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ABSTRACT

A review of recently published coupled radiation and ablation capabilities involving the simulation of hyper-
sonic flowfields relevant to Earth, Mars, or Venus entry is presented. The three fundamental mechanisms of
radiation coupling are identified as radiative cooling, precursor photochemistry, and ablation-radiation inter-
action. The impact of these mechanisms are shown to be significant for a 3 m radius sphere entering Earth at
hypothetical Mars return conditions (∼15 km/s). To estimate the influence precursor absorption on the radia-
tive flux for a wide range of conditions, a simplified approach is developed that requires only the non-precursor
solution. Details of a developed coupled ablation approach, which is capable of treating both massively ablat-
ing flowfields in the sublimation regime and weakly ablating diffusion–limited oxidation cases, are presented.
A review of the two primary uncoupled ablation approximations, identified as the blowing correction and film
coefficient approximations, is made and their impact for Earth and Mars entries is shown to be significant for
recession and convective heating predictions. Fully coupled ablation and radiation simulations are presented
for the Mars return sphere throughout its entire trajectory. Applying to the Mars return sphere the Pioneer-
Venus heritage carbon phenolic heatshield, which has properties available in the open literature, the differences
between steady state ablation and coupling to a material response code are shown to be significant.

1.0 INTRODUCTION

NASA’s goal of manned exploration beyond low Earth orbit presents new challenges to the simulation of the

aerothermodynamic environment resulting from such missions. For example, a return to Earth from Mars or

an asteroid may require Earth entry velocities as high as 16 km/s, which would result in massive ablation and

significant radiative heating. The influence of ablation-product injection into the flowfield (coupled ablation)

and radiative energy exchange on the flowfield (coupled radiation) are required for the accurate prediction of

radiative and convective heat rates, or more importantly, the material response of the heat shield. An illustration

of these coupled phenomena is presented in Fig. 1, where the components shown in ovals represent mechanisms

through which coupled ablation and radiation influence the flowfield. Modeling the influence of these mecha-

nisms on the components of the surface energy balance, listed in the white boxes, represents the primary goal

of an aerothermodynamic simulation. As will be shown in this paper, uncoupled techniques for approximately

treating these coupled ablation and radiation phenomena, based on non-radiating and non-ablating flowfield
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Figure 1: Energy balance for a charring ablator.

solutions, are found to introduce significant errors for many cases. In regards to efficient heat shield design,

the significance of these errors are magnified by the fact that, as the influence of coupled ablation and radiation

increases, the mass of the ablator becomes a larger fraction of the total entry system mass. This is illustrated in

Fig. 2, which presents the reduction due to ablation in the total (radiative and convective) heating at the stagna-

tion point of various NASA missions (including a hypothetical Mars return case, which will be discussed later)

as a function of the mass fraction of the thermal protection system (TPS). It is seen that as the influence of abla-

tion on the heating increases, indicating the increased importance of a coupled ablation analysis, the TPS mass

fraction increases, indicating the increased importance of minimizing the ablator thickness for efficient vehicle

design. Similarly, the influence of coupled radiation is found to increase as a function of TPS mass fraction.

With NASA’s previously mentioned goal of manned exploration beyond low Earth orbit, these observations

provide significant motivation for the development of the coupled ablation and radiation simulation capability.
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Figure 2: Specified ablation rates and wall temperature.

The goal of this paper is to present an overview of re-

cent advancements to NASA’s coupled radiation and ablation

capability. The subject of coupled radiation is discussed in

Section 2, which reviews the flowfield and radiation mod-

els applied throughout this work, followed by discussions of

the three fundamental mechanisms of coupled radiation: 1)

“radiative cooling”, 2) ablation-radiation interaction, and 3)

precursor photochemistry. The subject of coupled ablation

is discussed in Section 3, which provides details of the de-

veloped coupled ablation procedure and investigates the in-

fluence of uncoupled ablation approximations for Earth and

Mars entry cases. Finally, Section 4 applies the coupled ra-

diation and ablation capability to a complete Mars return to

Earth trajectory. Surface recession and in-depth material re-

sponse are presented to show the potential of using Pioneer-

Venus heritage carbon phenolic for such a mission.
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2.0 COUPLED RADIATION

Shock layer radiation influences a reentry flowfield through three fundamental physical mechanisms: 1) “radia-

tive cooling”, 2) ablation-radiation interaction, and 3) precursor photochemistry. To simulate these phenomena,

a thermochemical nonequilibrium flowfield coupled to a detailed radiation and ablation model is required.

While details regarding coupled ablation are deferred until later in this paper, the nonequilibrium flowfield and

radiation model are presented in the next two subsections, followed by discussions and examples of the three

coupled radiation influences mentioned above.

