requirements? If so, what are some of the key ways in which small projects
are able to comply? If small projects are not required to comply, how are small
projects governed?

 Does your CMMI statement of work include or exclude small projects?
 Does your organization have any infrastructure to support a collection of small

projects?
 What methods or tools have you found that work well for small projects?
 How does your organization satisfy good software practices with limited

resources and funds allocated to small projects?

Software Testing

 Please describe software testing: include strategy and scope, test plans, testing
types, success/completion criteria.

 What is the organization and composition of your typical software test team?
 Please identify any tools used or autonomous testing performed?

CMMI Maturity Level

 Who decided and how did your organization decide to ascertain your current
maturity level?

 How were impacts to policies, requirements, training and other organizational
structure handled?

 Have you been able to measure or identify any benefits at previous and current
maturity levels? What are your top 3 areas of improvement and what impact did
they have?

 How have you overcome major challenges that you have faced with pursuing
maturity levels?

 How have you been able to reduce costs of appraisals?

110

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

For CMMI Maturity Level 4 and 5:

 Could you share some of your measurement programs currently in place?
 Does it cost less to operate at a higher maturity level or are other benefits more

significant?

D.2. Detailed

This set of questions was provided to the Benchmark Team in preparation and for use
during the interviews. The list is an unabridged version of the list of questions provided
to the participating organizations (D.1). This more extensive list was intended to ensure
additional information and details were consistently discussed and noted.

These questions/answers will gather data and best practices that can then be shared
throughout NASA and used/tested where they may be of benefit. The target areas
include: Software Policies, Level of Detail and Use of Industry Standards; How to
Maintain Rigor for Small Projects; How to Maintain Organizational Requirements in
software Acquisitions; In-house Training Programs; Testing; and, CMMI Maturity Level
Benefits and Benefits of Advancement. These questions are targeted for organizations
that develop and acquire software comparable to NASA flight software (criticality A, B
and C) including SQA and reliability functions. NOTE: Small projects at NASA are
defined as using five or fewer software engineers.

Background

 Please describe your software organization, structure and projects supported. An
example or two of projects being or previously worked would be beneficial.

o Structure – management and engineering roles, team responsibilities and
roles, team sizes and composition, support structure (integrated, matrixed,
distributed); Include SQA, safety and reliability activities take place, when
they are performed and who performs them.

o How is the software engineering organization integrated with software
assurance? Operations? Requirements development and management?
Systems Engineering? Project Management?

o How do you “classify ” your software? Explain the relationship between
classifications and QA guidance/requirements?

o How do you determine the criticality of your software and the safety
required?

111

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

o Projects – how many, types, sizes, length, maintenance vs new
development, criticality of sw (include definitions of criticality levels), in-
house vs acquisition.

o CMMI Maturity Level
o Lifecycle model and languages used, use of commercial, military, or

government off-the-shelf (COTS/MOTS/GOTS) software.
o Use of Agile, PSP/TSP

 How does your organization train and develop software engineers and software
quality engineers? Would you describe the 3 most beneficial classes for
software engineers?

o Organizational responsibility for development or acquisition of training
curriculum

o Type of training given: in-house vs external training programs (or
combined)? What has led to using in-house vs external training?

o Who has responsibility for identifying the training needs, how and when
training is given?

o Is training given at individual, group or project level, career levels? If so,
what kind and when?

o Is training mandatory or optional? How much time is allowed or expected
for training per person?

o How is mentoring and OJT included in developing individuals (informal,
structured, required)?

o What are your preferred methods and media for training?
o Describe how your training program addresses proficiency training,

system engineering, metrics, risk management and project management.
o Describe any training provided to management (line management and/or

project managers)?
o How does your organization manage training that might be needed for a

specific project (just in time training)?
 Do any of your projects include software acquisitions as a deliverable or as a

piece of the complete software project? If so, could you describe your acquisition
process, specifically how it integrates into your software organization?

Software Policies

 Please identify and summarize software policies, directives or requirements you
have that are implemented organization-wide (governing documents)?

o Specify the documents and their purposes.
o Describe the level of detail of these documents.

