
Implementing a Microcontroller Watchdog with a Field­

Programmable Gate Array (FPGA)

Bartholomew F. Straka

John F. Kennedy Space Center

Major: Electrical Engineering

USRP Spring 2013 Session

Date: 12 APR 13

NASA USRP - Imernship Final Repon

Implementing a Microcontroller Watchdog with a Field­
Programmable Gate Array (FPGA)

AOC
DAC
DMR
FPGA
HDL
IDE
IEEE
/10
/P e are

K-Map
LAS
LFSR
VHDL
POR
WDT

Banholomew F. Straka l

Unil'ersilyojCentral P1orida. Orlando. P1orida. 328 16

Reliability is trudal to safety. Redundancy of important system components greatly
enhances reliability and hence safety. Field-Programmable Gate Arrays (FPGAs) are useful
for monitoring systems and handling the htgic nec:essary to keep them running with minimal
interruption when individual components fail. A complete microcontroll e- r watchdog with
logit' for failure handling can be implemented in a hardware- de-stril)tion language (HOL.).
HOl.,..based designs are vendor-independent and tan be used on mllny FPGAs with low
ovuhead.

:= Analog-Io-Digital Convener
Digital-to-Analog Convener

Nomenclature

Dual Modular Redundant
Field-Programmable Gate Array
Hardware Description Language
Integrated Development Environment
Institute of Electrical and Electronics Engineers
Input/Output
Inte llectual Propeny Core . A functional black box unit provided for use in an FPGA design as
licensed intellectual property.
Karnaugh Map
L.aunch Abon System
Linear Feedback Shift Register
VHSIC (Very High Speed Integrated Circui ts) Hardware Description Language
Power-On Reset
Watchdog Timer

I. Introduction

Safety is the cornerstone of the National Aeronautics and Space Administration's (NASA) core values. I
Extraordinary accomplishments often come with extraordinary risks. One way to minimize risk and account for

the unexpected is through system redundancy. By duplicating (or even triplicating) the most crit ical elements of a
system, overall reliability is enhanced. The trade-off for greater re liability through redundancy is additional
overhead in terms of total cost, weight, system complexity, or other factors. For matters involving safety, however,
reliabil ity should not be compromised to the greatest extent possible.

The basic implementation of redundancy is a primary and alternate pair. The a lternate takes control when the
primary fails. Redundancy can also exist in systems such as a bridge with many suspension cables, where the fa ilure
of individual cables steadily degrades the reliability of the bridge. In the bridge example, redundancy is inherent.
Wi th a primary and alternate pair, often some form of active monitoring must be present to detect the fai lure of the
primary and bring the alternate online. This process for monitoring and switching to ensure system reliabili ty is
known as voting logic.2

Implementing a system watchdog with a Field-Programmable Gate Array (FPGA) is an example of voting logic.
FPGAs allow custom logic circui ts to be designed and programmed as de faCIO hardware . An FPGA 's logic can be
simulated quickly, processes can be performed in parallel, and can be easi ly reconfigured if problems are found or

I Intern, Flight Instrumentation Branch, John F. Kennedy Space Center, University of Central Florida.

Spring 20 13 Session

NASA USRP - Internship Final Report

updated later with improvements. The possible failure of the voting logic itself, however implemented, is an
additional consideration. For example, sensitivity to radiation at the gate level is a concern.2 Therefore, selection of
appropriately radiation-tolerant devices may be critical to the reliability of such a voting logic application.

The specific application discussed herein is for a Dual Modular Redundant (OMR) microcontroller pair. In this
DMR system, the two microcontrollers are fed the same inputs and operate in parallel. The output of one processor
is actively controlling the end-item devices (valves, thrust vector controllers, solid state switches, etc.) while the
output of the other (standby) controller is inhibited. When the primary fails , the standby resumes the desired
functions with minimal interruption. Each microcontroller generates a heartbeat signal that is monitored by an
FPGA. A disruption in the heartbeat of the initially-active microcontroller will cause the FPGA to switch control to
the alternate microcontroller.

