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Implementing a Microcontroller Watchdog with a Field-
Programmable Gate Array (FPGA)

Bartholomew F. Straka'
University of Central Florida, Orlando, Florida, 32816

Reliability is crucial to safety. Redundancy of important system components greatly
enhances reliability and hence safety. Field-Programmable Gate Arrays (FPGAs) are useful
for monitoring systems and handling the logic necessary to keep them running with minimal
interruption when individual components fail. A complete microcontroller watchdog with
logic for failure handling can be implemented in a hardware description language (HDL).
HDL-based designs are vendor-independent and can be used on many FPGAs with low

overhead.
Nomenclature

ADC = Analog-to-Digital Converter
DAC = Digital-to-Analog Converter
DMR = Dual Modular Redundant
FPGA = Field-Programmable Gate Array
HDL = Hardware Description Language
IDE = Integrated Development Environment
IEEE = Institute of Electrical and Electronics Engineers
o = Input/Output
IP Core = Intellectual Property Core. A functional black box unit provided for use in an FPGA design as

licensed intellectual property.
K-Map = Karnaugh Map

LAS = Launch Abort System

LFSR = Linear Feedback Shift Register

VHDL = VHSIC (Very High Speed Integrated Circuits) Hardware Description Language
POR = Power-On Reset

wDT = Watchdog Timer

I. Introduction

afety is the cornerstone of the National Aeronautics and Space Administration’s (NASA) core values.'

Extraordinary accomplishments often come with extraordinary risks. One way to minimize risk and account for
the unexpected is through system redundancy. By duplicating (or even triplicating) the most critical elements of a
system, overall reliability is enhanced. The trade-off for greater reliability through redundancy is additional
overhead in terms of total cost, weight, system complexity, or other factors. For matters involving safety, however,
reliability should not be compromised to the greatest extent possible.

The basic implementation of redundancy is a primary and alternate pair. The alternate takes control when the
primary fails. Redundancy can also exist in systems such as a bridge with many suspension cables, where the failure
of individual cables steadily degrades the reliability of the bridge. In the bridge example, redundancy is inherent.
With a primary and alternate pair, often some form of active monitoring must be present to detect the failure of the
primary and bring the alternate online. This process for monitoring and switching to ensure system reliability is
known as voting logic.”

Implementing a system watchdog with a Field-Programmable Gate Array (FPGA) is an example of voting logic.
FPGAs allow custom logic circuits to be designed and programmed as de facto hardware. An FPGA’s logic can be
simulated quickly, processes can be performed in parallel, and can be easily reconfigured if problems are found or
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updated later with improvements. The possible failure of the voting logic itself, however implemented, is an
additional consideration. For example, sensitivity to radiation at the gate level is a concern.” Therefore, selection of
appropriately radiation-tolerant devices may be critical to the reliability of such a voting logic application.

The specific application discussed herein is for a Dual Modular Redundant (DMR) microcontroller pair. In this
DMR system, the two microcontrollers are fed the same inputs and operate in parallel. The output of one processor
is actively controlling the end-item devices (valves, thrust vector controllers, solid state switches, etc.) while the
output of the other (standby) controller is inhibited. When the primary fails, the standby resumes the desired
functions with minimal interruption. Each microcontroller generates a heartbeat signal that is monitored by an
FPGA. A disruption in the heartbeat of the initially-active microcontroller will cause the FPGA to switch control to
the alternate microcontroller.

Although the system considered is DMR, the techniques can be extended to several levels of redundancy. If the
probability of failure for each identical element is considered independent, then the probability of failure for the
system decreases dramatically. Mathematically, the probability of two independent events 4 and B both happening is

P(Aand B) = P(A 0 B) = P(A)P(B) (1)

If the probability of such failures were exactly equal for the identical elements A4, then the probability of total
failure F" decreases exponentially with the number of redundant layers x, since P(4) is hopefully less than one.