2.1 Flowfield Modeling

The LAURA v5 Navier-Stokes solver[1] was applied in this work, which includes a two-temperature ther-

mochemcial nonequilibrium model and the following 26 species throughout the flowfield (including the wall):

N, N+, NO, NO+, N2, N2
+, O, O+, O2, O2

+, e-, C, C+, CO, CO2, C2, C3, C4, C5, C2H, C2H2, CN, H, H2, HCN,

and CH. The thermodynamic properties for these species were obtained from Gordon and Mcbride[2]. The

transport properties were obtained from Wright et al.[3, 4] where available. The remaining species were treated

using the approximate approach of Svehla[5] modified as suggested by Park[6]. The chemical reaction rates

applied were the same as those applied by Johnston et al. [7]. The baseline predictions are assumed completely

turbulent using the Cebeci-Smith turbulence model[8, 9] with a turbulent Schmidt number of 0.9.

2.2 Radiation Modeling

Table 1: Oscillator strength uncertain-
ties for molecular band systems result-
ing from ablation products.

Band System +/- Uncertainty

CO Fourth-Positive [10, 11] 40%
CN Red[10, 11] 30%
CN Violet[10, 11] 15%
C2 Swan[10, 11] 50%
C2 Ballik-Ramsay[10–13] 50%
C2 Phillips[10, 11] 50%
C3 Swings[14–16] O(1) mag.
C3 UV[14–16] O(1) mag.
C2H UV[14–16] O(1) mag.
H2 Lyman[17–19] 10%
H2 Werner[17–19] 20%

All radiation computations in this work are made using the state-of-the-

art HARA radiation code. This code was created with the intention of

applying it to coupled radiation and ablation simulations. A features that

makes HARA ideal for this application is its ability to treat molecular

bands using either the efficient smeared rotational band (SRB) approach

or the rigorous, but orders of magnitude more computationally expensive,

line-by-line approach. Depending on the importance and anticipated op-

tical thickness of an individual band system, the user may specify which

band systems, if any, are treated using the LBL approach. Another feature

that make HARA ideal for coupled analyses is its comprehensive set of

radiation properties, including spectral data and non-Boltzmann models

for diatomic molecules and atomic species.

2.2.1 Molecular Band Systems for Ablation Products

As will be shown in the following sections, ablation products provide sig-

nificant absorption of the incoming radiative flux. For strongly radiating

cases where the radiative flux drives the ablation rates, such as for a Mars return, the prediction of this absorp-

tion represents a significant component of the coupled radiation and ablation solution. This section reviews the

choice of the ablation product oscillator strengths and assigns an uncertainty to value. This uncertainty will be

applied in the next section, which will present an sensitivity analysis using these uncertainties as the parameter

limits.

Recent reviews of molecular band system data for a CO2-N2 gas [10–13] provide valuable insight into the

uncertainties for many of the bands systems resulting from diatomic ablation products. Comparisons between
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experimental measurements and various predictions for the oscillator strengths for the C2 and CO molecules

are made in these papers. These comparisons are used to determine the uncertainties applied in the present

work for C2 and CO, which are listed in Table 1. Note that these uncertainties are relatively large and range

from 15 to 50%.

One of the most significant absorbers in the ablation-contaminated boundary layer is the C3 Swings band

system. The three existing measurements of this band system [14, 15, 20] result in absorption cross sections

with peak magnitudes within 50% of each other (if the updated thermodynamic data is applied when backing

out the cross-section [21]). However, these measurements were all for temperatures below 4000 K, and the

wavelength span of each measured cross-section varied significantly. Because of these two factors, the C3

Swings absorption cross section was assigned a one order-of-magnitude uncertainty in this analysis.

The C3 UV band system has been measured by Shinn [16] and computed by Arnold et al. [22]. The

measurements by Shinn are roughly an order-of-magnitude greater than the predictions of Arnold et al. Because

of this, the C3 UV absorption cross section was assigned a one order-of-magnitude uncertainty in this analysis.

The C2H UV band system has been measured by Shinn [16] and Prakash et al. [15]. The influence of

Mie scattering on the interpretation of these data has been questioned by Arnold et al. [22]. Because of this

question and the scatter in the data, the C2H UV absorption cross section was assigned a one order-of-magnitude

uncertainty in this analysis.

Reviews of the H2 Lyman and Werner band systems are provided by Fabian and Lewis [18]. They compare

the oscillator strengths computed by Allison and Dalgarno [17], which are applied in the present study, with

various experimental measurements. The agreement for the Lyman band is shown to be excellent, while that

for the Werner band is slightly worse. Based on these comparisons, the oscillator strength uncertainties for the

Lyman and Werner bands are assigned as ±10% and ±20%, respectively.