Although the system considered is DMR, the techniques can be extended to several levels of redundancy. If the
probability of failure for each identical element is considered independent, then the probability of failure for the
system decreases dramatical ly. Mathematical ly, the probabi lity of two independent events A and B both happening is

peA and 8) = peA n 8) = P(A)P(8) (I)

If the probability of such failures were exactly equal for the identical elements A, then the probability of total
failure F decreases exponentially with the number of redundant layers x, since P(A) is hopefully less than one.

P(F) = peA)' (2)

These conditions are ideal, however, and never realizable. Additionally, the conditions that lead to the fai lure of
one element may influence the fai lure of another identical element. So if the probability of failure is reasonably low
to begin with, only a few layers of redundancy are needed to greatly reduce the probability of total fai lure.
Accord ingly, the overhead associated with too much redundancy has diminishing return if the elements have the
same vulnerabilities and will be subjected to the same stresses.

lI. Watcbdog Realization
A watchdog timer (WDT) is a timer of fixed or specified duration that must be renewed by the system being

watched to avoid timing out. If the WOT expires, it is a secondary indication of some problem with the system
under observation. Many modem microcontrollers and other embedded systems come with a WOT already
integrated. The typical corrective action when the WOT expires is to reset the microconlroller. The timer durations
are often limited to a few fixed durations. Whi le this may be a sensible solution for remote sensors that periodically
measure something mundane, the results could be disastrous for some critical component such as the processor
controlling thrust vectoring for a Launch Abort System (LAS).

For critical applications, monitoring the system with an external watchdog has several advantages. The external
monitor may be designed to a certain set of specifications, such that it is not limited to the senings of the on-board
WDT. The external monitor may be able to take corrective action sooner than the WDT would to reset. An external
monitor will detect a complete fai lure of an element where the integrated WOT also fails. Most importantly, an
external monitor can multiplex a functioning element to the output if an active element fails, thereby minimizing
interruption in system operation.

An FPGA is well-suited to perform the external monitoring and voting logic, since it is highly customizable, can
perform a wide variety of tasks in parallel (perhaps in addition to the voting logic), and often offer a large number of
input/output (UO) pins. The features make an FPGA a robust and modular addition with an acceptably small
footprint for many system designs. It may well be the case that an FPGA is already being used in a design for some
other purpose, and the voting logic functionality can be added as a convenience.

The caveat is that FPGAs are usually digital devices only, meaning that it is best suited for cases where the
heartbeat or other parameter of a system being monitored is a digital signal. There are mixed-signal FPGAs capable
of analog-to-d igital conversion (AOC), digital-to-analog conversion (OAC), and other functions commonly
integrated with microcontrollers, while some FPGAs themselves incorporate a complete microcontroller. Such
devices may allow for a combination of traditional serial programming in a language like C and parallel
programming in a hardware description language (HDL). The implementation considered here is not for a mixed­
signal device and assumes a digital heartbeat signal from the system being observed .

A. Wau:hdog Structure

2 Spring 20 13 Session

NASA USRP - Internship Final Report

One consideration in designing a watchdog is what constitutes a failure based upon the heartbeat signal received.
The simplest watchdog wi ll renew ils timer every time a pulse (also called a "kick") is received as long as the timer
has not expired . That may mean that a heartbeat signal which suddenly increases in frequency, one that slows and
just barely pulses before the watchdog expires, or just remains at a high logic level will all satisfy the watchdog.
This simple watchdog is j ust a window of time. where any pulse that does not exceed the allowed time limit is
acceptable. This may work for many applications, but a much stri cter watchdog is achievable.

One benefit of considering more than just the rising pulse of a heartbeat is faster detection of potential fai lure.
By considering the heartbeat signal in more detail , an inappropriate rising edge may be an earlier indicator of fa il ure
that allows a faster changeover to a still-functioning microcontrol1er. There are a few other indicators to check, and
si nce the FPGA can operate these checks in parallel, there is not much overhead to using them other than a relatively
small amount of FPGA gates.

If the microcontro ller outputs a digital signal heartbeat with a known duty cycle of 50% (the watchdog may be
adjusted for any duty cycle, but 50% is considered here), the watchdog can use the expected rise and fall times to
detect a failure sometimes fas ter than one clock cycle of the heartbeat. The watchdog detailed here will test for the
following conditions: signal is stuck low does not rise fast enough, signal is stuck high or does not fa ll fast enough,
signal rises outside an acceptable window of time, or signal is completely lost (or tri-stated). Signal may be lost due
to a dramatic occurrence such as the device suddenly catching fire or the connection may be weak. Either way, the
FPGA will control the multiplexing of which microcontroller is active, so a lost signal is always a failure for this
consideration.

