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(57) 	 ABSTRACT 

Disclosed herein are systems, methods, and non-transitory 
computer-readable storage media forprogressive band selec-
tion for hyperspectral images. A system having module con-
figured to control a processor to practice the method calcu-
lates a virtual dimensionality of a hyperspectral image having 
multiple bands to determine a quantity Q of how many bands 
are needed for a threshold level of information, ranks each 
band based on a statistical measure, selects Q bands from the 
multiple bands to generate a subset of bands based on the 
virtual dimensionality, and generates a reduced image based 
on the subset of bands. This approach can create reduced 
datasets of full hyperspectral images tailored for individual 
applications. The system uses a metric specific to a target 
application to rank the image bands, and then selects the most 
useful bands. The number of bands selected can be specified 
manually or calculated from the hyperspectral image's virtual 
dimensionality. 
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SYSTEM AND METHOD FOR PROGRESSIVE 
BAND SELECTION FOR HYPERSPECTRAL 

IMAGES 

RELATED APPLICATIONS 

This application claims priority to U.S. Provisional Appli-
cation No. 61/226,889, filed 20 Jul. 2009, which is incorpo-
rated herein by reference in its entirety. 

ORIGIN OF THE INVENTION 

The invention described herein was made by an employee 
of the United States Government and may be manufactured 
and used by or for the Government for governmental pur-
poses without the payment of any royalties thereon or there-
fore. 

BACKGROUND 

1. Technical Field 
The present disclosure relates to image processing, and 

more specifically, to generating reduced dataset images from 
hyperspectral images. 

2. Introduction 
A standard photograph or image is generated from the 

visible spectrum of light. A hyperspectral image is generated 
from a wider electromagnetic spectrum. For example, a 
hyperspectral image can include visible light as well as ultra-
violet, infrared, or other forms of electromagnetic radiation. 
Thus, a hyperspectral image includes far more data than a 
standard image. 

Space-borne hyperspectral imagers collect enough infor-
mation to identify materials and substances on the ground. 
Scientists often use hyperspectral data to investigate land use, 
mineral deposits, or signs of climate change. However, the 
same data is also useful during disasters or other emergencies, 
when detection and mapping of fires, chemical agents, or 
flooded areas can provide critical information to first-re-
sponders, each of which relies on the ability to identify mate-
rials quickly and accurately. 

Typically only a small portion of a hyperspectral image is 
useful to identify any given material. The sheer volume of 
data in hyperspectral images causes many material classifi-
cation programs to run slowly and produce poor results, as 
they search the full image dataset for the information they 
need. Time-sensitive applications as well as applications 
which are not time-sensitive would benefit greatly from 
enhanced performance when analyzing hyperspectral 
images. 

SUMMARY 

Additional features and advantages of the disclosure will 
be set forth in the description which follows, and in part will 
be obvious from the description, or can be learned by practice 
of the herein disclosed principles. The features and advan-
tages of the disclosure can be realized and obtained by means 
of the instruments and combinations particularly pointed out 
in the appended claims. These and other features of the dis-
closure will become more fully apparent from the following 
description and appended claims, or can be learned by the 
practice of the principles set forth herein. 

Disclosed herein are systems, methods, and non-transitory 
computer-readable storage media for progressive band selec-
tion for hyperspectral images. A system configured to prac-
tice the method calculates a virtual dimensionality of a hyper- 

2 
spectral image having multiple bands to determine a number 
Q indicating how many bands are needed for a threshold level 
of information, ranks each band based on a statistical mea-
sure, selects Q bands from the multiple bands to generate a 

5  subset of bands based on the virtual dimensionality, and gen-
erates a reduced subset image based on the subset of bands. 
The system can include one or more hardware and/or soft-
ware modules configured to control a processor to practice 
these various steps. This approach can create reduced datasets 

10 of full hyperspectral images tailored for individual applica-
tions. The system uses a metric specific to a target application 
to rank the image bands, and then selects the most useful 
bands. The number of bands selected can be specified manu- 

15  ally or calculated from the hyperspectral image's virtual 
dimensionality. 

In one aspect, the statistical measure is entropy defined as 

20 	 " 
H(x) _ 	p(x;)1092p(x;), 

where p(x) is a probability of pixel x within the hyperspectral 
25 image calculated by constructing a histogram of image pixels, 

and N is a number of pixels in the hyperspectral image. In 
another aspect, the statistical measure is information diver-
gence defined as 

30 

D(P; S) _ 	P; log(P; IS;) + 	S; log(S; / pi), 

35 where p is an image band in the hyperspectral image, and g is 
a dataset with a Gaussian distribution with a same mean and 
variance as the image band p. 

Q can be determined by progressive band selection based 
on an application-specific performance target. The perfor- 

40 mane target can be a tradeoff between accuracy and process-
ing speed. In one variation only highest-ranked bands are 
selected. Progressive band selection can be performed via 
progressive band expansion, progressive bandreduction, and/ 
or binary bisection band selection. 

45 	This approach can tailor datasets for specific applications 
and can be adapted to run onboard an observing spacecraft. 
This means the spacecraft can make decisions in-flight based 
on the data it collects without transmitting the full image to 
the ground and/or waiting for instructions from human con- 

50 trollers. 

BRIEF DESCRIPTION OF THE DRAWINGS 

In order to describe the manner in which the above-recited 
55 and other advantages and features of the disclosure can be 

obtained, a more particular description of the principles 
briefly described above will be rendered by reference to spe-
cific embodiments thereof which are illustrated in the 
appended drawings. Understanding that these drawings 

6o depict only exemplary embodiments of the disclosure and are 
not therefore to be considered to be limiting of its scope, the 
principles herein are described and explained with additional 
specificity and detail through the use of the accompanying 
drawings in which: 

65 	FIG. 1 illustrates an exemplary system embodiment; 
FIG. 2 illustrates a graphical representation of the electro-

magnetic spectrum; 
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FIG. 3 illustrates three approaches for progressive band 
selection; 

FIG. 4 illustrates an exemplary test image from a space-
born imaging device; 

FIG. 5 illustrates some major features in the exemplary test 5 

image; 
FIG. 6 illustrates a chart of time needed to process the 

exemplary test image based on the criterion used; 
FIG. 7 illustrates a chart of time needed to process the 

exemplary test image using spectral angle mapping based on 10 

a subset of image bands; 
FIG. 8 illustrates a chart of time needed to process the 

exemplary test image using a support vector machine-based 
classifier based on a subset of image bands; 

FIG. 9 illustrates exemplary output of a spectral angle 15 

mapping classifier based on a subset of image bands; 
FIG. 10 illustrates exemplary output of a support vector 

machine-based classifier based on a subset of image bands; 
and 

FIG. 11 illustrates an exemplary method embodiment. 	20 

DETAILED DESCRIPTION 

Various embodiments of the disclosure are discussed in 
detail below. While specific implementations are discussed, it 25 

should be understood that this is done for illustration pur-
poses only. A person skilled in the relevant art will recognize 
that other components and configurations may be used with-
out parting from the spirit and scope of the disclosure. 