P(F) = P(A)* (2)

These conditions are ideal, however, and never realizable. Additionally, the conditions that lead to the failure of
one element may influence the failure of another identical element. So if the probability of failure is reasonably low
to begin with, only a few layers of redundancy are needed to greatly reduce the probability of total failure.
Accordingly, the overhead associated with too much redundancy has diminishing return if the elements have the
same vulnerabilities and will be subjected to the same stresses.

II. Watchdog Realization

A watchdog timer (WDT) is a timer of fixed or specified duration that must be renewed by the system being
watched to avoid timing out. If the WDT expires, it is a secondary indication of some problem with the system
under observation. Many modern microcontrollers and other embedded systems come with a WDT already
integrated. The typical corrective action when the WDT expires is to reset the microcontroller. The timer durations
are often limited to a few fixed durations. While this may be a sensible solution for remote sensors that periodically
measure something mundane, the results could be disastrous for some critical component such as the processor
controlling thrust vectoring for a Launch Abort System (LAS).

For critical applications, monitoring the system with an external watchdog has several advantages. The external
monitor may be designed to a certain set of specifications, such that it is not limited to the settings of the on-board
WDT. The external monitor may be able to take corrective action sooner than the WDT would to reset. An external
monitor will detect a complete failure of an element where the integrated WDT also fails. Most importantly, an
external monitor can multiplex a functioning element to the output if an active element fails, thereby minimizing
interruption in system operation.

An FPGA is well-suited to perform the external monitoring and voting logic, since it is highly customizable, can
perform a wide variety of tasks in parallel (perhaps in addition to the voting logic), and often offer a large number of
input/output (I/0) pins. The features make an FPGA a robust and modular addition with an acceptably small
footprint for many system designs. It may well be the case that an FPGA is already being used in a design for some
other purpose, and the voting logic functionality can be added as a convenience.

The caveat is that FPGAs are usually digital devices only, meaning that it is best suited for cases where the
heartbeat or other parameter of a system being monitored is a digital signal. There are mixed-signal FPGAs capable
of analog-to-digital conversion (ADC), digital-to-analog conversion (DAC), and other functions commonly
integrated with microcontrollers, while some FPGAs themselves incorporate a complete microcontroller. Such
devices may allow for a combination of traditional serial programming in a language like C and parallel
programming in a hardware description language (HDL).The implementation considered here is not for a mixed-
signal device and assumes a digital heartbeat signal from the system being observed.

A. Watchdog Structure
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One consideration in designing a watchdog is what constitutes a failure based upon the heartbeat signal received.
The simplest watchdog will renew its timer every time a pulse (also called a “kick”) is received as long as the timer
has not expired. That may mean that a heartbeat signal which suddenly increases in frequency, one that slows and
just barely pulses before the watchdog expires. or just remains at a high logic level will all satisfy the watchdog.
This simple watchdog is just a window of time, where any pulse that does not exceed the allowed time limit is
acceptable. This may work for many applications, but a much stricter watchdog is achievable.

One benefit of considering more than just the rising pulse of a heartbeat is faster detection of potential failure.
By considering the heartbeat signal in more detail, an inappropriate rising edge may be an earlier indicator of failure
that allows a faster changeover to a still-functioning microcontroller. There are a few other indicators to check, and
since the FPGA can operate these checks in parallel, there is not much overhead to using them other than a relatively
small amount of FPGA gates.

If the microcontroller outputs a digital signal heartbeat with a known duty cycle of 50% (the watchdog may be
adjusted for any duty cycle, but 50% is considered here), the watchdog can use the expected rise and fall times to
detect a failure sometimes faster than one clock cycle of the heartbeat. The watchdog detailed here will test for the
following conditions: signal is stuck low does not rise fast enough, signal is stuck high or does not fall fast enough,
signal rises outside an acceptable window of time, or signal is completely lost (or tri-stated). Signal may be lost due
to a dramatic occurrence such as the device suddenly catching fire or the connection may be weak. Either way, the
FPGA will control the multiplexing of which microcontroller is active, so a lost signal is always a failure for this
consideration.