B. Counters
The building block for real izing the aforementioned watchdog structure is a counter. For maxi mum fle xibility

and uti lity, the counter is described in Very High Speed Integrated Circuits Hardware Description Language
(VHDL). Each FPGA vendor provides its own Integrated Development Environment (IDE). These IDEs usually
include a method to design the logic circuits on the FPGA using schematic capture, which is a visual representation
of logic gates and boxes. A basic block such as a counter may have different characteristics from one IDE to
another. VHDL can be easily imported and mod ified for use with any FPGA. The counters described here will also
include a few more features than are commonly provided with the schematic capture blocks that make them more
adaptable to different heartbeat signals.

A basic counter takes in a clock signal and increments or decrements an internal register with each speci fi ed
clock event, either rising or falling edge. The counter may incorporate a reset signal input that resets the count to the
original value and a terminal count output that is asserted if the counter reaches its final value without being reset.

The first type of counter used in the watchdog is intended to create an acceptable window of time for a rising
edge of the heartbeat signal. This is accompl ished with an active-low output. The counter is reset with each rising
heartbeat and is e.'l:pected to reach terminal cou nt before the next ri sing edge occurs, which should be during the
finite terminal count window.

A D flip-flop (seen as Rising_Edge_Trigger in Fig. 3) is employed to detect a bad rising edge. The terminal
count of the counter is fed to the D input of the fl ip-flop, and the heartbeat signal is fed to the Clk input. A ri sing
edge of the heartbeat outputs the D input to the Q output of the flip-flop . If the rising edge occurs during an active­
low terminal count, the output is low and there is no error. If Ihe risi ng edge occurs outside the terminal count
window, the outpul is high and there is an error. Note Ihat al though the rising edge resets the counter (and the
terminal count goes high), the input of the flip-flop should be low at the time of the rising edge. The events happen
in parallel, and there is always some propagation delay in FPGA 's before gate states can make a logical lransition.
Accord ingly, the output of the counter wi ll go high when reset after the flip-flop acts on its original input. Figure 11
illustrates the action of the acceptable window counter and watchdog in simulation .

. :l' ' ;":C"F,!":: "<JS-.. r

. :r .. • ,::ttI;""!,!:1j

'1' ... ::w~?":~

I' ,,::C:(":""t"~SlP;t

Figure 1.. Countt r for ';::;::5~:~:'::;'~5~
while lerminal C01I11I (D) -i i.l· lale. 1 termina! (.'0 11111 willdow is visible. and
the error is detected. The image is stretched/or improved visibility 0/ fhe lI'al'e/orms.

3 Spring 201 3 Session

NASA USRP - Internship Final Report

The second type o f counter is a simple timeout, where the tenninal count itself is the error ind icator. If the
counter is not reset in time, the watchdog is not sat isfied . To detect errors faster, two counters are employed as
timeouts. One is reset by a rising edge and the other by a fa lling edge. Note that it is also possible to implement the
edge window counter for a falli ng edge instead o f a rising edge, or both for the potential to detect an error even
faster. Figure 21 illustrates the action of the timeout counter and watchdog in simulation for a rising edge reset. The
action is the opposite for a falling edge reset.

I ~t"":..+(o;~"efu·

I :"~ .":W;::"tQ.:.

51! > ... :.""tt'l:=-:t.7¢:qtrt:"":~3":

\Ill' 3"7lXl]::'!d~

Figure 2. Counter that times out edge. reset the cOlI/ller normally. The
Ihird rising edge is lale and lhe error is deu:cted. image is stretchedfor imprOl'ed visibility of the wOI'eforms.

A schematic visualization of the entire watchdog is pictured in Fig. 3 ~ . The actual counters and watchdog are
written in VHDL, but the schematic capture here provides a block diagram view.

0R3

Figure 3. St-hematic ca pture view of the watchdog with counters. A microcomroller faillire is inferredfrom an
error indicator on allY of the three COllnlers watching Ihe signal.