The present disclosure addresses the need in the art for 30 

more efficient hyperspectral imaging. A brief introductory 
description of a basic general purpose system or computing 
device in FIG. 1 which can be employed to practice the 
concepts is disclosed herein, followed by a brief discussion of 
the electromagnetic spectrum. A more detailed description of 35 

the approaches set forth herein will then follow. 
Hyperspectral images contain far more information than is 

necessary for most applications. Trying to make use of some 
or all of the data in an image can yield less accurate results 
than if some information were intentionally thrown away. 40 

Discarding the appropriate information provides at two ben-
efits: reduced processing time and improved quality of the 
output image. Additionally, hyperspectral imagers installed 
on spacecraft with slow downlink transmitters can save band-
width and transmission time by removing information before 45 

sending the image to the ground. 
In this approach, the system must carefully select which 

information to discard. Often the information needed for a 
particular application lies in a few critical bands. Some 
example applications include a land classification task of 50 

distinguishing between two types of vegetation or a target 
detection task of detecting a camouflaged tank. Once the 
system identifies these bands, the system can often discard the 
rest of the information safely. 

Progressive band selection (PBS) can detect the most criti- 55 

cal image bands for a target application and build reduced 
images with only as many bands as are needed. The first step 
requires a criterion on which to judge the image bands and 
assign a numerical score. While PBS can use any real-valued 
function to generate these priority scores, most of the criteria 60 

calculate a statistic (such as variance) for some, most, or all 
pixels in the band. 

After assigning scores to each band, PBS builds a reduced 
image containing only the highest-scoring bands. A user can 
either directly specify the number of bands to keep, or specify 65 

an acceptable level of application performance. In the latter 
case, PBS uses at least one of a number of methods to search  

4 
for the proper number of bands to retain. These variations 
shall be discussed herein as the various embodiments are set 
forth. The disclosure also discusses the criteria used to iden-
tify the most valuable bands in an image, how PBS finds the 
correct number of bands to include in its output, and an 
experiment testing band selection and output image sizing 
methodologies in a land classification application. The dis-
closure now turns to FIG. 1. 

With reference to FIG. 1, an exemplary system 100 
includes a general-purpose computing device 100, including 
a processing unit (CPU or processor) 120 and a system bus 
110 that couples various system components, including the 
system memory 130, such as read only memory (ROM) 140 
and random access memory (RAM) 150 to the processor 120. 
The system 100 can include a cache 122 of high speed 
memory connected directly with, in close proximity to, or 
integrated as part of the processor 120. The system 100 copies 
data from the memory 130 and/or the storage device 160 to 
the cache 122 for quick access by the processor 120. In this 
way, the cache 122 provides a performance boost that avoids 
processor 120 delays while waiting for data. These and other 
modules can be configured to control the processor 120 to 
perform various actions. Other system memory 130 may be 
available for use as well. The memory 130 can include mul-
tiple different types of memory with different performance 
characteristics. It can be appreciated that the disclosure may 
operate on a computing device 100 with more than one pro-
cessor 120 or on a group or cluster of computing devices 
networked together to provide greater processing capability. 
The processor 120 can include any general purpose processor 
and a hardware module or software module, such as module 
1 162, module 2 164, and module 3 166 stored in storage 
device 160, configured to control the processor 120 as well as 
a special-purpose processor where software instructions are 
incorporated into the actual processor design. The processor 
120 can essentially be a completely self-contained computing 
system, containing multiple cores or processors, a bus, 
memory controller, cache, etc. A multi-core processor can be 
symmetric or asymmetric. 

The system bus 110 can be any of several types of bus 
structures including a memory bus or memory controller, a 
peripheral bus, and a local bus using any of a variety of bus 
architectures. A basic input/output (BIOS) stored in ROM 
140 or the like, can provide the basic routine that helps to 
transfer information between elements within the computing 
device 100, such as during start-up. The computing device 
100 further includes storage devices 160 such as a hard disk 
drive, a magnetic disk drive, an optical disk drive, tape drive 
or the like. The storage device 160 can include software 
modules 162, 164, 166 for controlling the processor 120. 
Other hardware or software modules are contemplated. The 
storage device 160 is connected to the system bus 110 by a 
drive interface. The drives and the associated computer read-
able storage media provide nonvolatile storage of computer 
readable instructions, data structures, program modules and 
other data for the computing device 100. In one aspect, a 
hardware module that performs a particular function includes 
the software component stored in a non-transitory computer-
readable medium in connection with the necessary hardware 
components, such as the processor 120, bus 110, display 170, 
and so forth, to carry out the function. The basic components 
are known to those of skill in the art and appropriate variations 
are contemplated depending on the type of device, such as 
whether the device 100 is a small, handheld computing 
device, a desktop computer, or a computer server. 

Although the exemplary embodiment described herein 
employs the hard disk 160, it should be appreciated by those 
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skilled in the art that other types of computer readable media 
which can store data that are accessible by a computer, such as 
magnetic cassettes, flash memory cards, digital versatile 
disks, cartridges, random access memories (RAMs) 150, read 
only memory (ROM) 140, a cable or wireless signal contain-
ing a bit stream and the like, can also be used in the exemplary 
operating environment. Non-transitory computer-readable 
storage media expressly exclude media such as energy, carrier 
signals, electromagnetic waves, and signals per se. 