B. Counters

The building block for realizing the aforementioned watchdog structure is a counter. For maximum flexibility
and utility, the counter is described in Very High Speed Integrated Circuits Hardware Description Language
(VHDL). Each FPGA vendor provides its own Integrated Development Environment (IDE). These IDEs usually
include a method to design the logic circuits on the FPGA using schematic capture, which is a visual representation
of logic gates and boxes. A basic block such as a counter may have different characteristics from one IDE to
another. VHDL can be easily imported and modified for use with any FPGA. The counters described here will also
include a few more features than are commonly provided with the schematic capture blocks that make them more
adaptable to different heartbeat signals.

A basic counter takes in a clock signal and increments or decrements an internal register with each specified
clock event, either rising or falling edge. The counter may incorporate a reset signal input that resets the count to the
original value and a terminal count output that is asserted if the counter reaches its final value without being reset.

The first type of counter used in the watchdog is intended to create an acceptable window of time for a rising
edge of the heartbeat signal. This is accomplished with an active-low output. The counter is reset with each rising
heartbeat and is expected to reach terminal count before the next rising edge occurs, which should be during the
finite terminal count window.

A D flip-flop (seen as Rising Edge Trigger in Fig. 3) is employed to detect a bad rising edge. The terminal
count of the counter is fed to the D input of the flip-flop, and the heartbeat signal is fed to the CIk input. A rising
edge of the heartbeat outputs the D input to the Q output of the flip-flop. If the rising edge occurs during an active-
low terminal count, the output is low and there is no error. If the rising edge occurs outside the terminal count
window, the output is high and there is an error. Note that although the rising edge resets the counter (and the
terminal count goes high), the input of the flip-flop should be low at the time of the rising edge. The events happen
in parallel, and there is always some propagation delay in FPGA's before gate states can make a logical transition.
Accordingly. the output of the counter will go high when reset after the flip-flop acts on its original input. Figure 1°
illustrates the action of the acceptable window counter and watchdog in simulation.

Figure 1. Counter for generating acceptable rising edge window. The first two heartbeats resel the counter
while terminal count (D) is asserted low. The third rising edge is late, the full terminal count window is visible, and
the error is detected. The image is stretched for improved visibility of the waveforms.
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The second type of counter is a simple timeout, where the terminal count itself is the error indicator. If the
counter is not reset in time, the watchdog is not satisfied. To detect errors faster, two counters are employed as
timeouts. One is reset by a rising edge and the other by a falling edge. Note that it is also possible to implement the
edge window counter for a falling edge instead of a rising edge, or both for the potential to detect an error even
faster. Figure 2’ illustrates the action of the timeout counter and watchdog in simulation for a rising edge reset. The
action is the opposite for a falling edge reset.

Figure 2. Counter that times out without a rising edge. The first two heartbeats reset the counter normally. The
third rising edge is late and the error is detected. The image is stretched for improved visibility of the waveforms.

A schematic visualization of the entire watchdog is pictured in Fig. 3. The actual counters and watchdog are
written in VHDL, but the schematic capture here provides a block diagram view.

[_MCL HEARTREAT @

Figure 3. Schematic capture view of the watchdog with counters. A microcontroller failure is inferred from an
error indicator on any of the three counters watching the signal.

Using VHDL offers some advantages over the schematic capture. A major benefit is customization through the
use of “generics.” Generics are used as numbers in a VHDL entity and have a default constant value, but a new
value may be passed in when an entity is instantiated in a higher-level design. This can allow for a single entity,
such as a counter, to be used in many different configurations. For instance, notice that the counter in Fig. 2
increments the counter on a rising edge and has a maximum count of five. The counter is reset at the very last
possible moment (the simulation is pre-synthesis and includes no timing), so there is a possibility that when timing
is involved this will trigger many false errors. So for instance, the count may easily be increased to six to account for
this possibility.