Using VHDL o ffers some advantages over the schematic capture. A major benefit is customization through the
use of "generics." Generics are used as numbers in a VHDL entity and have a default constant value, but a new
value may be passed in when an entity is instantiated in a higher-level design. Th is can allow for a single emity,
such as a counter, to be used in many different configurations. For instance, notice that the counter in Fig. 2
increments the counter on a rising edge and has a maximum count of fi ve. The counter is reset at the very last
possible moment (the simulation is pre· synthesis and includes no timing), so there is a possibility that when timing
is involved thi s will trigger many fal se errors. So for instance, the count may easily be increased to six to account for
this possibility.

An example implementation of this highly configurable counter is given below.

library IEEE;
usc IEEE.Sm _ LOG1C_ IIM .ALL;
usc IEEE.STD_ LOG IC_UNSIGNED.ALL:
usc IEEE.NU MERIC_STD.ALL:

ent ity CustomCounter is

generic (
•• ! Adj ust the duration of counter here. Defnult is for a s)'stem clock l Ox the pulse signnl.
Count : in teger := 5; •• ! Count

.. ! Controls whether the edge timeout is fo r a high or low signal.

.. ! '0' will ereate a falling edge timc.'O ut (times out if pulse Slays high)

.. ! T will create a ris ing edge timeout (t imes out if pulse slays low) Idefaull J

4 Spring 20 13 Session

NASA US RP - Internship Final Report

EdgeType •• ! Specifics type oftimcout

•• ! Determines whether the counter acts on the falling [default I or rising edge of its dri\'ing clock.
··f '0' selects the counter to act on the clock's falling edge
_.! ' I' selects the counter 10 act on the clock's rising edge
CounterDrive : std_ logic := ' I '; -- I Specifics driving edge for counter clock

--f Determincs whether output is act ive high or active low. Acth'e low is used to create a
--I window for acceptable clock cvents.
--f '0' will be aClh'e high [defaultJ
--f ' I ' will be aet i\'e low
OutputHL : SldJogic :'" ' I '; -·f Speci fie s active High/Low output

.-! Adjust the dural ion (number of clock cycles) for which the counter's terminal count signal

.-! is asserted. Default is onc clock cycle; increase for the ri sing edge window to have more
-- ! tolerance and account for a pulse signal not synchronized with the system clock.
--I Value cannot exceed MCount~ since it is reset at the end of the count.
TCntDur : integer :'" 0 --! Durat ion ofTCnt in clock cycles
),

PO" (
--I Inpuls
Clock
Reset

--! Outputs
TCll t
),

end Cus\omCounter:

: in std Jogie;
: in stdJogie;

archi tecture Behaviour ofCus\omCounter is

--I Clock
--I Reset

--I Terminal Count (Active High)

--f The following function is a modification of the default risins-edge function provided in the
--! Institute of Elcctrical and Electronics Engineers (IEEE) standard library.
--I This function checks for a legilimatc edge transi tion by checking thc state pre\'ious 10 the clock e\·ent.
--! Something like cloek'Event and clock '" ' I'. while commonly used, docs not account for the fact
--! That the previous state may be other logic states, such as U or Z
FUNCTION act ion_edge (SIGNAL s: std_ ulogic) RETU RN BOOLEAN IS
HEGIN
RETURN (s'EVENT AND (To_XO I(s) = CounterDrive) AND
(To_ XOI(s'LAST_ VA LUE) '" not CounlcrDrivc»;
END:

-- Signal Decl8J1ltions
signal [nternalCount
signal AssertTime
signal ResetCount
signal Tentlnternal

begin

: integer;
: integer := TCntDur:
: stdJogic:
: stdJogie :" Outputl'IL:

ResetCounl <:= ' I ' when InternalCount .. Count else '0';

-- Process(es)

--! Maintains internal count
--! Maintains TCnl Duration
--I Indicates terminal count
--! Initializes output to desired \'alue

--I Counting process that resets the internal count on asynchronous reset and loops after reaching final count.
Counting: process (Reset. Clock)
begin
if (Reset = EdgeType) then

IntemalCoun! <:= 0:
elsif aClion_cdgc(Clock) then

if RcselCount = ' I' thcn
IntemalCount <:= 0:

5 Spring 201 3 Session

NASA USRP - Interns hip Final Report

,''''
IntcmalCount <- lntcmaICount + I;

end if;
end if;
end process;