To enable user interaction with the computing device 100, 
an input device 190 represents any number of input mecha-
nisms, such as a microphone for speech, a touch-sensitive 
screen for gesture or graphical input, keyboard, mouse, 
motion input, speech and so forth. An output device 170 can 
also be one or more of a number of output mechanisms known 
to those of skill in the art. In some instances, multimodal 
systems enable a user to provide multiple types of input to 
communicate with the computing device 100. The commu-
nications interface 180 generally governs and manages the 
user input and system output. There is no restriction on oper-
ating on any particular hardware arrangement and therefore 
the basic features here can be substituted for improved hard-
ware or firmware arrangements as they are developed. 

For clarity of explanation, the illustrative system embodi-
ment is presented as including individual functional blocks 
including functional blocks labeled as a "processor" or pro-
cessor 120. The functions these blocks represent can be pro-
vided through the use of either shared or dedicated hardware, 
including, but not limited to, hardware capable of executing 
software and hardware, such as a processor 120, that is pur-
pose-built to operate as an equivalent to software executing 
on a general purpose processor. For example the functions of 
one or more processors presented in FIG. 1 can be provided 
by a single shared processor or multiple processors. (Use of 
the term "processor" should not be construed to refer exclu-
sively to hardware capable of executing software.) Illustrative 
embodiments can include microprocessor and/or digital sig-
nal processor (DSP) hardware, read-only memory (ROM) 
140 for storing software performing the operations discussed 
below, and random access memory (RAM) 150 for storing 
results. Very large scale integration (VLSI) hardware embodi-
ments, as well as custom VLSI circuitry in combination with 
a general purpose DSP circuit, can also be provided. 

The logical operations of the various embodiments are 
implemented as: (1) a sequence of computer implemented 
steps, operations, or procedures running on a programmable 
circuit within a general use computer, (2) a sequence of com-
puter implemented steps, operations, or procedures running 
on a specific-use programmable circuit; and/or (3) intercon-
nected machine modules or program engines within the pro-
grammable circuits. The system 100 shown in FIG. 1 can 
practice all or part of the recited methods, can be a part of the 
recited systems, and/or can operate according to instructions 
in the recited non-transitory computer-readable storage 
media. Such logical operations can be implemented as mod-
ules configured to control the processor 120 to perform par-
ticular functions according to the programming of the mod-
ule. For example, FIG.1 illustrates three modules Mod1162, 
Mod2 164 and Mod3 166 which are modules configured to 
control the processor 120. These modules canbe stored on the 
storage device 160 and loaded into RAM 150 or memory 130 
at runtime or can be stored as would be known in the art in 
other computer-readable memory locations. 

Having discussed some basic system components, the dis-
closure now turns to a discussion of the electromagnetic 
spectrum, all or part of which can be represented as part of a 
hyperspectral image. FIG. 2 illustrates a graphical represen- 

6 
tation 200 of the electromagnetic spectrum. The electromag-
netic spectrum represents a wide range of wavelengths of 
electromagnetic radiation, including radio waves, micro-
waves, infrared light, visible light, ultraviolet light, x-rays, 

5  and gamma rays 202. The frequencies 204, 206 of the differ-
ent types of electromagnetic radiation vary along the spec-
trum from low to high. The curved line 204 is a graphical 
depiction (not to scale) to illustrate the different frequencies 
206 on the line chart. In the range of frequencies 206, the 

10 bottom chart 208 shows an expanded view of the spectrum of 
visible light including red, orange, yellow, green, light blue, 
dark blue, violet, and many other colors. A typical image, 
such as an image obtained through a telescope or a digital 

15  camera, represents electromagnetic radiation in the visible 
spectrum, otherwise known as light. A hyperspectral image 
can encompass electromagnetic radiation from below and 
above visible light as well as all or part of the visible light 
spectrum. 

20 	In one aspect, a hyperspectral image is a collection of 
images each representing a band, or range of spectrum. The 
collection of images canbe a collection of layers which can be 
added or removed to create a combined image. In one varia-
tion, the bands of each layer in the image represent narrow 

25  spectral bands over a contiguous spectral range. For example; 
a hyperspectral image covering a total of 100 nanometers of 
spectrum can include five contiguous 20-nanometer bands. In 
another variation, the bands are less narrow and can be non-
contiguous, with a spectral gap between bands. For example, 

30 a hyperspectral image covering a total of 200 nanometers of 
spectrum can include 10 evenly-spaced contiguous 15-na-
nometer bands with a 5 nanometer gap between bands. Other 
sizes of gaps and bands can be used, including irregularly 

35  sized bands and gaps. 
The disclosure now turns to a discussion of band selection 

criteria. Multiple criteria can be used to rank image bands. In 
one implementation, eight criteria are used: three criteria 
compute central moments about the data, two criteria calcu- 

40 late more complex statistical measures, and three criteria are 
used as experimental controls. 

Central moment criteria treat the image band as a set of 
samples x, from a random variable X, then compute the cen-
tral moments of the image band. Although a data set with high 

45 variance is not guaranteed to be more useful than one with low 
variance, greater variance is one measure that implies greater 
information content. Likewise, larger measures of other cen-
tral moments generally indicate that the image has features 
useful to the target application. Below are several exemplary 

50 formulas for calculating variance as a second central moment, 
skewness as a third central moment, and kurtosis as a fourth 
central moment. Skewness is a degree of asymmetry in a 
distribution, such as extreme deviations in the distribution. 
Kurtosis generally refers to the degree to which scores are 

55 concentrated in the center of a distribution. For example, a 
higher kurtosis can correspond to less frequent extreme 
deviations in the distribution. 

Variance can be expressed by the following equation: 

60 

1 
0-2  = N 
	

(x; - x) z  

65 where x, is the value of pixel i, x is the mean value of all or part 
of the pixels in the band, and N is the number of pixels. 

Skewness can be expressed by the following equation: 
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t 	(x; —X 3   (
2) 

skewness = N  — t 	
o-3 

t=t 

where a is the standard deviation of all or part of the pixels in 
the band. Skewness measures how asymmetric a probability 
distribution is. 

Kurtosis, which is a measure of `peakedness' of a probabil-
ity distribution, can be expressed by the following equation: 

t 	(x; — x)4 	
(3) 

kurtosis = N — 1 
	cr4  

Two exemplary criteria which can be used to calculate 
more complex statistical measures include entropy and infor-
mation divergence. These infinite-order statistics can further 
be used to measure information content in a data set. Entropy 
is one classic example, expressed by the following equation: 

N 	 (4) 
H(x) _ — ~ p(x ;)logz p(x ; ) 

where p(x) is the probability of pixel x within the image X 
(calculated by constructing a histogram of image pixels) and 
N is the number of pixels in the image. This equation calcu-
lates H(x) in bits per pixel. 