An example implementation of this highly configurable counter is given below,

library IEEE:

use IEEE.STD _LOGIC_1164.ALL:

use IEEE.STD_LOGIC_UNSIGNED.ALL:
use IEEE.NUMERIC_STD.ALL;

entity CustomCounter is

generic (
--! Adjust the duration of counter here. Default is for a system clock 10x the pulse signal.
Count : integer := 5 --! Count

--! Controls whether the edge timeout is for a high or low signal.
--1'0" will create a falling edge timeout (times out if pulse stays high)
--!'1" will create a rising edge timeout (times out if pulse stays low) [default]
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EdgeType :std_logic :="1" --! Specifies type of timeout

--! Determines whether the counter acts on the falling [default] or rising edge of its driving clock.
-=!1'0" selects the counter to act on the clock's falling edge

--1"1" selects the counter to act on the clock’s rising edge

CounterDrive :std_logic :=="1" --! Specifies driving edge for counter clock

--! Determines whether output is active high or active low. Active low is used to create a

--! window for acceptable clock events.

--1'0" will be active high [default]

-=1"1" will be active low

OutputHL :std_logic :="1"; --! Specifies active High/Low output

--! Adjust the duration (number of clock cycles) for which the counter's terminal count signal
--! is asserted. Default is one clock cycle; increase for the rising edge window to have more
--! tolerance and account for a pulse signal not synchronized with the system clock.

--! Value cannot exceed "Count" since it is reset at the end of the count.

TCntDur :integer := 0 -=! Duration of TCnt in clock cycles
}

port (

-! Inputs

Clock cin std_logic: --! Clock

Reset :in std_logic: --! Reset

-=! Outputs

TCnt cout std_logic --! Terminal Count (Active High)

)
end CustomCounter;
architecture Behaviour of CustomCounter is

--! The following function is a modification of the default rising_edge function provided in the

--! Institute of Electrical and Electronics Engineers (IEEE) standard library.

--! This function checks for a legitimate edge transition by checking the state previous to the clock event.
--! Something like clock’Event and clock = *17, while commonly used, does not account for the fact

--! That the previous state may be other logic states, such as U or Z

FUNCTION action_edge (SIGNAL s : std_ulogic) RETURN BOOLEAN IS

BEGIN

RETURN (SEVENT AND (To_X01(s) = CounterDrive) AND

(To_X01(s'LAST_VALUE) = not CounterDrive));

END:

-- Signal Declarations

signal InternalCount  : integer; --! Maintains internal count

signal AssertTime : integer := TCntDur; --! Maintains TCnt Duration

signal ResetCount s std_logic; --! Indicates terminal count

signal TentInternal :std_logic := OutputHL: --! Initializes output to desired value
begin

ResetCount <='1" when InternalCount = Count else '0';

-- Process(es)
--! Counting process that resets the internal count on asynchronous reset and loops afier reaching final count.
Counting : process (Reset, Clock)
begin
if (Reset = EdgeType) then

InternalCount <= 0;
elsifaction_edge(Clock) then

if ResetCount ="1" then

InternalCount <= 0;
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else
InternalCount <= InternalCount + 1;
end if:
end if;
end process;

--! Will assert the terminal count high for specified number of clock cycles.
Enabling : process (Reset, Clock)
begin
if (Reset = EdgeType)then
TCntlnternal <= OutputHL;
AssertTime <= TCntDur;
elsif action_edge(Clock) then
if ResetCount ='1" then
TCntInternal <= not OutputHL;
AssertTime <= 0;
else
if AssertTime = TCntDur then
TCntlnternal <= OutputHL:
else
AssertTime <= AssertTime + 1;
TCntInternal <= not OutputHL:
end if}
end if}
end if;
end process;

TCnt <= TCntInternal;

-- End Architecture
end Behaviour;

To put these counters to use as a watchdog, as visualized in Fig. 3, they must be instantiated and some of the
generics set. Below is the VHDL watchdog using the custom counter.

library IEEE:

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEENUMERIC_STD.ALL;

--! [@details

--1 The watchdog incorporates both a rising edge and falling edge timeout as well as

--! an acceptable window of tolerance for a rising edge. The +- tolerance of this window
--! is adjustable here by altering the counters or by changing the clock frequency.

entity Watchdog is

port (

--! Inputs

HeartBeat :in STD_LOGIC; --! Active-high reset.

Clock :in STD_LOGIC; -! Clock.