.. ! Will assert the terminal count high for specified number of clock cycles.
Enabling : process (Reset, Clock)
begin
if(Reset = EdgeType)then

TCntlntemal < .. OutpUlHL;
AssertTime <= TCntDur;

elsifact;on_edge(Cloek) then
ifResetCoun t = ' I' then

TCnt lntemal <- not Outputi-IL;
AssertTime <"" 0;

else
if AssertTime - TCntDur then

TCntlntemal < .. OutputUL;

,''''
AssertTime < .. AssertTime + I;
TCntlntemal <- not OutputHL;

end if;
end if;

end if;
end process;

TCnt <= TCntlntemal j

•• End Architecture
end Behaviour:

To put these counters to use as a watchdog, as visualized in Fig. 3, they must be instantiated and some of the
generi cs set. Below is the VH DL watchdog using the c usto m counter.

library IEEE;
usc IEEE.STD_ LOGIC_ II64.ALLj
usc IEEE.STD_LOGIC_UNSIGNED.ALL;
usc IEEE.NUMERIC_STD,ALLj

· · 1@details
-! The watchdog incorporates both a rising edge and falling edge timeout as well as
··1 an acceptable window oflolerance for a rising edge. The +. to lerance o f this window
-! is adjustable here by altcring thc counters or by changing the clock frequency.

ent ity Watchdog is

I'M (
- 1 Inputs
IlcartBeat
Clock
Initialize

- ! Outputs

: in STD_ LOGIC;
: inSTD_ LOGIC;
: inSTD_LOGIC;

- ! Active·high reset.
-! Clock.
- ! Initialize to erase start· up error

.. ! Each output has a different meaning. In this project, the 'Error' output will remain
-1 asserted forever if a failure e\'ent has ever occurred. The 'Status' indicator is asserted
-! (asserted here is a logic ' I ' by dcfauh) whenever any kind offailure is detectcd. but is
-! not permanently asserted like the 'Error' indicator. If the pulse signal eventually "feeds
. . ! the watchdog- back to a state of nonnalcy, the 'Status' output wi ll remain unasserted.
- ! The remaining outputs indicate the particular type of failure, mostly for debugging and
.. ! possibly for detailed failure analys is.
Error : out STD _LOGIC; ··1 Indicates if a fail ure ever occurred.

6 Spring 201 3 Sessio n

NASA USRP - Inlemship Final Report

Status
StuckJligh
StuckLo\\'
BadRise
),

end Watchdog:

: out STD_ LOGIC:
: out STD_ LOGIC;
: out STD_ LOGIC;
: out STD_ LOGIC

architecture Behaviour of Watchdog is

.• ! Instant iat ions of sub·componCllts.
componcnt CustomCoulltcr
gCllc rie (

.. ! Present state orfailure.

.. ! Pulse is stuck high.
•• ! I'ulse is stuck low.
•• ! Rising edge outside acceptable window.

•. ! Thcse are the samc as ill thc CustomCountcr code. but must be adj ustcd ill the mapping, not here.
Count : intcger:= 5: .. ! Count
EdgeTypc : stdJogic :: ' 1'; •• ! Specifies type of timcout
CountcrOrive : stdJogic ::' I '; - ! Specifies driving edge for counter clock
OutputllL ; std _logic ;= ' I '; .. ! Specifies active High/Low output
TCnlDur : integer :" 0 •• ! Duration ofTCnt in clock cycles
),

.. ! " orts
port (
.. ! Inputs
Clock: in stdJogic: .• ! Clock
Reset: in std_ logic: .• ! Reset

.• ! Outputs
TCnt : out std_ logic .. ! Terminal Count
),
end componellt:

.. ! Signal Declarat ions

.. ! Initial ize to some knovo11 value whenfifpossible to avoid unkno\\Tl logic s tates.
signal D : stdJogic :"" 0';
signal Q : stdJogie: '" '0';
signal NoFallingEdge : stdJ ogie := '0';
signal NoRisingEdgc : SId Jogic := '0';
signal BadRisingEdge : stdJogic := '0';
signal StatusSig : stdJogic:= '0':