Information divergence is one alternative measure of infor-
mation content. Information divergence calculates the num-
ber of additional bits needed to represent a dataset with one 
distribution using a code designed for another distribution. 
The former (denoted p in Equation (5) below) is the image 
band, and the latter (g) is a dataset with a Gaussian distribu-
tion with the same mean and variance as the image. The more 
the distribution of data in the image deviates from the Gaus-
sian model, the higher its information divergence (D), and the 
more information it is presumed to contain. Information 
divergence is expressed by the following equation: 

N 	 N 	 (5) 

H(P;S) _ ,P;log(P; /S;)+ 	S; log(S;/pi) 

The remaining three exemplary criteria, random, uniform, 
and sensor-based, can be used as experimental controls. 
These are naive alternatives to computing statistical measures 
for each band. The random classifier assigns a random score 
between 0 and 1 to each image band. The uniform classifier 
scores bands in a way that ensures the selected bands are 
distributed evenly across the original frequency range. For 
example, if the system intends to select 100 of 200 bands from 
an image, the uniform classifier assigns a high score (between 
2 and 3) to odd-numbered bands and a low score (between 0 
and 1) to even-numbered bands. The image output by PBS 
will therefore contain every other band across the original 
range. The sensor-based classifier uses basic information 
about the image sensor to improve the output of the random 
classifier. This classifier assigns a zero score to bands known 
to be uncalibrated, masked, or of otherwise low quality, then 

8 
gives random scores to the remaining bands. This optimiza-
tion adds very little complexity to the random selection algo-
rithm. 

The disclosure now turns to a more detailed discussion of 
5 progressive band selection. Progressive band selection can 

tailor the number of bands in the reduced image for a particu-
lar target application. For example, if a target application is to 
detect a thin layer of salt on the surface of the ground, pro-
gressive band selection can select the number of bands and 

io band frequencies that clearly demonstrate presence or 
absence of salt. Other example target applications can include 
detecting different types of crops, minerals, or any of a wide 
variety of objects on the surface of the ground, as well as 
underwater, or under some other at least partially transparent 

15 material. If a human operator does not directly specify the 
number of bands, PBS can search for the right number of 
bands to retain to meet an application-specific performance 
target. FIG. 3 is a chart 300 illustrating approaches of three 
search strategies, progressive band expansion (PBE) 308, 

20 progressive band reduction (PBR) 310, and binary bisection 
band selection (BBBS) 312, which will each be discussed in 
turn. In the chart 300 of FIG. 3, the number of bands 302 
ranges from 0 to 200, the target region 304 represents a target 
performance level suitable for the particular application, and 

25 the performance line 306 represents actual or estimated sys- 
tem performance based on the progressive band selection. 

Starting with an empty output image, a system operating 
according to PBE 308 adds the highest-ranking image band to 
the output image and measures its performance 306 in the 

30 target application 304. If higher performance is needed, the 
system adds the next highest-ranking band and measures the 
performance again. The system continues this process until 
the application meets its performance target 304 using the 
output image. 

35 	PBR is the logical inverse of PBE. A system operating 
according to PBR 310 starts with a copy of the input image as 
its output. The system removes the lowest-ranking band and 
measures application performance 306. The system repeats 
this process until enough bands have been removed to reduce 

4o application performance 306 to match or fall just below the 
target level 304. 

PBR and PBE are both iterative, linear search approaches 
to identify the right number of bands to retain. By contrast, 
binary bisection band selection (BBBS) 312 performs a 

45 binary search, which is a logarithmic approach. PBR and PBE 
perform searches in O(N) time, while BBBS performs 
searches in O(log N) time. BBBS 312 begins with an output 
image containing the highest-ranking 50% of bands from the 
input image, representing the midpoint between an empty 

50 image and the full dataset. If application performance is 
above the target performance threshold 304, the system 
removes the lowest-ranking half of these bands, leaving the 
highest ranking 25%. However, if performance was inad-
equate, the system adds half of the bands that were excluded 

55 from the first dataset, such that the output image consists of 
the highest-ranking 75% of input bands. The system mea-
sures performance again. If necessary, the system adjusts the 
number of bands by a factor of '/a or 12.5%. The process 
continues until performance is within an acceptable range. 

60 In order to demonstrate these principles, the disclosure 
turns to some experimental data. The experimental data 400 
are based on a test image 404, shown in FIG. 4, which is a 
small subset of a larger image 402 taken by the Hyperion 
instrument onboard the NASA EO-1 spacecraft. The test 

65 image 404 depicts a suburban and mountainous forest area 
near Tucson, Ariz. on 17 Jun. 2003 at 10:00-10:15 a.m. local 
time. The original larger image 402 is 5581 pixels long. The 
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test image 404 is a 512 pixel subset of the larger image 402, 
centered over the suburban area. Both images have 256 spa-
tial columns, and each pixel covers an area of 30 square 
meters. The original image 402 includes 242 spectral bands, 
covering wavelengths between 400 and 2500 nun. Atmo-
spheric correction of the image is not necessary because the 
training data needed for both classification algorithms are 
taken from the image itself. The same atmospheric effects 
affect training and test pixels. 

FIG. 5 is a representation 500 of a first image 502 showing 
the major features in the test image 404 and a second image 
504 showing a map of material present in the test image 404. 
A suburb covers the center of the image which shows a grid of 
paved streets encircling residential areas, shopping malls, and 
parking lots. The residential areas consist of grassy lawns 
along narrow side streets. The largest expanse of paved 
ground is the runway at the airport, south of the suburbs, and 
the largest expanses of grass are found at the golf course just 
to its north. 

A forest fire rages in the mountains to the north, and while 
the fire itself is not included in the test image, the upper-right 
corner is shrouded by smoke from the blaze. The only detect-
able pools of water in this parched suburb are a lake and a 
small reservoir. 