112

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

o Are industry or international standards (International Standards
Organization (ISO), Institute of Electrical and Electronics Engineers
(IEEE), FAA, military, etc.) used, how so?

o Are these policies applicable to IT (infrastructure projects) and R&D
projects? Are there any exclusions or tailoring?

o Describe any waiver process, authority for approving waivers and the
frequency of use.

 Identify the source of software policies, directives or requirements which are
applied to your organization’s software activities? Who (organizationally) is
responsible for these high-level documents and how/when are they updated?

o Who drafts, reviews and approves these documents and their updates?
o How often are these documents updated; are updates affected by major

software issues, lessons learned, external changes, internal changes?
o If you do have to accommodate multiple sources of software policies, what

is your approach/strategy for accommodating the policies that apply to a
specific software activity?

 Describe how your organization ensures compliance with these governing
documents?

o Who is responsible for compliance? Are QA groups used to ensure
compliance?

o How and how frequently is compliance checked: interviews, surveys,
audits, etc?

o Are there checks/balances in software processes to help ensure
compliance?

o How are non-compliances handled? What is the follow-up to ensure
findings do not recur?

o Are governing documents updated based on findings?
 Please explain how these documents are communicated to the users?

o Do you use a communication plan? If so, could you explain?
o Is there any additional training developed to support any changes in the

documents; is training used to ensure adequate understanding of the
documents?

o Describe any sort of mentoring program you have to support the
implementation of these documents?

 How are policies and requirements included in contracted work (e.g.,
acquisitions)?

o How do you ensure that software development, safety, reliability and QA
requirements are included in contracts? Is there standard contract
language to flow down the requirements?

113

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

o Are there additional costs expected with acquisitions to include
compliance with governing documents?

o If compliance with governing documents is not required, how do you
ensure quality products?

 How are project reviews and milestones coordinated with software reviews and
milestones?

o If reviews are independent, how does the project review address the
impact of software dependencies? How and when do the project reviews
integrate the software? How do software reviews address integration
issues/impacts with the project?

o What criteria are project reviews and software reviews based (schedule,
readiness, combination)? Who and how are assessments of readiness
made for reviews to occur? Who and how are decisions made to proceed
to next level of development for life cycle and for formal reviews?

Rigorous Software Processes for Small Projects

 Please describe the scope (size and criticality) of small projects.
o NASA develops flight software for small sized projects and for larger

projects that have small software engineering needs. For this discussion,
small projects at NASA include this type of work and typically requires five
or less software engineers.

 Are small projects (all criticality levels) required to comply with software policies
and requirements? If so, what are some of the key ways in which small projects
are able to comply? If small projects are not required to comply, how are small
projects governed?

o Are exclusions or modifications outlined within the policies/requirements?
 Does your CMMI statement of work include or exclude small projects?

o If you do apply CMMI to small projects, do you tailor your CMMI-compliant
processes for small projects? Do you find some CMMI requirements (say
at the ML2 level) are not feasible/practical for some/all of your small
projects?

 Does your organization have any infrastructure to support a collection of small
projects?

o Do you have additional tools or alternate resources?
o How is this infrastructure supported (cost and resources)?

 What methods or tools have you found that work well for small projects?
o Specific areas of interest: requirements management, risk management,

measurement, documentation, configuration management

114

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

o What are some of the most useful process areas to focus on for small
projects and why?

 How does your organization satisfy good software practices with limited
resources and funds allocated to small projects?

Software Testing

 Please describe software testing: include strategy and scope, test plans, testing
types, success/completion criteria.

o When in the life cycle do you start development of your software test
plan(s)?

o When in the life cycle do you start development of your detailed test
procedures?

o At what point in the life cycle does the application of your test
plan(s)/procedures start? (i.e., the development is done, a feature is
complete, etc.)

o Do you have any institutional guidelines that are used to define your test
strategy? (i.e., percentage of code coverage required during software
testing, stress test time requirements, test requirements for different
criticalities of software, etc.)

o Do you use any predictive software defect data to assess software test
adequacy?

o How do you plan or layout your nominal software test timeline or
schedule?

o Do you have any institutional guidelines for testing software models and
simulations?

o What software test metrics do you use?
o Do you have software assurance witness or review the results from formal

software testing?
o What are your criteria for test completion, success?
o When in the software life cycle do you begin capturing defect data?
o Do you a approach or strategy for testing commercial operating systems?

autocode, open source, GOTS/MOTS/COTS?
 What is the organization and composition of your typical software test team?

o Does it include users and/or operations persons?
o Is it independent from the software developers?
o If using an Independent V&V group, how is this organized and integrated

into the process?
 Please identify any tools used or autonomous testing performed?