Initialize :in STD_LOGIC; -=! Initialize to erase start-up error
--! Outputs

--1 Each output has a different meaning. In this project, the 'Error’ output will remain

--! asserted forever if a failure event has ever occurred. The 'Status' indicator is asserted

--! (asserted here is a logic '1' by default) whenever any kind of failure is detected, but is

--! not permanently asserted like the 'Error’ indicator. If the pulse signal eventually "feeds

--! the watchdog" back to a state of normalcy, the 'Status' output will remain unasserted.

--! The remaining outputs indicate the particular type of failure, mostly for debugging and

--! possibly for detailed failure analysis.

Error zout STD_LOGIC; --! Indicates if a failure ever occurred.
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Status :out STD_LOGIC; --! Present state of failure.

StuckHigh cout STD_LOGIC: --! Pulse is stuck high.

StuckLow zout STD_LOGIC; --! Pulse is stuck low.

BadRise tout STD_LOGIC --! Rising edge outside acceptable window.

):
end Watchdog;:
architecture Behaviour of Watchdog is

--! Instantiations of sub-components.

component CustomCounter

generic (

--! These are the same as in the CustomCounter code, but must be adjusted in the mapping. not here.
Count : integer == 5 --! Count

EdgeType : std_logic :="1"; --! Specifies type of timeout

CounterDrive :std_logic :=="1"; --! Specifies driving edge for counter clock
OutputHL :std_logic :="1" --! Specifies active High/Low output
TCntDur s integer =0 --! Duration of TCnt in clock cycles

)

--! Ports

port (

-=! Inputs

Clock : in std_logic; --! Clock
Reset : in std_logic: --! Reset

--! Outputs

TCnt : out std_logic --! Terminal Count
):

end component:

--! Signal Declarations

--! Initialize to some known value when/if possible to avoid unknown logic states.
signal D . std_logic :="0";

signal Q s std_logic :="0";

signal NoFallingEdge : std_logic :='0";

signal NoRisingEdge :std_logic :='0";

signal BadRisingEdge :std logic :='0";

signal StatusSig :std_logic :='0";

--! Begin Behaviour
Begin

--! (@Instantiations

FallingEdgeTimeout : CustomCounter

--! (@details Times out without falling edge after specified interval.
--! Detects a pulse signal stuck high.

Generic MAP(

Count => 35, --! Times out after 5 clock cycles
EdgeType =>'00, --! Falling edge resets counter
CounterDrive == "', --! Counts on rising edge
OutputHL == "0, --! Active-high output

TCntDur => 5 --! Timeout asserted for | clock cycle
)

-- port map

port map(

== Inputs

Clock == Clock.

Reset => HeartBeat.
TCnt => NoFallingEdge
):
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RisingEdgeTimeout : CustomCounter
--! [@details Times out without rising edge after specified interval.
--!1 Detects a pulse signal stuck low.

Generic MAP(

Count =>§, --! Times out after 5 clock cycles
EdgeType =>"1", --! Rising edge resets counter
CounterDrive =>"I", -=! Counts on rising edge
OutputHL =>"0", --! Active-high output
TCntDur=> 5 --1 Timeout asserted for 1 clock cycle
)

== port map

port map{

-« Inputs

Clock => Clock,

Reset => HeartBeat,
TCnt => NoRisingEdge
);

RisingEdgeWindow ;: CustomCounter
--! (@details Creates a window for an acceptable rising edge clock event.
--! Detects a sudden incorrect pulse rise.

Generic MAP(

Count => 4, --! Times out after 4 clock cycles
EdgeType =>"'1', --! Rising edge resets counter
CounterDrive => 0", --! Counts on falling edge

OutputHL =>"1", --! Active-low output

TCntDur => 0 --! Timeout asserted for | clock cycle
)

== port map

port map(

-- Inputs

Clock => Clock,
Reset => HeartBeat,
TCnt=>D

);
--! [@End Instantiations

--! @Processes

DFF : process (HeartBeat)

--! @details Implements a D flip-flop to ensure the rising edge of the microcontroller pulse is within the
--! window established by the RisingEdge Window instantiation. The active-low output of the RisingEdge Window
--! is fed to the data input of the D flip-flop, while the pulse signal is treated as the flip-flop's clock

--! signal. The rising edge of the pulse will cause the data input to appear on Q, the flip-flop's output.