2.2.2 Radiation Modeling Uncertainty for a Mars Return

To provide insight into the the radiative heating uncertainty of the simulations presented in this work for high

speed Earth entry, an uncertainty analysis is presented for a 5 m radius sphere, with a carbon-phenolic heat-

shield, entering Earth at a range of velocities and a free-stream density of 3e-4 kg/m3. This uncertainty analysis

applies the ablation product uncertainties discussed in the previous section, along with a number of additional

uncertainties presented in Ref. [23]. The uncertainty values resulting from this analysis are presented in Ta-

ble 2 for the stagnation point radiative heating over a range of velocities. The individual components from the

various radiative mechanisms are listed along with the total parametric uncertainty, which is the sum of the

individual components. The positive uncertainty is listed without parenthesis, while the negative uncertainty is

listed within parenthesis. The rows in this table each refer to a specific group of the uncertainty parameters:

“Air: Molec. Bands” and “AP: Molec. Bands” refer to the uncertainty resulting from Air and Ablation Prod-

uct (AP) molecular band oscillator strength uncertainties; “Air: Atomic Lines: fi,j” from all air atomic line

oscillator strength uncertainties; “Atomic Lines: ΔλS,0” from all air atomic line Stark broadening width un-

certainties; “Air: Atomic Photoionization” and “AP: Atomic Photoionization” from all air and ablation product

atomic photoionization cross section uncertainties; “Air: Opacity Project Lines” from all Opacity Project line

uncertainties; “Air: Neg. Ion Photodetach.” from all negative ion photodetachment cross section uncertainties.

In addition to these uncertainties, the influence of including ionization potential lowering and photoionization

edge shift, which are not included in the baseline model, are listed in the “Ion. Potential Lowering” and “Photo.

Edge Shift” rows. These two rows represent simply the impact of adding these phenomena to the prediction

(note that the “Ion. Potential Lowering” result represents the only flowfield parametric uncertainty treated in

this study). Similarly, the Opacity Project exclusive lines (meaning the lines that are included in the Opacity

2- 4 STO-AVT-218 - Radiation and Gas-Surface Interaction Phenomena in High Speed Re-Entry



Influence of Coupled Radiation and Ablation on the Aerothermodynamic Environment of
Planetary Entry Vehicles

Table 2: Summary of parametric uncertainty contributors for the 5 m radius case at the stagnation point. Values not in parenthe-
sis are the + component while those in parenthesis are the − component. All values are percent.

Parameter Group 11 km/s 12 km/s 13 km/s 14 km/s 15 km/s

Air: Molec. Bands 0.64(0.58) 0.11(0.11) 0.04(0.04) 0.01(0.01) 0.01(0.01)
Air: Atomic Lines: fi,j 7.53(8.02) 7.21(7.88) 7.24(7.90) 6.91(7.43) 6.64(7.04)
Air: Atomic Lines: ΔλS,0 7.17(8.31) 6.23(7.48) 5.97(7.25) 5.62(6.57) 5.26(5.90)
Air: Atomic Photoionization 3.88(3.99) 3.79(3.88) 3.76(3.78) 3.83(3.83) 3.89(3.88)
Air: Opacity Project Lines 9.73(0.00) 10.3(0.00) 10.6(0.00) 10.1(0.00) 9.70(0.00)
Air: Neg. Ion Photodetach. 4.48(4.48) 2.97(2.97) 2.02(2.02) 1.58(1.58) 1.26(1.26)
AP: Molec. Bands 2.86(6.02) 8.02(7.04) 10.0(7.72) 12.8(7.94) 15.1(7.20)
AP: Atomic Photoionization 0.40(0.37) 0.40(0.37) 0.38(0.35) 0.27(0.23) 0.16(0.13)
Ion. Potential Lowering 0.00(5.10) 0.00(4.45) 0.00(3.31) 0.00(3.18) 0.00(2.92)
Photo. Edge Shift 4.44(0.00) 4.79(0.00) 4.96(0.00) 5.14(0.00) 5.30(0.00)

Total 41.1(36.8) 43.8(34.2) 45.0(32.4) 46.2(30.8) 47.3(28.3)

Project but not by NIST) are not included in the baseline radiation model. The “Air: Opacity Project Lines”

row therefore represents the total contribution from these lines (it is always a positive contribution).

Table 2 shows that at 15 km/s the parametric uncertainty for the stagnation-point radiative heating is +47.3%

and -28.3%. The dominant uncertainty contributors at this velocity are a product of the atomic lines and ablation

product molecular bands. At lower velocities, the ablation product molecular bands are seen to contribute

less to the uncertainty. It is interesting to note that the positive uncertainty increases with velocity, while

the negative uncertainty decreases. This is mainly a result of the ablation product molecular band systems

(AP: Molec. Bands), whose positive uncertainty contribution increases significantly with velocity, but whose

negative contribution only slightly varies.

The top individual uncertainty contributors for the 15 km/s case are listed in Table 3. The band systems

for the C3 and C2H molecules are seen to contribute the top 2 uncertainties. These band systems are strong

absorbers, meaning that the positive uncertainty is a result of decreasing the band oscillator strengths (represent-

ing the lower uncertainty bounds). In addition to the molecular band oscillator strength uncertainties, Table 3

shows the negative ion photodetachment uncertainty from atomic nitrogen (σ− (N−)), the atomic nitrogen pho-

toionization cross sections (σbf (N, level 30)) from a specified electronic state (defined in Table 7 of Johnston et

al. [23]), and the atomic line oscillator strength (fij (N)) and Stark broadening (ΔλS,0 (N)) uncertainties from

strong lines defined in Table 3 of Johnston et al. [23]. Note that all the individual lines in a single multiplet

are combined in these results. It is seen that while the various molecular bands present in Table 3 combine to

provide nearly the total molecular band uncertainty value in Table 2, the atomic line contributions in Table 3

combine to only a small fraction of the total values. This indicates that the many weak uncertainty contributions

from the 430 lines for nitrogen and 293 lines for oxygen all contribute to the total atomic line uncertainty.