Typically, PBS uses one of the three methods described 
above to determine an acceptable number of bands to include 
in the output image. However, one aim of the experimental 
data is to test Virtual Dimensionality (VD) as an initial esti-
mate of the output band count. VD is a measure of the number 
of spectrally distinct signals that combine to produce the 
spectra in the output image. PBS prepares output images with 
band counts equal to several multiples of VD (0.25, 0.5,1, 1.5, 
2, 2.5). In this example, the VD of the test image is 35, so PBS 
is configured to prepare reduced image output with 9, 18, 35, 
53, 70, and 88 bands images using each of the eight criteria. 
The reduced images are fed as input to two land classification 
algorithms. 

PBS requires a certain amount of processing time. Ideally, 
the time saved, by processing the reduced image in place of 
the full-size image offsets the cost of using PBS. FIG. 6 is a 
chart 600 that shows how the time needed to process the test 
image with PBS varies with the criterion used. The skewness 
and kurtosis criteria are the most computationally expensive, 
followed closely by information divergence. Skewness, kur-
tosis, and information divergence use expensive mathemati-
cal operations to generate priority scores, and extensive pro-
cessing that may not be worth the effort. 

Spectral angle mapping (SAM) computes the similarity of 
two image pixels by treating them as vectors in a high-dimen-
sional space and measuring the angle between the vectors. 
This technique is useful for satellite images because it ignores 
differences in the intensity of sunlight in each pixel and 
focuses instead on the differences in the at-sensor spectral 
radiance of the two materials. SAM makes material classifi-
cation maps by comparing each pixel to a set of representative 
material spectra and coloring the map according to which 
material spectra makes the smallest angle with each pixel. 

The four dominant materials present in the test image 404 
are grass, pavement, soil and water. The triangles in FIG. 5 
show where pixels representing these materials were selected 
from the original image 402. FIG. 5 also shows a material 
map 504 created using the full test image. In this experiment, 
the system processes the PBS output images with SAM to 
attempt to generate the same or similar map. 

FIG. 9 shows the maps generated by SAM from each of the 
reduced images. The information divergence, kurtosis and 
skewness criteria failed to make reduced images with fewer 

than 53 bands that SAM could process. Again, kurtosis mea-
sures the peakedness of a data distribution or essentially 
measures a bell curve, and skewness measures the degree to 
which a distribution is not in balance with a mean. These 

5  maps are left blank. This is because the criteria selected 
mostly dark and uncalibrated bands, due to the fact that these 
bands have data that are heavily skewed from the expected 
Gaussian distribution. These criteria consider the heavily 
skewed bands valuable, when, in fact, they are just noisy. 

10 Larger datasets produced by these criteria (which are guaran-
teed to contain at least some calibrated bands) still produced 
poor material maps. Kurtosis caused misclassification of the 
smoky area in the upper-right corner, and skewness caused 

15  most of the central area to be classified as pavement. Other 
criteria fared better. With as few as 18 bands (one half of the 
image's virtual dimensionality), entropy, variance, and the 
three control criteria (random, uniform and sensor-based) 
produced images that yielded nearly correct SAM output. The 

20 five criteria appeared to perform almost equally, indicating 
that 18 bands ( 1/XVD) is enough to perform the classification 
and still allow for slight variance in the set of bands chosen. 
When the system uses only nine bands ('/4xVD), however, 
only the uniform classifier produced reliable output. 

25 Smaller images can be processed faster than larger ones, 
but FIG. 7 is a chart 700 showing that processing an 18-band 
version of the test image 404 saves only three seconds over 
processing an 88-band version. Since the five non-control 
criteria take more than three seconds to execute, PBS prepro- 

30 cessing is not economical for this data set. 
Another type of classifier is a support vector machine 

(SVM)-based classifier. An SVM classifier can use C-support 
vector classification (C-SVC), the radial basis function (RBF) 
kernel, and the one-against-one approach to multi-class clas- 

35 sification. Using a gamma value of 2 yields the most accurate 
output in this configuration. The SVM classifier was tested 
using 48 pixels from the test image 404, twelve for each 
material. The pixels were gathered from the regions marked 
with triangles in FIG. 5. Training the SVM took an insignifi- 

40 cant amount of time. 
SVM output maps, shown in FIG. 10, have a much different 

appearance from their SAM counterparts in FIG. 9. SAM 
tends to find a "default" material choice, meaning that the 
system tends to classify all pixels as this material (sand, in the 

45 case of the test image) unless their spectra are very similar to 
one of the other materials. In SVM output maps, more pixels 
are classified as pavement or grass, even when they contain a 
substantial proportion of sand. As noted previously, the infor-
mation divergence, skewness, and kurtosis criteria failed to 

50 provide reduced images with fewer than 53 bands that could 
be processed by SVM. Even when allowed to select 70 or 88 
bands, these three criteria produced images that made it easy 
for SVM to misclassify pixels in areas obscured by smoke. 

Results for other criteria also mirrored the results obtained 
55 using SAM. Entropy, variance, and the control criteria each 

produced images with as few as 18 bands ( 1/*VD) that 
yielded output maps that were virtually identical to those 
made with reduced images with 88 bands or the full image. 
However given only nine bands, SVM appears to outperform 

60 SAM. Maps produced with the variance and sensor-based 
criteria are remarkably similar to those made with the full-
size image. The performance of the other criteria given so few 
bands indicates that this output is unreliable. 

The chart 800 in FIG. 8 shows that SVM is a more efficient 
65 algorithm than SAM, making similar maps in roughly half the 

time. However, as with SAM the time saved is far less than the 
time PBS spends to process the images. 
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PBS can reduce processing time by removing spectral 
redundancy from hyperspectral images. In land classification 
scenarios in particular, the system processes smaller datasets 
in less time than the full image yet produce similar output. 
However, the savings in the experimental dataset do not offset 
the overhead of running PBS with any of the five non-control 
criteria. It is worth pointing out that the control criteria, meant 
to represent naive methods of band selection, produce 
reduced images with equal or greater quality than the non-
control criteria, and run quickly enough to make PBS an 
economical way of improving processing efficiency. 