115

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

o Do you use automated testing techniques? If yes, are separate resources
used for generating the automated tests? (i.e., converting detailed test
procedures into automated scripts.)

o Do you use any static test tools and can you comment on their
usefulness?

CMMI Maturity Level

 Who decided and how did your organization decide to ascertain your current
maturity level?

o Is your current maturity level the organizational goal? If not, what maturity
level is your organizational goal and when do you expect to achieve it?

o What milestones did you establish to achieve your goal maturity level and
how were those determined?

o Have there been any assessments to determine if a current level is
sufficient or cost-effective?

o What amount of support has management provided for pursuit of higher
maturity levels?

o What were the most useful techniques/strategies in implementing the
CMMI practices? (training, mentoring, outside consultants, etc. ?)

o How do you maintain your maturity level?
 How were impacts to policies, requirements, training and other organizational

structure handled?
o Were necessary changes developed in transition plans?
o How was the investment in these changes managed (organizationally,

resource, costs)?
o What was the extent (schedule and resources) of the investment?

 Have you been able to measure or identify any benefits at previous and current
maturity levels? What are your top 3 areas of improvement and what impact did
they have?

o What are some of the benefits that your organization is realizing at your
current maturity level?

o How quickly did you see these benefits? While transitioning, once
complete, shortly after full implementation?

o Have the investments been able to reduce errors, testing (test plans,
strategies, cost of testing), or some other measurable aspect of software
development (personnel, resources, etc.)? How?

 How have you overcome major challenges that you have faced with pursuing
maturity levels?

 How have you been able to reduce costs of appraisals?

116

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

For CMMI Maturity Level 4 and 5:

 Could you share some of your measurement programs currently in place?
o How are they organized and managed?
o How do you interpret and use these measurements?
o How have you been able to fund and provide training for these programs?
o Which have been the most useful measures?

 Does it cost less to operate at a higher maturity level or are other benefits more
significant?

117

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

APPENDIX E – NASA SOFTWARE ENGINEERING
HISTORY – POLICIES AND PROCEDURAL
REQUIREMENTS
The early occurrence and recognition of software issues (software faults caused
computer restarts during the Apollo 11 lunar landing, 1969) as well as the increasing
costs of software development encouraged NASA to address the software engineering
approaches used by the Agency and its suppliers. NASA’s first policy document on
software was NASA Management Instruction (NMI) 2410.6, NASA Software
Management Requirements for Flight Projects, 1979. A 1982 independent study
conducted by MITRE Corporation9 found NMI 2410.6 to be too narrow in scope, brief,
and lacking life-cycle direction. In 1991, NASA replaced the prior NMI with a broader
policy document in NMI 2410.1, NASA Software Management, Assurance, and
Engineering Policy. Figure 4 shows the history of NASA software policies, through
various consolidations and transfers of responsibilities from Headquarters OSMA, to
Office of Chief Information Officer (OCIO), to the current owner the OCE.

9 NASA Software Development and Assurance: Survey of Problems and Practices, F. Mayo, F. G.
Tompkins, D. L. Hill, NASA-CR-175502, (MITRE Corp.), Nov, 1982.