2.2.3 Radiation Modeling Sensitivities for a Mars Entry

In contrast to the Mars return uncertainty shown in the previous section to be dominated by equilibrium radiation

properties, Johnston et al. [24] shows that the entry of a 15 m diameter hypersonic inflatable aerodynamic

decelerator (HIAD) into Mars is strongly dependent on non-Boltzmann excitation rates. For example, the top

8 sensitivities of the radiative flux for a 7 km/s entry at a density of 1e-4 kg/m3 are listed in Tables 4. The

listed sensitivities are the percent change from the baseline radiative heating for a positive (+ΔKf ) or negative

(-ΔKf ) change in the specified parameter (the magnitude of the ± change in each parameter is listed in the

column labelled “Uncertainty”). This table shows that the top sensitivities are all non-Boltzmann rates involving
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Table 3: Top uncertainty contributions from individual pa-
rameters for the 15 km/s case.

Uncertainty ±qrad

Rank Parameter (±%) (%)

1 C3 Swings O(1) mag. 9.60 (3.41)
2 C2H UV O(1) mag. 2.39 (2.05)
3 σ− (N−) 100 1.26 (1.26)
4 C2 Swan 50 0.89 (0.63)
5 fij (N) – 919.8 nm 50 0.49 (0.53)
6 CN Red 30 0.49 (0.46)
7 ΔλS,0 (N) – 1052.6 nm 75 0.27 (0.66)
8 C3 UV O(1) mag. 0.87 (0.02)
9 σbf (N, level 30) 20 0.44 (0.44)

10 ΔλS,0 (N) – 1011.7 nm 50 0.39 (0.45)
11 fij (N) – 1070 nm 75 0.37 (0.45)
12 CO 4+ 40 0.48 (0.31)
13 fij (N) – 999.1 nm 75 0.34 (0.37)
14 σbf (N, level 17) 20 0.32 (0.32)
15 H2 Lyman 10 0.33 (0.21)

Table 4: Top 8 radiation modeling sensitivities for the ρinf =1e-4 kg/m3 case.

# Reaction Uncertainty +ΔKf -ΔKf

8 CO(X1Σ+) + M ↔ CO(A1Π) + M 1 om 47.2 -37.7
12 CO(e3Σ−) + M ↔ CO(A1Π) + M 2 om 23.3 -5.10
41 CO(a3Π) + e− ↔ CO(A1Π)+ e− 2 om 14.3 -0.25
2 CN(A2Π ) + M ↔ CN(B2Σ+) + M 1 om 3.85 -7.00

46 CO(d3Δ) + e− ↔ CO(A1Π)+ e− 2 om 6.73 -0.10
44 CO(a’3Σ+) + e− ↔ CO(A1Π) + e− 2 om 6.54 -0.08

CO(A1Π) ↔ CO(X1Σ+) +hν 40% 1.69 -4.20
47 CO(e3Σ−) + e− ↔ CO(A1Π) + e− 2 om 5.44 -0.07

the radiating states of the CO 4th Positive and CN Violet band system.

2.2.4 Radiation Transport

Radiation transport is computed in HARA using the tangent slab approximation. This widely used approxi-

mation is especially convenient for coupled radiation computations because the divergence of the radiative flux

(Δqr) and radiative flux to the surface depend only on the flow properties normal to the body. An option is

included in HARA to allow the radiative flux at the surface to be computed using a ray tracing approach, while

the tangent slab values for Δqr are retained for coupling to the flow. The inaccuracies in qr introduced by

coupling the tangent slab value of Δqr in the flowfield are second order, while the tangent slab value of qr may

differ from the ray tracing value by as much as 20% on forebody computations.

While the tangent-slab approximation is appropriate within a shock layer, because of the thinness of the

shock layer relative to the characteristic body dimension (such as the nose radius), it is not appropriate in

the precursor, where the gas emitted from the shock layer is approximated better with a point source than an

infinite slab. To allow the tangent slab approach to be applied throughout the flowfield, including the precursor,

the following modification is required to the tangent slab radiation transport computation of the radiative flux

divergence:

∇qν =
dq−ν
dz

+ φν
q+
ν

dz
(1)
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Table 5: Top 8 radiation modeling sensitivities for the ρinf =5e-4 kg/m3 case.