Having disclosed some basic system components, algo-
rithms, and experimental data, the disclosure now turns to the 
exemplary method embodiment for progressive band selec-
tion for hyperspectral images, as shown in FIG. 11. For the 
sake of clarity, the method is discussed in terms of an exem-
plary system 100, as shown in FIG. 1, configured to practice 
the method or having first, second, third modules and so forth 
configured to control a processor to practice the various steps 
of the method. The system calculates a virtual dimensionality 
of a hyperspectral image containing a group of bands to 
determine a quantity Q defining how many bands in the group 
of bands are needed for a threshold level of information 
(1102). The system 100 can determine Qby progressive band 
selection based on an application-specific performance tar-
get. As set forth above, three exemplary progressive band 
selection algorithms are progressive band expansion, pro-
gressive band reduction, and binary bisection band selection. 

The system 100 ranks each band in the group of bands 
based on a statistical measure (1104). The system 100 can 
rank each band further based on a central moment of each 
band, such as variance, skewness, and kurtosis. 

The system 100 selects Q bands from the group ofbands to 
generate a subset of bands based on the virtual dimensionality 
(1106) and generates an image based at least in part on the 
subset of bands (1108). When selecting Q bands from the 
group of bands, the system 100 can select highest-ranked 
bands from the group of bands. The system 100 can alterna-
tively select other bands besides the highest-ranked bands. 
For example, in extremely low bandwidth or high latency 
situations, such as a space craft, where resources must be 
conserved aggressively, the system 100 can select the two 
most transmission-efficient bands from the highest-ranked 
bands, which can be bands #3 and #7 instead of bands #1 and 
#2. Other subsets of bands can be used as well, depending on 
the various requirements and tolerances of each particular 
application of these principles. For example, bands with 
lower entropy are more highly compressible and would be 
well suited to low-bandwidth applications. Thus, in one 
example the system 100 selects, from a set of highest ranked 
bands, the top N lowest entropy bands for transmission. 

Embodiments within the scope of the present disclosure 
can also include tangible and/or non-transitory computer-
readable storage media for carrying or having computer-ex-
ecutable instructions or data structures stored thereon. Such 
non-transitory computer-readable storage media can be any 
available media that can be accessed by a general purpose or 
special purpose computer, including the functional design of 
any special purpose processor as discussed above. By way of 
example, and not limitation, such non-transitory computer-
readable media can include RAM, ROM, EEPROM, CD-
ROM or other optical disk storage, magnetic disk storage or 
other magnetic storage devices, or any other medium which 
can be used to carry or store desired program code means in 
the form of computer-executable instructions, data structures, 
or processor chip design. When information is transferred or 
provided over a network or another communications connec- 

12 
tion (either hardwired, wireless, or combination thereof) to a 
computer, the computer properly views the connection as a 
computer-readable medium. Thus, any such connection is 
properly termed a computer-readable medium. Combinations 

5  of the above should also be included within the scope of the 
computer-readable media. 

Computer-executable instructions include, for example, 
instructions and data which cause a general purpose com- 

10 puter, special purpose computer, or special purpose process-
ing device to perform a certain function or group of functions. 
Computer-executable instructions also include program 
modules that are executed by computers in stand-alone or 
network environments. Generally, program modules include 

15 routines, programs, components, data structures, objects, and 
the functions inherent in the design of special-purpose pro-
cessors, etc. that perform particular tasks or implement par-
ticular abstract data types. Computer-executable instructions, 
associated data structures, and program modules represent 

20 examples of the program code means for executing steps of 
the methods disclosed herein. The particular sequence of such 
executable instructions or associated data structures repre-
sents examples of corresponding acts for implementing the 

25 
functions described in such steps. 

Those of skill in the art will appreciate that other embodi-
ments of the disclosure can be practiced in network comput-
ing environments with many types of computer system con-
figurations, including personal computers, hand-held 

3o devices, multi-processor systems, microprocessor-based or 
programmable consumer electronics, network PCs, mini-
computers, mainframe computers, and the like. Embodi-
ments can also be practiced in distributed computing envi-
ronments where tasks are performed by local and remote 

35  processing devices that are linked (either by hardwired links, 
wireless links, or by a combination thereof) through a com-
munications network. In a distributed computing environ-
ment, program modules can be located in both local and 

40 
remote memory storage devices. 

The various embodiments described above are provided by 
way of illustration only and should not be construed to limit 
the scope of the disclosure. For example, the principles herein 
have military and surveillance applications, as well as appli- 

45 cations in investigating land use, mineral deposits, and signs 
of climate change. Those skilled in the art will readily recog-
nize various modifications and changes that may be made to 
the principles described herein without following the 
example embodiments and applications illustrated and 

5o described herein, and without departing from the spirit and 
scope of the disclosure. 

I claim: 

1. A method of progressive band selection for hyperspec-
tral images, the method comprising: 

calculating a virtual dimensionality of a hyperspectral 
image containing a plurality of bands to determine a 
quantity Q defining how many bands in the plurality of 

60 	bands are needed for a threshold level of information; 

ranking each band in the plurality of bands based on a 
statistical measure; 

selecting Q bands from the plurality of bands to generate a 

65 	
subset of bands based on the virtual dimensionality; and 

generating an image based on the subset of bands, 

wherein the statistical measure is entropy defined as 
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H(x) _ , p(x;)1092p(x;), 
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N 
1 	(x; — z)4  

kurtosis = N — 1 
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t=t 
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where p(x) probability of pixel x within the hyperspectral 
image calculated by constructing a histogram of image pixels, 
and N is a number of pixels in the hyperspectral image. 

2. The method of claim 1, wherein Q is determined by 
progressive band selection. 

3. The method of claim 2, wherein progressive band selec-
tion is based on an application-specific performance target. 

4. The method of claim 2, wherein progressive band selec-
tion comprises at least one of progressive band expansion, 
progressive band reduction, and binary bisection band selec-
tion. 

5. The method of claim 1, wherein selecting Q bands from 
the plurality of bands further comprises selecting highest-
ranked bands from the plurality of bands. 

6. A method of progressive band selection for hvperspec-
tral images, the method comprising: 

calculating a virtual dimensionality of a hyperspectral 
image containing a plurality of bands to determine a 
quantity Q defining how many bands in the plurality of 
bands are needed for a threshold level of information; 

ranking each band in the plurality of bands based on a 
statistical measure; 

selecting Q bands from the plurality of bands to generate a 
subset of bands based on the virtual dimensionality; and 

generating an image based on the subset of bands, 
wherein ranking each band is further based on a central 

moment of each band and wherein the central moment is 
calculated based on a skewness formula 

N 

1 	(xi -  x)3  
skewness = N

-1 1  0 3  
1 _ 

where a is standard deviation of all pixels in the respective 
band, x, is a value of pixel i, x is a mean value of all pixels in 
the respective band, and N is a number of pixels. 