118

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Figure 4: History of NASA's Software Policies

In addition to NASA policy, there are a number of software related NASA Procedural
Requirements (NPR), Standards, Handbooks, and Guidebooks. Early NASA handbooks
(NHB) included NHB 2410.1A, Management Procedures for Automatic Data Processing
Equipment, 1970 and NHB 2411.1, Computer Program Documentation Guidelines,
1971. In 1976, the first NASA Software Engineering Workshop was hosted by NASA
Goddard Space Flight Center, University of Maryland, and Computer Sciences
Corporation to address software issues. The resulting Software Engineering Laboratory
among these three participating representative government, industry, and academic
entities made a number of contributions to the field of software engineering for over
three decades including a series of guidebooks on software development. In the late
1980’s NASA established the Software Management and Assurance Program (SMAP)
which developed a set of document item description (DIDs) for software development
and assurance. In 2002, The NASA Office of Chief Engineer, formed the NASA
Software Engineering Initiative and chartered the NASA Software Working Group
(SWG) to, “advance software engineering practices to effectively meet the scientific and

119

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

technological objectives of NASA”. The NASA SWG produced the first Agency -wide
procedural requirements for software, NPR 7150.2, NASA Software Procedural
Requirements in 2004. The current NASA software documentation tree is provided in
Figure 5.

Figure 5: Current NASA Document Tree

120

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

APPENDIX F – SOFTWARE TOOLS IDENTIFIED
The following software tools were mentioned by participants during the NASA Software
Engineering Benchmark discussions. This table should not be considered all-inclusive,
nor is it an endorsement of any particular tool by NASA. The purpose of this table is to
provide a list of the tools reported to be used by participants in the software engineering
benchmark study.

Tool Name Description

Bugzilla Issue tracking software.

CodeCollaborator™ A code review tool.

CodeSonar® A static analysis tool for C/C++ that detects bugs in
critical embedded code that other source code
analysis tools miss.

Confluence® A collaboration tool.

Coverity Prevent™ This suite enables organizations to establish and
enforce consistent standards for quality and
security, across their internal teams and third-party
software suppliers, and automatically test the code
against those policies.

Cruise Control™ A Java-based framework for a continuous build
process.

CURE COTS Usage Risk Evaluation. Evaluates
commercial of-the-shelf (COTS) software.

IBM® Rational® DOORS® Dynamic Object-oriented Requirements System. A
requirements management and traceability tool.

Doxygn A C++ Source Code Documentation System.

E-room™ inspection A peer review tool.

121

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

FindBugs™ A static code analysis tool.

Fortify® 360 Provides vulnerability assessments and application
security solutions to help detect, test, prioritize,
remove, remediate, and prevent vulnerability
issues in software, whether applications are
developed in-house, acquired from open sources,
or procured from third-party vendors.

gCORE A unit test coverage tool.

Gcov A code coverage tool.

IBM® Rational® Rhapsody® A collaborative design and development tool for
systems engineers and software developers
creating real time or embedded systems and
software.

JIRA® A bug tracking, issue tracking, and project
management tool. JIRA tool has been very useful
on small projects to track the task, cost estimates,
inspections, etc.

Klocwork® A source code analysis tool using static analysis
and complete codebase inspection.

LabVIEW™ Laboratory Virtual Instrumentation Engineering
Workbench. A system design platform and
development environment for a visual programming
language.

LDRA Testbed® Liverpool Data Research Associates. This tool
provides the core static and dynamic analysis
engines for both host and embedded software.

LiquidPlanner® A scheduling tool that allows fuzzy durations.
Changing a duration or sequence of tasks, doesn’t
cause major effort in the tool (unlike Microsoft
Project). It also syncs to iPhone, Android, online,
etc.

122

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

Mantis Bug Tracker An issue tracking tool.

MathWorks® Mathematical computing software. Its major
products include MATLAB and Simulink.

McCabe Software Software quality, testing, security and configuration
management tools

Microsoft Project® A scheduling tool.

NASA software classification A tool used to help define NASA software
classification categories.

MathWorks ® Polyspace® A static code analysis tool.

Process MAX A project management tool for the development of
business processes.

IBM® Rational® Purify® A memory debugger program used by software
developers to detect memory access errors in
programs, especially those written in C or C++.

IBM® Rational® ClearCase® A software configuration management (SCM) tool
with version control.

RiskTrak™ Manages all forms of business risk on a project,
program, or enterprise level.

SCRUB Source Code Review User Browser. A tool for code
reviews, brings together inspections and results of
static analysis tools.