.. ! Bcgin Ikhaviour
Begin

··! @ Instantiations
FaltingEdgeTimeout: CustomCounter
.. ! @:details Timesoul without falling edge after specified interval.
.. ! Detects a pulse signal stuck high.
Generic MAP(
Count => 5,
EdgeType => '0',
CounterDrive -> ' I'.
OutputHL => '0',
TCntDur => 5
)
.. port map
port map(
•• Inputs
Clock => Clock,
Resel => HeartBeat.
TCnl => NoFaltingEdge
);

•• ! Times oul after 5 clock cycles
.. ! Falling edge resets counter
•• ! Counts on ri sing edge
•• f At1ive·high output
•• ! Timeout asserted for I clock cycle

7 Spring 2013 Session

NASA USRP - Inte rnship Final Report

RisingEdgeTimeout : CustomCounter
•• 1@:details Timesoutwi thoutrisingedgeafter specified interval.
· ·1 Detects a pulse signal stuck low.
Generic MAP(
Count => 5,
EdgeType => ' I',
CounterOrive "> ' I "
OutputHL => '0',
TCntOur => 5
)
•• port map
pon map(
··Inputs
Clock => Clock,
Reset => UeanBeal,
TCnt => NoRisingEdge
),

RisingEdgeWindow: CustomCounter

··1 Times out after 5 clock cycles
··1 Rising edge resets counter
.. ! Counts on rising edge
··1 Acti\·e·high oulput
··1 Timeout asserted for 1 clock cycle

_.! @detai lsCreatesa window fo r an acceptable rising edge clock event.
--! Detects a sudden incorrect pulse rise.
Gencric MA P(
Count '"'> 4,
EdgeType "'> T ,
CounterOrive "'> '0'.
OutputHL => ' I',
TCntOur => O
)
•• port map
pon map(
_. Inputs
Clock -=> Clock,
Rese t => HeanDeat,
TCnt => 0
),
-! @End Instantiations

- 1 @Processes
OFF: process (HeartBeat)

--1 Times out after 4 clock cycles
•• ! Rising edge resets counter
--1 Counts on falling edge
--1 Acti ve-Iowoutput
--1 Timeout asserted for I clock cycle

-1 @details Implements a 0 flip-flop to cnsure the rising edge of the microcontroller pulse is within the
--I window established by the RisingEdgeWindow instant iat ion. The act ive-low output of the RisingEdgeWindow
--1 is fed to the data input of the 0 nip-flop, while the pulse signal is treated as the nip-flop's clock
--I Signal. The ri sing edge of the pulse will cause the data input to appear on Q, the flip.nop's output.
--I Since the \vindow ereated by RisingEdgeWindow is active-low, any rising edge pulse signal that oeeun
-! outside this duration of time will cause the normally.high output of RisingEdgeWindowto appear on Q
--I and indicate an error.
-1 Note that to reduce false triggen risins..edge(signal) is used instead of(signal'c\'cnt and signal ",, ' I ').
--1 The difference is that risins..edgc() ensures the previous logic state was '0', whereas clk'event detects
--1 II change fro m any Slate, including Z. U, X. W. L, II.
begin
if risins..edge(HeanBcat) then --1 Check for "Enable" of Flip-Flop

BIKIRi s i ll~E,Jgo; <.- 0 ;
end if; ··1 Q unchanged without enable and clock
end process;

OFF2 : process (StatusSig)
-1 @detailsLatchesonto erron permanently,or ignoresthem ifbeing ini tialized.
begin
if (Ini tialize = ' I') then

Q <- 'O';
elsif(StatusSig .. ' I ') then --1 Check for "Enable" of Flip-Flop

8 Spring 20 13 Session

Q <"" '1':
end if:
end process;
-- I @End Processes

NASA US RP - Internship Final Repon

-- I Q un!;hanged without enable and d oek

-- I @detai ls Error signal is triggered from any of the error sources.
Stuckt-l igh <: Nol'aliingEdgc:
StlIckLow <= NoRisingEdge:
BadRise <= BadRisingEdge;
St3tusSig <= NoRisingEdge or NoFallingEdge or BadRisingEdge:
Status <= StatusSig:
Error <= Q:
-- I End of Archile!;lun.! Booy
end Behaviour:

III . Voting Logic
In addition to a watchdog for detect ing errors, a layer of voting logic is necessary for a OMR system to function.