7. The method of claim 6, wherein Q is determined by 
progressive band selection and wherein selecting Q bands 
from the plurality of bands further comprises selecting high-
est-ranked bands from the plurality of bands. 

8. The method of claim 7, wherein progressive band selec-
tion is based on an application-specific performance target. 

9. The method of claim 7, wherein progressive band selec-
tion comprises at least one of progressive band expansion, 
progressive band reduction, and binary bisection band selec-
tion. 

10. A method of progressive band selection for hyperspec-
tral images, the method comprising: 

calculating a virtual dimensionality of a hyperspectral 
image containing a plurality of bands to determine a 
quantity Q defining how many bands in the plurality of 
bands are needed for a threshold level of information; 

ranking each band in the plurality of bands based on a 
statistical measure; 

selecting bands from the plurality of bands to generate a 
subset of bands based on the virtual dimensionality; and 

generating an image based on the subset of bands, 
wherein ranking each band is further based on a central 

moment of each band and wherein the central moment is 
calculated based on a kurtosis formula  

where u is a standard deviation of all pixels in the respective 
band, x, is a value of pixel i, x is a mean value of all pixels in 
the respective band, and N is a number of pixels. 

10 11. The method of claim 10, wherein Q is determined by 
progressive band selection and wherein selecting Q bands 
from the plurality of bands further comprises selecting high-
est-ranked bands from the plurality of bands. 

12. The method of claim 1, wherein progressive band 
15  selection is based on an application-specific performance 

target. 

13. The method of claim 11, wherein progressive band 
selection comprises at least one of progressive band expan- 

20  sion, progressive band reduction, and binary bisection band 
selection. 

14. A system for progressive band selection in hyperspec-
tral images, the system comprising: 

a processor; 

25 	a first module configured to control the processor to calcu- 
late a virtual dimensionality of a hyperspectral image 
containing a plurality of bands to determine a quantity Q 
defining how many bands in the plurality of bands are 
needed for a threshold level of information; 

30 	a second module configured to control the processor to 
rank each band in the plurality of bands based on a 
statistical measure; 

a third module configured to control the processor to select 
35 	Q bands from the plurality of bands to generate a subset 

of bands based on the virtual dimensionality; and 

a fourth module configured to control the processor to 
generate an image based on the subset of bands, 

wherein the statistical measure is information divergence 
40 	defined as 

H(P; S) _ 	P; 1og(P; / 8;) + 	8; 1og(S; / pi), 

45 

where p is an image band in the hyperspectral image, and g is 
a dataset with a Gaussian distribution with a same mean and 
variance as the image band p. 

50 	
15. The system of claim 14, wherein selecting Q bands 

from the plurality of bands further comprises selecting high-
est-ranked bands from the plurality of bands. 

16. A method of progressive band selection for hyperspec-

55 tral images, the method comprising: 

calculating a virtual dimensionality of a hyperspectral 
image containing a plurality of bands to determine a 
quantity Q defining how many bands in the plurality of 
bands are needed for a threshold level of information; 

60 	ranking each band in the plurality of bands based on a 
statistical measure; 

selecting Q bands from the plurality of bands to generate a 
subset of bands based on the virtual dimensionality; and 

65 	generating an image based on the subset of bands, 

wherein the statistical measure is information divergence 
defined as 
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D(P;g)_ ,P;log(P;/g;)+Y,g;log(g;/P;), 
1_ 	 1_  

16 
a fourth module configured to control the processor to 

generate an image based on the subset of bands, 
wherein the statistical measure is entropy defined as 

where p is an image band in the hyperspectral image, and g is 
a dataset with a Gaussian distribution with a same mean and 
variance as the image band p. 

17. The method of claim 16, wherein Q is determined by 
progressive band selection. 

18. The method of claim 17, wherein progressive band 
selection is based on an application-specific performance 
target. 

19. The method of claim 17, wherein progressive band 
selection comprises at least one of progressive band expan-
sion, progressive band reduction, and binary bisection band 
selection. 

20. The method of claim 16, wherein selecting Q bands 
from the plurality of bands further comprises selecting high-
est-ranked bands from the plurality of bands. 

21. A method of progressive band selection for hyperspec-
tral images, the method comprising: 

calculating a virtual dimensionality of a hyperspectral 
image containing a plurality of bands to determine a 
quantity Q defining how many bands in the plurality of 
bands are needed for a threshold level of information; 

ranking each band in the plurality of bands based on a 
statistical measure; 

selecting Q bands from the plurality of bands to generate a 
subset of bands based on the virtual dimensionality; and 

generating an image based on the subset of bands, 
wherein ranking each band is further based on a central 

moment of each band, and wherein the central moment 
is calculated based on a variance formula  

" 

H(x) _ 	p(x;)1092p(x;), 

io where p(x) is a probability of pixel x within the hyperspectral 
image calculated by constructing a histogram of image pixels, 
and N is a number of pixels in the hyperspectral image. 

26. The system of claim 25, wherein selecting Q bands 
from the plurality of bands further comprises selecting high-

15  est-ranked bands from the plurality of bands. 
27. A non-transitory computer-readable storage medium 

storing instructions which, when executed by a computing 
device, cause the computing device to perform progressive 
band selection for hyperspectral images, the instructions 

20  comprising: 
calculating a virtual dimensionality of a hyperspectral 

image containing a plurality of bands to determine a 
quantity Q defining how many bands in the plurality of 
bands are needed for a threshold level of information; 

25 	ranking each band in the plurality of bands based on a 
statistical measure; 

selecting Q bands from the plurality of bands to generate a 
subset of bands based on the virtual dimensionality; and 

generating an image based on the subset of bands, 
30 	wherein the statistical measure is entropy defined as 

" 

H(x) _ 	p(x;) 1092p(x;), 

35 

1 	" 

where x, is a value of pixel i, x is a mean value of all the 
respective band, and N is a number of pixels. 

22. The method of claim 21, wherein Q is determined by 
progressive band selection and wherein selecting Q bands 
from the plurality of bands further comprises selecting high-
est-ranked bands from the plurality of bands. 