SEER- SEM™ A tool used for software cost estimation modeling.

Selenium This suite of tools automates browsers. Primarily it
is for automating web applications for testing
purposes.

Sikuli Visual technology to automate and test graphical
user interfaces (GUI) using images (screenshots).

SPIN A general tool for verifying the correctness of

123

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

distributed software models in a rigorous and
mostly automated fashion.

Splint Secure Programming Lint. A programming tool for
statically checking C programs for security
vulnerabilities and coding mistakes.

STAX An open source Eclipse Public License (EPL)
project that enables users to create cross-platform,
distributed software test environments.

Subversion (SVN) An open source version control system.

Trac An open source web-based project management
and bug tracking system.

VectorCAST™ An integrated software test solution that reduces
the time, effort, and cost associated with testing
C/C++ software components necessary for
validating safety- and mission-critical embedded
systems.

Wind River Simics™ (formerly
Virtutech)

A simulation of hardware boards that helps
software engineers develop embedded software
prior to actually having the boards.

Wind River VxWorks™ RTOS Real-time operating system and tools.

Wiki

A tool used for documentation, development and
reviews.

124

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

APPENDIX G – NASA PERSONNEL ON INTERVIEW
TEAMS
Software Interviewers:

Heather Rarick/OCE/JSC (Benchmark Co-Lead) (Report Co-Author)
Sara (Sally) Godfrey/OCE/GSFC (Benchmark Co-Lead) (Report Co-Author)
John Kelly/OCE (Report Co-Author)
Robert (Tim) Crumbley/MSFC (Report Co-Author)
Kevin Carmichael/GRC
Elizabeth Strassner/JSC
Daryl Peltier/JSC
Patricia Benson/MSFC
Helen Housch/MSFC
Helen (Leann) Thomas/MSFC
Scott Morgan/JPL
William Van Dalsem/ARC
Laura Maynard-Nelson/GRC

Software Assurance Interviewers:

Martha Wetherholt/OSMA
Joel Wilf/JPL (Report Co-Author)
Cindy Naiman/NSC
Rosalynne (Roz) Strickland/MSFC
Susan Sekira/GSFC
Cyrus Chow/ARC
Renee Hugger/JSC
Cynthia Calhoun/GRC

125

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

APPENDIX H – LIST OF SITES/DATES/TEAMS
Access Restricted

126

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

APPENDIX I – SUMMARIZED OBSERVATIONS
Access Restricted

127

NASA/SP-2013-604
NASA Software Engineering Benchmarking Study May 1, 2013

APPENDIX J – REFERENCES
1. NASA Base Performance Review, Cheevon B. Lau, Oct 21, 2010.

2. Top NASA Software Issues of 2010, Joint Software Working Group / Mission
software Steering Committee Meeting at NASA Plum Brook, August, 2010.

3. How Does NASA Estimate Software Cost? Summary Findings and
Recommendations, J. Hihn, et.al, 2012.

4. ISO/IEC TR 19759:2005 Software Engineering -- Guide to the Software
Engineering Body of Knowledge (SWEBOK).

5. NASA Software Development and Assurance: Survey of Problems and Practices,
F. Mayo, F. G. Tompkins, D. L. Hill, NASA-CR-175502, (MITRE Corp.), Nov,
1982.

6. NASA-HDBK-2203 Software Engineering Handbook, NASA Office of the Chief
Engineer, 2013 (https://swehb.nasa.gov).

7. SAE AS9100C, "Quality Management Systems - Requirements for Aviation,
Space and Defense Organizations", 2009.

8. NPR 7150.2A, NASA Software Engineering Requirements, NASA Office of the
Chief Engineer, 2009.

9. NASA-STD-8739.8, NASA Software Assurance Standard, 2004.

10. NASA STD 8719.13 (Rev B w/ Ch1 of 7/8/2004), NASA Software Safety
Standard, 2004.

128

https://swehb.nasa.gov/

	NASA_SP-2013-604 Benchmark Studyrev2
	noCovSW_Benchmark_Report__2013MAY01
	Executive Summary
	1. Introduction
	1.1. Background