--! Since the window created by RisingEdgeWindow is active-low, any rising edge pulse signal that occurs
--! outside this duration of time will cause the normally-high output of RisingEdgeWindow to appear on Q
--! and indicate an error.

--! Note that to reduce false triggers rising_edge(signal) is used instead of (signal'event and signal ='1").

--1 The difference is that rising_edge() ensures the previous logic state was '0', whereas clk'event detects
--! a change from any state. including Z, U, X. W, L, H.

begin

if rising_edge(HeartBeat) then -1 Check for "Enable" of Flip-Flop
BadRisingEdge <= D;

end if} --! Q unchanged without enable and clock

end process;

DFF2 : process (StatusSig)
--! (@details Latches onto errors permanently, or ignores them if being initialized.

begin
if (Initialize ='1") then
Q <=
elsif (StatusSig ="1") then --! Check for "Enable" of Flip-Flop
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Q<="1%
end if; --! Q unchanged without enable and clock
end process:
--! {@End Processes

--! @details Error signal is triggered from any of the error sources.
StuckHigh <= NoFallingEdge:

StuckLow <= NoRisingEdge:

BadRise <= BadRisingEdge;

StatusSig <= NoRisingEdge or NoFallingEdge or BadRisingEdge:
Status <= StatusSig;

Error <= Q;

--! End of Architecture Body

end Behaviour:

III. Voting Logic

In addition to a watchdog for detecting errors, a layer of voting logic is necessary for a DMR system to function.
The first step is to monitor both microcontrollers with the watchdog. Once an error is detected, the specifications
and designer decide what to do with that information. Standard practice with a simple digital design may be to use a
Karnaugh Map (K-Map) for finding a simplified realization. With just a few added 1/0 options the K-map can
become tedious, especially if the system has greater complexity than dual redundancy. The underlying voting logic,
which is to select a healthy active component, is very straightforward when requirements are kept to a minimum. A
simple schematic capture of an early version of the DMR voting logic used here is pictured in Fig. 4°.

[ O a1
(O Oviride 8-
I ECT ED—]
AND2A_2 AND2A_4 e Y,
s v A OR2.2 v
B
AND2A_3
ROz ED- = Y

Figure 4. Schematic capture view of simple voting logic. The voting logic here also accounts for an initial
microcontroller selection and an override.

VHDL again can provide a relatively simpler, more easily modified (without studying a mass of logic gates each
time) solution that could transfer readily to FPGAs from different vendors. Some example code is given below.

library IEEE:

use IEEE.SSTD_LOGIC_1164.ALL:

use IEEE.STD_LOGIC_UNSIGNED.ALL:
use [IEEENUMERIC_STD.ALL:

--! (@details

-=! Switches from an initially-selected processor 1o an alternate one when a failure
--! of the initial processor is indicated. Overrides are possible for extreme cases
--! where both processors fail.

entity ProcessorSelect is

generic (
--! Choose the initially active processor.
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--1'0"is Processor 1 [default]
-=1"1"is Processor 2
InitProcessor : std_logic :='0" --! Initial Processor Select

)

port (

-- Inputs

--! Indicates whether the failure status of a processor has ever been triggered.
MCUIFail tin std_logic; --! MCUT Failure Indicator
MCU2Fail :instd_logic; --! MCU2 Failure Indicator

--1 The status indicator monitors the original failure trigger. The MCU1Fail and MCU2Fail
--1 are permanently latched from these signals. Ordinarily, once a processor has an indicated
--! failure it should never be active again. In the event that both processors fail, however,

--! the original status trigger can be monitored to select the most viable alternative,

MCU 1 Status in std_logic; --! MCU1 current status
MCU2Status s in std_logic: --! MCU2 current status

--! Enables manual override, must be disabled by default!