# Reaction Uncertainty +ΔKf -ΔKf

8 CO(X1Σ+) + M ↔ CO(A1Π) + M 1 om 4.10 -7.86
CO(A1Π) ↔ CO(X1Σ+) +hν 40% 4.89 -6.58
CO(d3Δ) ↔ CO(a3Π) +hν 50% 3.24 -3.24
CN(B2Σ+) ↔ CN(X2Σ+) +hν 15% 2.48 -2.54

2 CN(A2Π ) + M ↔ CN(B2Σ+) + M 1 om 1.22 -3.48
CO(X1Σ+) ↔ CO(X1Σ+) +hν 50% 1.95 -2.15

12 CO(e3Σ−) + M ↔ CO(A1Π) + M 2 om 2.06 -0.55
41 CO(a3Π) + e− ↔ CO(A1Π)+ e− 2 om 1.42 -0.03

where q−ν and q+
ν are the wall and outward directed radiative flux, respectively. Following Stanley and Carl-

son [25], the correction factor φν is written as

φν = 1 − cos2β
0.5 − E3(τνsec(β))

0.5 − E3(τν)
(2)

where E3 is the third exponential integral, τν is the optical depth computed from the wall to the point in the

precursor. The angle β is one-half of the angle subtended by the body, computed as

β = sin−1 Rbody + zs

Rbody + z
(3)

where Rbody is the characteristic radius of the body, zs is the shock standoff, and z is the distance along the

body normal. Equations 2 and 3 are applied for points in the precursor, defined as all points where z > zs. Note

that at z = zs the correction termed φν is equal to one, while as z becomes large φν goes to zero.

2.3 Influence of Radiative Cooling

The first, and most commonly treated influence, is the presence of the divergence of the radiative flux (Δqr)

in the energy equation, which provides the important “radiative cooling” effect. Because “coupled radiation”

computations that include the divergence of the radiative flux in the energy equation typically assume Δqr is

zero in the free stream, the resulting decrease in the shock layer temperatures throughout the inviscid region of

the flow leads to the term radiative cooling.

The most widely applied approach for approximating the impact of radiative cooling on the radiative heating

was presented by Tauber and Wakefield. This approximation is written as

qr,TW =
qr,0

1 + 3.4Γ0.7
(4)

where

Γ =
4qr,0

ρ∞U3∞
(5)

and qr,0 is the uncoupled radiative flux (W/m3) and ρ∞ and U∞ are the free-stream densities and velocities,

respectively.
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Figure 3: Schematic of the tangent slab approximation.

To observe the impact of radiative cooling on a flow-

field and the resulting heating environement, a 3.04 m ra-

dius sphere at 14.07 km/s and a density of 3.79e-4 kg/m3 is

considered. This is the t=45 s case of the Mars return tra-

jectory studied later in this paper.. The influence of coupled

radiation on the vibrational-electronic temperature at vari-

ous points in the flowfield is shown in Fig. 4 for this case.

The radiative heating for the uncoupled, coupled radiation,

and Tauber-Wakefield cases are compared in Fig. 5. It is

seen that the radiatively cooled gas from the strongly radi-

ating stagnation region flows downstream and reduces the

temperatures in the weakly radiating downstream regions

of the flow. This non-local radiative cooling effect causes

correlations such as the Tauber-Wakefield approximation,

which is dependent upon the local radiative flux, to under-

predict the radiative cooling effect in dowstream regions.

This effect is apparent in Fig. 5, especially in the wake

where the Tauber-Wakefield approximation predicts very

little cooling.

Figure 4: Temperature profiles for the Mars return case with and without coupled radiation.
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Figure 5: Radiative flux to the wall predicted with and without coupled radiation for the Mars return case.

2.4 Ablation-Radiation Interaction

For the strongly ablating shock layer typical for a Mars return entry, a strong interaction exists between the

radiation and ablation, which must be properly modeled for accurate ablation or heating rate predictions. The

primary source of this interaction is the strong dependence of the ablation rate on the radiative heating, while

the radiative heating depends on the ablation rate through its blockage influence. While the impact of radiative

heating on the predicted ablation rates will be discussed later in this paper, the influence of specified ablation

rates on the radiative heating will be studied in this section.

Consider the 3.04 m radius sphere at 14.07 km/s considered in the previous section, now with a Pioneer-

Venus heritage carbon phenolic heat shield. At the stagnation point, the values of ṁc, ṁg, and Tw are 0.532

kg/m2/s, 0.074 kg/m2/s, and 3822 K, respectively, as will be determined through a coupled analysis presented

later in this paper. The resulting ablation products along the stagnation line are presented in Fig. 6, while the air

species are presented in Fig. 7. The dominant ablation products are seen to be C3 and H at the wall and C further

out into the ablation layer. The temperature along the stagnation line is presented in Fig. 8, which shows the

low temperature ablation layer extends roughly 2 cm from the wall. This figure also presents the non-ablating

temperature profile, which is seen to be nearly identical to the ablating case, but without the ablation layer

offsetting it from the wall.
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Figure 6: Mole fraction of ablation products along the
stagnation line.
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Figure 7: Mole fraction of air species along the stagnation
line.
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Figure 8: Comparison of non-ablating and coupled abla-
tion temperatures along the stagnation line.
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Figure 9: Comparison of non-ablating and coupled abla-
tion radiative flux profiles along the stagnation line.