	2. Purpose
	3. Scope
	3.1. Scope of Topic Areas
	3.2. Scope of Chosen Organizations

	4. Methods
	4.1. Preparation
	4.2. Interviews
	4.3. Data Analysis and Report Development

	5. General Observations
	5.1. Policy
	5.1.1. Questions
	5.1.2. Discussion
	5.1.2.1. Aerospace Industries
	5.1.2.2. Universities and University Research and Development Labs
	5.1.2.3. Defense Services
	5.1.2.4. NASA

	5.1.3. Observations
	5.1.4. Recommendations

	5.2. Acquisition
	5.2.1. Questions
	5.2.2. Discussion
	5.2.2.1. Aerospace Industries
	5.2.2.2. Universities and University Research and Development Labs
	5.2.2.3. Defense Services
	5.2.2.4. NASA

	5.2.3. Observations
	5.2.4. Recommendations

	5.3. Testing
	5.3.1. Questions
	5.3.2. Discussion
	5.3.2.1. Aerospace Industries
	5.3.2.2. Universities and University Research and Development Labs
	5.3.2.3. Defense Services
	5.3.2.4. NASA

	5.3.3. Observations
	5.3.4. Recommendations

	5.4. Assurance
	5.4.1. Questions
	5.4.2. Discussion
	5.4.2.1. Aerospace Industries
	5.4.2.2. Universities and University Research and Development Labs
	5.4.2.3. Defense Services
	5.4.2.4. NASA

	5.4.3. Observations
	5.4.4. Recommendations

	5.5. Training
	5.5.1. Questions
	5.5.2. Discussion
	5.5.2.1. Aerospace Industries
	5.5.2.2. Universities and University Research and Development Labs
	5.5.2.3. Defense Services
	5.5.2.4. NASA

	5.5.3. Observations
	5.5.4. Recommendations

	5.6. Metrics
	5.6.1. Questions
	5.6.2. Discussion
	5.6.2.1. Aerospace Industries
	5.6.2.2. Universities and University Research and Development Labs
	5.6.2.3. Defense Services
	5.6.2.4. NASA
	5.6.2.5. CMMI and Metrics

	5.6.3. Observations
	5.6.4. Recommendations

	5.7. CMMI
	5.7.1. Questions
	5.7.2. Discussion
	5.7.2.1. Aerospace Industries
	5.7.2.2. Universities and University Research and Development Labs
	5.7.2.3. Defense Services
	5.7.2.4. NASA
	5.7.2.5. CMMI Maturity Level 5 Organizations

	5.7.3. Observations
	5.7.4. Recommendations

	5.8. Small Projects
	5.8.1. Questions
	5.8.2. Discussion
	5.8.2.1. Aerospace Industries
	5.8.2.2. Universities and University Research and Development Labs
	5.8.2.3. Defense Services
	5.8.2.4. NASA

	5.8.3. Observations
	5.8.4. Recommendations

	5.9. Tools
	5.9.1. Questions
	5.9.2. Discussion
	5.9.3. Observations
	5.9.4. Recommendations

	5.10. Programmable Logic Devices
	5.10.1. Questions
	5.10.2. Discussion
	5.10.3. Recommendations

	6. Benefits
	6.1. Feedback
	6.2. Collaboration and Continued Opportunity

	7. Comparisons and Trends
	8. Recommendations
	8.1. Software Benchmark Study Recommendations from Topic Sections
	8.2. Recommended Forward Plan
	8.2.1. Project Management
	8.2.2. Processes, Practices, Training and Tools
	8.2.3. Collaboration and Further Interactions

	8.3. Summary
	Appendix A – Acronyms and Abbreviations
	Appendix B –Top Software Issues at NASA
	Appendix C – NASA Presentation to Participating Organizations
	Appendix D – Questions Asked of Participating Organizations
	Appendix E – NASA Software Engineering History – Policies and Procedural Requirements
	Appendix F – Software Tools Identified
	Appendix G – NASA Personnel on Interview Teams
	Appendix H – List of Sites/Dates/Teams
	Appendix I – Summarized Observations
	Appendix J – References

	 backPage1