23. The method of claim 22, wherein progressive band 
selection is based on an application-specific performance 
target. 

24. The method of claim 22, wherein progressive band 
selection comprises at least one of progressive band expan-
sion, progressive band reduction, and binary bisection band 
selection. 

25. A system for progressive band selection in hyperspec-
tral images, the system comprising: 

• processor; 
• first module configured to control the processor to calcu-

late a virtual dimensionality of a hyperspectral image 
containing a plurality of bands to determine a quantity Q 
defining how many bands in the plurality of bands are 
needed for a threshold level of information; 

• second module configured to control the processor to 
rank each band in the plurality of bands based on a 
statistical measure; 

• third module configured to control the processor to select 
Q bands from the plurality of bands to generate a subset 
of bands based on the virtual dimensionality; and 

where p(x) is a probability of pixel x within the hyperspectral 
image calculated by constructing a histogram of image pixels, 
and N is a number of pixels in the hyperspectral image. 

40 28. The non-transitory computer-readable storage medium 
of claim 27, wherein Q is determined by progressive band 
selection. 

29. A non-transitory computer-readable storage medium 
storing instructions which, when executed by a computing 

45 device, cause the computing device to perform progressive 
band selection for hyperspectral images, the instructions 
comprising: 

calculating a virtual dimensionality of a hyperspectral 
image containing a plurality of bands to determine a 

50 	quantity Q defining how many bands in the plurality of 
bands are needed for a threshold level of information; 

ranking each band in the plurality of bands based on a 
statistical measure; 

selecting Q bands from the plurality of bands to generate a 
55 	subset of bands based on the virtual dimensionality; and 

generating an image based on the subset of bands, wherein 
the statistical measure is information divergence defined 
as 

60 

H(P; g) _ 	P; log(P; / g;) + 	g; log(g; / pi), 

65 where pis an image band in the hyperspectral image, and g is 
a dataset with a Gaussian distribution with a same mean and 
variance as the image band p. 
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30. The non-transitory computer-readable storage medium 
of claim 29, wherein Q is determined by progressive band 
selection. 

31. A non-transitory computer-readable storage medium 
storing instructions which, when executed by a computing 
device, cause the computing device to perform progressive 
band selection for hyperspectral images, the instructions 
comprising: 

calculating a virtual dimensionality of a hyperspectral 
image containing a plurality of bands to determine a 
quantity Q defining how many bands in the plurality of 
bands are needed for a threshold level of information; 

ranking each band in the plurality of bands based on a 
statistical measure; 

selecting bands from the plurality of bands to generate a 
subset of bands based on the virtual dimensionality; and 

generating an image based on the subset of bands, 
wherein ranking each band is further based on a central 

moment of each band and wherein the central moment is 
calculated based on a variance formula 

1 	 " 

N 

where x, is a value of pixel i, x is a mean value of all pixels in 
the respective band, and N is a number of pixels. 

32. The non-transitory computer-readable storage medium 
of claim 31, wherein Q is determined by progressive band 
selection and wherein selecting bands from the plurality of 
bands further comprises highest-ranked bands from the plu-
rality of bands. 

33. The non-transitory computer-readable storage medium 
of claim 32, wherein progressive band selection is based on an 
application-specific performance target. 

34. The non-transitory computer-readable storage medium 
of claim 32, wherein progressive band selection comprises at 
least one of progressive band expansion, progressive band 
reduction, and binary bisection band selection. 

35. A non-transitory computer-readable storage medium 
storing instructions which, when executed by a computing 
device, cause the computing device to perform progressive 
band selection for hyperspectral images, the instructions 
comprising: 

calculating a virtual dimensionality of a hyperspectral 
image containing a plurality of bands to determine a 
quantity Q defining how many bands in the plurality of 
bands are needed for a threshold level of information; 

ranking each band in the plurality of bands based on a 
statistical measure; 

selecting Q bands from the plurality of bands to generate a 
subset of bands based on the virtual dimensionality; and 

generating an image based on the subset of bands, 

wherein ranking each band is further based on a central 
moment of each band and wherein the central moment is 
calculated based on a skewness formula 

where a is a standard deviation of all pixels in the respective 
band, x, is a value of pixel i, x is a mean value of all pixels in 
the respective band, and N is a number of pixels. 

36. The non-transitory computer-readable storage medium 
to of claim 35, wherein is determinedby progressive band selec-

tion and wherein selecting Q bands from the plurality of 
bands further comprises selecting highest-ranked bands from 
the plurality of bands. 

37. The non-transitory computer-readable storage medium 
15  of claim 36, wherein progressive band selection is based on an 

application-specific performance target. 
38. The non-transitory computer-readable storage medium 

of claim 36, wherein progressive band selection comprises at 
least one of progressive band expansion, progressive band 

20 reduction, and binary bisection band selection. 
39. A non-transitory computer-readable storage medium 

storing instructions which, when executed by a computing 
device, cause the computing device to perform progressive 
band selection for hyperspectral images, the instructions 

25  comprising: 
calculating a virtual dimensionality of a hyperspectral 

image containing a plurality of bands to determine a 
quantity Q defining how many bands in the plurality of 
bands are needed for a threshold level of information; 

30 
ranking each band in the plurality of bands based on a 

statistical measure; 
selecting Q bands from the plurality of bands to generate a 

subset of bands based on the virtual dimensionality; and 
generating an image based on the subset of bands, 

35  wherein ranking each band is further based on a central 
moment of each band and wherein the central moment is 
calculated based on a kurtosis formula 

" 

40 1 	(x; —X) 4  
kurtosis = 	

cr4 

where a is a standard deviation of all pixels in the respective 
45  band, x, is a value of pixel i, x is a mean value of all pixels in 

the respective band, and N is a number of pixels. 
40. The non-transitory computer-readable storage medium 

of claim 39, wherein Q is determined by progressive band 
selection and wherein selecting Q bands from the plurality of 

50 bands further comprises selecting highest-ranked bands from 
the plurality of bands. 

41. The non-transitory computer-readable storage medium 
of claim 40, wherein progressive band selection is based on an 
application-specific performance target. 

55 	42. The non-transitory computer-readable storage medium 
of claim 40, wherein progressive band selection comprises at 
least one of progressive band expansion, progressive band 
reduction, and binary bisection band selection. 
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