-1'0' is disable

=-!"1" is enable

ForceEnable :in std_logic; -1 Override MCU Selection

--! Processor to select once manual override enabled. Should not be unknown!

--1'0" is Processor |

--1'1" is Processor 2

ForceSelect s in std_logic: -=! Override select for MCU2

-- Outputs

-=! The output selects and indicates the appropriate processor. Only one at a time may ever be active.
==1'0" is Processor 1.

--1"1" is Processor 2.

SelectedProcessor :out std_logic --! Selects appropriate processor.

);

end ProcessorSelect;
architecture Behaviour of ProcessorSelect is

-- Signal Declarations
signal ActiveProcessor : std_logic := InitProcessor;  --! Active Processor

begin

-- Process(es)

--! Selects alternate processor in the event of failure: decides what to do when both fail.
Selection : process (ForceEnable)

begin
if (ForceEnable = '1") then --! Manual override
ActiveProcessor <= ForceSelect: -=! Forced processor selection
else --! No override; normal operation

if (MCU1Fail ='1") then
ActiveProcessor <= '1"; --! Choose Processor 2 when 1 fails
elsif (MCU2Fail ='1") then
ActiveProcessor <='0'; --! Choose Processor 1 when 2 fails
elsif (MCU1Fail ='1' and MCU2Fail ='1") then --! Both processors have failed
if (MCU1Status ='1' and MCU2Status ='0") then --1 Processor 2 watchdog currently good
ActiveProcessor <='1"; --! Select processor 2
elsif (MCU1Status ="0"' and MCU2Status ='1') then  --! Processor 1 watchdog currently good
ActiveProcessor <='0"; --! Select processor |
else
ActiveProcessor <= InitProcessor; --! Ensure a processor is always selected
end if;
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else
ActiveProcessor <= InitProcessor: --! No failures: continue to use initial.
end if;
end if:
end process;

SelectedProcessor <= ActiveProcessor:

-- End Architecture
end Behaviour;

Many other voting logic algorithms are possible, depending on the application. Writing the logic in VHDL will
help simplify the revision process if needed. For instance, if both processors fail a linear feedback shift register
(LFSR) might be used to pseudo-randomly choose one rather than the initial default. That design may be more
useful for applications requiring more layers of redundancy. Figure 5* shows the overall DMR microcontroller
handling (watchdog plus voting logic) block diagram.

Figure 5. Overall block diagram of the watchdog with voting logic. The watchdogs monitor the microcontrollers
and the voting logic tries to keep the system functioning with minimal interruption in the event of a failure. Note the
Power-On Reset (POR) circuit. This initializes the system to a known state when first powered and is vendor-
specific.

1V. Considerations

The POR circuit seen in Fig. 5 is necessary to ensure the system starts up properly and without any false failures
while the system clock and heartbeat signals are stabilized. The one pictured is vendor-specific to Microsemi/Actel
FPGAs and was found in an application note’. One benefit of the circuit is the ability to modify how long the
initialization lasts. Similar PORs may be available for other vendors, and it is worth consideration to ensure that all
logic starts at a known state.

The schematic capture and VHDL code found herein is provided for example only. Actual implementation is
specific to a particular application and must take the appropriate requirements into account, The intent was to
convey a simple watchdog capable of monitoring both clock edges for identifying a variety of possible failures very
quickly.

Capabilities of FPGAs may vary, and each vendor offers its own set of Intellectual Property Cores (IP Cores) for
use in designing. These cores may be extremely useful but are not open source and available to use on other FPGAs.
This may limit the reuse of a particular design, no matter how much was written in standard VHDL, without access
to comparable IP Cores from other vendors.
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V. Conclusion

Redundancy can provide a dramatic increase in reliability. Reliability is not to be compromised where safety or
high cost are concerned. Voting logic and watchdogs are necessary for many redundant systems. The use of FPGAs
allows for this functionality to be added with a low footprint or readily added to designs incorporating FPGAs.
Using VHDL for FPGA design allows for more modular use of the design, as it is not vendor-specific. Maintaining
well-managed and well-commented VHDL designs will allow for reuse of code in many future designs
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