The first step is to monitor both microcontro llers with the watchdog. Once an error is detected. the speci fications
and designer decide what to do wi th that infonnation. Standard practice with a simple digital design may be to use a
Karnaugh Map (K -Map) for fi nding a simplified realization. With just a few added 110 oplions the K.map can
become tedious, especially if the system has greater complexity than dual redundancy. The underlying voting logic,
which is 10 select a healthy active component. is very straightforward when requirements are kepI to a mini mum. A
simple schematic capture of an early version of the DMR vOling logic used here is pictured in Fig. 4~ .

. """-' ANnA_l • OO<U

1
....J

, • ""'-' .Ll
, :;) ,

...J
AID2A •

1
--:;'1 ,

1
ORU

AID2A-' AID2A •
l , , • ""'-' ~

,

. 1
... J

,
AID2AJ

--aLi
,

Figure 4. Schematic capture view of simple voting logic. 71,e I'oting logic here also acCOIin/S for an initial
microcollirolfer selection alld all override.

VI-IDL again can provide a relatively simpler, more easi ly modified (wi thout studyi ng a mass of logic gales each
time) solution that could transfer readily 10 FPGAs from different vendors. Some example code is given below.

library IEEE:
use IEEE-STD_LOGIC_ I I64 .A LL;
use lEEE-STD_LOG IC_UNSIGNED.ALL:
Uso.' lEEE.NUMERIC_STD.ALL:

--!@:detaits
-- I Switches from an initially-selected processor to an alternate one when a failure
--1 of the ini tial processor is indicated. Overrides are possible for extreme eases
.. ! where both processors fail .

enti ty l' rocessorSclect is

generic (
.. ! Choose the initially active processor.

9 Spri ng 201 3 Session

NASA USRP - Internship Final Report

--! '0' is Processor I]clerault]
--! ']' is Processor 2
InitProcessor : stdJogic := '0' -I Initial Processor Selcct
);

pM (
.- Inputs
--! Indicates whether the failure status of a pnx:essor has ever been triggered.
MCU I Fail : in std_ logic; - ! MCU I Failure Indicator
MCU2Fail : in std_ logic; --! MCU2 Failure Indicator

··1 The status indicator monitors the original failure trigger. The MCU I Fail and MCU2Fail
-I are permanently latched from these signals. Ordinari ly, once a processor has an indicated
.-! failure it should ne\'er be active again. In the (: \'enl that both processors fai l, howe \'er,
--! the original status trigger can be monitored 10 sclecllhc most viable al ternative,
MCU IStatus : in Sid_logic; --! MCU I current status
MCU2Status : in Sid_logic; --I MCU2 current sta tus

.-! Enables manual override, must be disabled by defaul t!
--I '0' is disable
--! ' I'isenable
ForeeEnable --! O\·erride MCU SelC(:tion

--! Processor to select once manual override enabled. Should not be unkno n!
--! '0' is Processor 1
--! ' I ' is Processor 2
ForeeSelect --I Ovcrride select for MCU2

-- Outputs
--I The output selects and indicates the appropriate processor. Only one at a time may ever be aclive.
--I '0' is Processor I .
--I ' I ' is Processor 2.
SelectedProcessor : out std_ logic --I Selects appropriate processor.
);

end ProcessorSelect:

architecture Bcha\'iour of ProcessorSclect is

-- Signal Declarations
signal Acti\'eProcessor: std_ logic := Ini tProcessor; --I Act ive Processor

begin
-- Process(es)
--I Selects alternate processor in the event or fail ure; decides what to do when both fail.
Selection: process (ForccEnable)
begin

if(Force Enable = ' I ') then
ActiveProccssor <= ForceSelect:

0'"
if (MCU I Fail '" ' I ') then

_. ! Manual override
--I Forced processor selecl ion
-- I No override; nonnal operation

ACliveProcessor <= ' I 'j --I Choose Processor 2 when I fails
elsif(MCU2FaiJ -= ' I ') then

Acth'c Processor <= '0' ; --I Choose Processor I when 2 fail s
elsif(MCU IFai l '" ' I ' and MCU2 Faii = 'I') Ihen --I Both pnx:essors have fail ed

if(MCU IStatus = ' I ' and MCU2Status = '0') then --I Processor 2 watchdog currently good
Act iveProcessor <= '1'; --I Select processor 2

clsif(MCU IStatus = '0' and MCU2SIatus = ' I') then
Act ivcProcessor <= '0'; --! Selecl processor 1