The impact of the ablation layer on the radiative flux profile along the stagnation line is shown in Fig. 9. The

low temperature ablation layer is seen to provide a nearly 40% reduction in the radiative flux reaching the

surface. Insight into the absorption by the ablation layer is provided by Fig. 10, which presents the spectrum

at the wall for the non-ablating and coupled ablation cases. Significant absorption is apparent in three spectral

regions: 2 – 4 eV, 6 – 9 eV, and above 11 eV. The transmissivity of a 1.5 cm layer of equilibrium ablator gas

at 4000 K and 0.75 at, which replicates the ablation layer of the present case, is presented in Fig. 11. This

allows the absorption mechanisms of the three spectral regions to be identified as the C3 Swings band system

for 2 – 4 eV, the C3 and C2H UV band systems for 6 – 9 eV, and atomic photoionization of C for above 11 eV.

Significant uncertainties exist for the absorption coefficients of the C3 and C2H band systems, as were shown

in Section 2.2.1, which provide the significant uncertainty contributions shown in Section 2.2.2.
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Figure 10: Comparison of non-ablating and coupled abla-
tion radiative flux spectrum at the stagnation point.
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Figure 11: Transmissivity of a 1.5 cm slab of ablator gas
at 4000 K and 0.75 atm.

To show impact of ablation-radiation interaction downstream of the stagnation point and in the wake region,

the 14.07 km/s case is considered with an afterbody assumed to be non-ablating, radiative equilibrium, and

fully-catalytic to homogenous recombination. The assumption of a non-ablating afterbody allows the influence

of forebody ablation products on the afterbody to be clearly identified. The resulting mass fractions of CO and

C predicted throughout the flowfield are shown in Fig. 12. This figure shows that although both CO and C

are formed as a result of the forebody ablation products, they flow into the low pressure wake and dominate
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the species composition near the body. The influence of ablation on the radiative heating is shown in Fig. 13.

On the forebody, a reduction in the radiative heating similar to that shown for the previous case is seen, while

the forebody shows a surprising increase in the radiation with the introduction of ablation. This increase is a

result of emission from the CO 4th Positive band system, whose contribution to the radiative flux in the wake

is non-negligible because of the large CO concentration in that region.

Figure 12: Mass fraction of two dominant ablation products, CO and C, for the Mars return case with coupled ablation and
radiation.

Figure 13: Radiative flux to the wall predicted with and without coupled ablation for the Mars return case.
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Table 6: Photochemical Processes Applied in the Present Study.

# Process Spectral Range Data Source

1 N2 Photodissociation: N2 + hν ↔ 2N 9.8 eV < hν Stanley and Carlson[25]
2 O2 Photodissociation: O2 + hν ↔ 2O 7.1 eV < hν Romanov et al.[26]
3 N2 Photoionization: N2 + hν ↔ N+

2 + e− 12.4 eV < hν Romanov et al.[26]
4 O2 Photoionization: O2 + hν ↔ O+

2 + e− 9.7 eV < hν Romanov et al.[26]
5 N Photoionization: N + hν ↔ N+ + e− 12.4 eV < hν Romanov et al.[26]
6 O Photoionization: O + hν ↔ O+ + e− 9.7 eV < hν Romanov et al.[26]

Table 7: Photochemical Source Terms Applied in the Present Study.

Species Production Rates

ẇphoto,N2 = −ẇphoto1 + ẇphoto,3

ẇphoto,N = 2ẇphoto,1 − ẇphoto,5

ẇ
photo,N+

2
= ẇphoto,3

ẇphoto,N+ = ẇphoto,5

ẇphoto,O2 = −ẇphoto,2 + ẇphoto,4

ẇphoto,O = 2ẇphoto,2 − ẇphoto,6

ẇ
photo,O+

2
= ẇphoto,4

ẇphoto,O+ = ẇphoto,6

ẇphoto,e− = ẇphoto,3 + ẇphoto,4 + ẇphoto,5 + ẇphoto,6

2.5 Influence of Precursor Photochemistry

The second fundamental influence of radiation on a shock layer flowfield becomes apparent if the Δqr com-

putation is carried into the free-stream. For strongly radiating shock layers, the presence of Δqr outside of the

shock layer leads to significant increase in the temperature of the gas entering the shock layer. This “precursor”

phenomenon is caused by photoionization and photodissociation

The radiative absorption in the precursor region is dominated by the processes of photodissociation and

photoionization, which occur in the vacuum ultraviolet region of the spectrum. These processes, as applied

in the present study for air, are listed in Table 6, and the absorption cross-sections were obtained from the

source cited. The absorption and emission from each process were accounted for in both the radiation transport

computation and the flowfield species conservation equations.The mass production rate of species n due to the

photochemical process i may be written as

ẇphoto,i = −mn

∫ ∞

0

4πjν,i − κν,i

∫
4π IνdΨ

hν
dν (6)

where κν,i and jν,i represent the absorption and emission coefficients resulting from the photochemical process

i. The radiative intensity Iν in this equation accounts for all radiative mechanisms. The production term for

each species is listed in Table 7.

In addition to the processes listed in Table 6, there are several radiative transitions that influence the precur-

sor that do not result in dissociation or ionization. These include the N2 VUV band systems listed by Johnston

et al. [27], which provide significant absorption from the ground state to the high electronic states of N2. The

O2 Schumann-Runge band system, which lies in the 2.6 - 7.0 eV range, is found to actually emit significantly

from the precursor region if a Boltzmann distribution of electronic states is assumed.

The purpose of this section is to investigate the influence of free-stream radiative absorption on the flowfield

structure and associated aerothermodynamic environment at hyperbolic Earth entry conditions. The study of
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this effect, typically referred to as the precursor effect, has been the subject of several previous studies for air

shock layers.[25, 28–34] Some of these studies [28–30, 32, 33] assumed thermochemical equilibrium through-

out the shock layer and precursor region, which implies a single temperature model and chemical equilibrium

throughout the flowfield. Radiation influences a thermochemical equilibrium flowfield through the presence of

the divergence of the radiative flux in the energy equation. This is the term commonly treated in “coupled radi-

ation” flowfield computations [35, 36] for both thermochemical equilibrium and nonequilibrium flowfields. A

number of studies [25, 31, 34] have applied thermochemical nonequilibrium models throughout the shock layer

and precursor region. The influence of radiation on these nonequilibrium flowfields is accounted for through

not only the divergence of the radiative flux, but also through the photochemical production term in the species

continuity equations. This term is required to treat the creation and destruction of species through photodisso-

ciation and photoionization. The work of Stanley and Carlson [25] represents the most recent detailed study

of this phenomenon. They studied nitrogen flowfields using a viscous shock layer analysis. Details of the

photochemical production terms was provided as well as modifications required for the tangent slab radiation

transport in the precursor region. To examine the potential impact of the precursor effect on Mars-return cases,

the photochemical production terms were added to LAURA following the approach of Stanley and Carlson. The

absorption cross sections for the photoionization and photodissociation of O2, which were not treated by Stan-

ley and Carlson, were taken from Romanov et al.[26]. The cross sections for N2 applied by Stanley and Carlson

were applied here, while the photoionization cross sections for N and O were taken from the TOPbase [37].

The 15 km/s, 5 m radius Mars-return case was studied using the precursor treatment discussed in the pre-

vious paragraph. To simplify the analysis, ablation coupling is not included in these results. The vibrational-

electronic temperature throughout the flowfield is presented in Fig. 14. A vibrational-electronic temperature

greater than 1,000 K is seen to extend about one body radius from the surface around the sphere. In the stag-

nation region, this temperature nearly reaches the post-shock level as the shock is approached. This is shown

more clearly in Fig. 15, which presents the stagnation line temperature profiles. In this figure, the bow shock is

at 0.2 m on the horizontal axis. The vibrational-electronic temperature is seen to approach 13,000 K just before

the shock, while the translational-rotational temperature remains at the free-stream value. The density is too

low in the precursor region for the energy relaxation terms to begin to equilibrate the two temperatures. The

divergence of the radiative flux therefore influences only the vibrational-electronic temperature.
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Figure 14: Vibrational-electronic temperature in the
flowfield, including the precursor, for the 15 km/s,
5 m radius case.
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Figure 15: Temperatures along the stagnation line, includ-
ing the precursor, for the 15 km/s, 5 m radius case.

The O2 mass fraction throughout the flowfield is presented in Fig. 16. The shock layer is identified as
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the completely dissociated region near the body. In the stagnation region, the precursor influence is seen to

reduce the O2 mass fraction entering the shock layer from the ambient value of 0.24 to roughly 0.15. The

reduction in O2 in the precursor is due primarily to photodissociation, although O2 photoionization is not

negligible. The influence of photoionization and photodissociation may be seen in Fig. 17, which presents the

species number densities along the stagnation line. The dissociation of O2 into O is clearly seen, while the

dissociation of N2 is indicated by the rise of N. The precursor influence reduces the N2 mass fraction entering

the shock layer from 0.76 to only about 0.74 in the stagnation region, which is much less dissociation than

that seen for O2. The influence of photoionization processes are indicated by the presence of ionized species

in the precursor. The most abundant ion in the precursor is seen to be O+
2 , which is followed surprisingly by

NO+. Note that collisional chemical reactions are responisble for the creation of NO and NO+ in the precursor.

These collisional reactions also have a influence on other species, although it is typically overshadowed by

the photochemical contribution. The contribution of collisional reactions to the precursor is sensitive to the

lower temperature limits applied to compute the forward and backward kinetic rates. Many of these rates are

dependent on only Ttr (instead of Tve), which remains near the free-stream value throughout the precursor. The

validity of these rates at low temperatures (<300 K) is typically not an issue for hypersonic simulations, and

therefore requires further study.
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Figure 16: Mass fraction of O2 in the flowfield, in-
cluding the precursor, for the 15 km/s, 5 m radius
case.
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Figure 17: Number densities along the stagnation line, in-
cluding the precursor, for the 15 km/s, 5 m radius case.