"" ActivcProcessor <>= InitProcessor;
end if;

10

-- I Processor I \vatchdog currently good

--! Ensure a processor is always selected

Spring 201 3 Session

NASA US RP - Internship Final Report

else
AetivcProecssor <- lnit l'rocessor:

end if:
--! No failures: continue to usc ini tia1.

end if:
end process:

Sclectedl'roccssor <zz Activcl' rocessor:

-- End Architcelllre
end Behaviour:

Many other voting logic algorithms are possible, depending on the application. Writing the logic in VHDL will
help simpli fy the revision process if needed. For instance. if both processors fail a linear feedback shift register
(LFSR) might be used to pseudo-randomly choose one rather than the initial default. That design may be more
useful for appl ications requiring more layers of redundancy. Figure 54 shows the overall DMR microcontro ller
handling (watchdog plus voting logic) block diagram .

Figure 5_ Overall block diagram of the watchdog with voting logic. The 1I'0Ichdogs mOllilor Ihe micrOCOlllrollers
alld Ihe voting logic Iries to keep the syslemfunctionillg wilh millimal interrllption in Ihe Cl'ent of afailllre. NOIe the
Powe/'-Oll Reset (POR) cirCllil. This initializes Ihe system 10 a knowII slate when first fJOwered and is vendor­
specific.

IV. Considerations

The POR circuit seen in Fig. 5 is necessary to ensure the system starts up properly and without any false fai lures
while the system clock and heartbeat signals are stabilized. The one pictured is vendor-specific to Microsemi/Actel
FPGAs and was fo und in an application notes. One benefit of the circui t is the abili ty to modify how long the
initialization lasts. Si milar PORs may be avai lable for other vendors, and it is worth consideration to ensure that all
logic starts at a known state.

The schematic capture and VHDL code found herein is provided for example only. Actual implementation is
specific to a particular application and must take the appropriate requirements into account. The intent was to
convey a simple watchdog capable of monitoring both clock edges for identifying a variety of possible fa ilures very
quickly.

Capabilities of FPGAs may vary, and each vendor offe rs its own set of Intellectual Property Cores (IP Cores) for
use in designing. These cores may be extremely useful but are not open source and available to use on other FPGAs.
This may limit the reuse of a particular design. no matter how much was written in standard VHDL, without access
to comparable IP Cores from other vendors.

II Spring 201 3 Session

NASA US RP - Internship Final Report

V. Conclusion

Redundancy can provide a' dramatic increase in rel iabi lity. Reliability is not to be comprom ised where safety or
high cost are concerned. Voting logic and watchdogs are necessary for many redundant systems. The use of FPG As
allows for this functionali ty to be added with a low footprint or readily added to designs incorporating FPGAs.
Using VHDL for FPGA design allows for more modular use of the design, as it is not vendor-specific. Maintaining
wel l-managed and well-commented VHDL designs wil l allow for reuse of code in many future designs

Acknowledgments
I extend my gratitude to the Undergraduate Student Research Program (USRP) for providing fu nding that made

this internship opportunity avai lable. I also thank my mentor, Peter T. Johnson, for directing me to this interesting
project.

References
INationaJ Aeronautics and Space Administration. "Governance and Strategic Management Handbook," NASA Policy

Directive (NPD) IOOO.OA.] August 2008, p. 3.
1"hompson, S., and Mycroft, A .. M Abstract Interpretation in Space: SET Immunity of Majority Voting Logic." PrQC.

APPSEM /I Worlishop. Frauenchicmsec, Germany, 2005, pp. 5-8.
)ModelSim ACTEL, Software Package, Vcr.]0. 1 b, Mentor Graphics Corporation. Wilsonville. OR. 2012.
4Libcro, Software Package, Vcr, 10.1.3.1 , Mierosemi Corporation, Aliso Viejo, CA, 2013.
' Microscmi, "Internal Power-on reset and Post Programming Reset Circuit for Flash-Based FPGAs." ApplicDtioll Note

AC380.2012.

12 Spring 20 13 Session