The strong precursor influence on the flowfield temperature and number densities shown in Figs. 14 - 17 is a

result of strong radiative absorption in the free-stream. The magnitude of this absorption is indicated in Fig. 18,

which presents the free-stream directed intensity profile along the stagnation line. The emission from the shock

layer is apparent below 0.2 m on the horizontal axis, while beyond this point the negative slope of the curve

represents absorption in the precursor. Figure 19 presents the intensity spectrum at the shock (red curve) and

outer free-stream boundary (blue curve). The difference between these curves represents the total precursor

absorption. It is clear that this absorption occurs exclusively in the vacuum ultraviolet (VUV) region of the

spectrum (hν > 6 eV). Note that nearly all of the VUV radiation emitted from the shock layer is absorbed in

the precursor.
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Figure 18: Radiative intensity directed along the stagna-
tion line away from the body for the 15 km/s, 5 m radius
case.
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Figure 19: Radiative intensity spectrum directed away
from the body at the shock (red) and outer boundary
(blue).

The primary reason for modeling the precursor is to account for its influence on the shock layer radiative

heating, which is strongly dependent on the shock layer temperatures. Figure 20 compares the vibrational-

electronic temperature for a case with and without the treatment of the precursor (the figure is focused on the

shock-layer, the rest of the precursor is the same as that in Fig. 15). The temperature difference in the shock

layer between the two cases is roughly 150 K. Although this difference may appear small, the radiative heating

heating is extremely sensitive to the temperature: The 1% increase in the shock layer temperature results in

a 15% increase in the radiative flux reaching the wall. This result is shown in Fig. 21, which compares the

wall directed radiative flux for the case with and without the precursor influence. The 15% increase due to the

precursor confirms the importance of this phenomenon for modeling Mars-return radiative heating.
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Figure 20: Vibrational-electronic temperature along the
stagnation line close to the wall for the case with and with-
out precursor modeling.
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Figure 21: Wall directed radiative flux along the stagna-
tion line close to the wall for the case with and without
precursor modeling.

2.5.1 Approximate Analysis of Precursor Influence

To provide insight into the influence of precursor absorption over a wide range of nose radii and free-stream

density and velocity, it is instructive to consider the flow in front of the stagnation line shock. The total energy

equation may integrated from the far upstream flow (∞) to directly before the shock (s), which results in the
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following

ρsus(htr,s + hve,s + u2
s/2) = ρ∞u∞(htr,∞ + hve,∞ + u2

∞/2) + Qrad (7)

To assess the impact of Qrad, which is the the absorbed radiative flux along this distance, on the radiative flux

reaching the vehicle surface, it is the goal of this analysis to find a simple approach for computing an equivalent

velocity (Ualt) that provides the same enthalpy crossing the shock as a precursor solution. This equivalent

velocity, which is anticipated to be slightly higher than the free-stream velocity, may then be applied as the

free-stream velocity to typical non-precursor simulations, table look-ups, or curve fits of the radiative heating.

From Eq. (7), Ualt may be written as

Ualt =
(

U3
∞ +

2Qrad

ρ∞

)1/3

(8)

To evaluate this equation, the challenge is to find a method for estimating Qrad without a detailed precursor

simulation. Note that Qrad is written as

Qrad =
∫ zs

z∞
∇qr,ν dz = 2

∫ ∞

0
q+
ν,s

∫ zs

z∞
κνE2φνdzdν (9)

In this equation, q+
ν,s is the radiative flux from the shock layer directed into the free-stream. The amount

of this flux absorbed at each point in the free-stream is represented by κνE2φν , where κν is the absorption

coefficient, E2 is the second order exponential integral as a function of zκν , and φν is defined in Eq. (2). From

the application of Eq. (9) to a range of cases, it has been observed that essentially the entire VUV contribution

(below 200 nm) of q+
ν,s is absorbed in the precursor, and that the absorption coefficient in this range may be

approximate for air with a constant: κν = 30.0ρ∞, where ρ∞ has units of kg/m3. These observations allow

Eq. (9) to be simplified to the following

Qrad = q+
s (V UV )

(
60.0ρ∞

∫ ∞

0

∫ zs

z∞
E2φνdzdν

)
(10)

where the function written in parenthesis, which is a function of Rbody × ρ∞, is defined as ψ, allowing Qrad to

be written simply as

Qrad = q+
s (V UV )ψ(Rbody × ρ∞) (11)

The function ψ was curve fit to following:

ψ = 1 − 0.2exp(−900.0Rbody × ρ∞) − 0.8exp(−4000Rbody × ρ∞) (12)

Equation (11) provides a convenient form for modeling the radiative flux absorbed in the free-stream. The

q+
s (V UV ) term, which is the wavelength integrated radiative flux directed towards the free-stream, may be

taken from a non-precursor solution, while ψ is evaluated from Eq. (12). With these values, Ualt may be

evaluated from Eq. (8) A matrix of coupled radiation cases were run for velocities, densities, and nose radii

ranging from 14 – 18 km/s, 1×10−5 – 1×10−3 kg/m3, and 0.1 – 10 m, respectively. The slope of the radiative

heating with respect to free-stream velocity was found to fit the following function in this range

dqr

dU
= 4.16 × 102(Rbody + 10.48)ρ∞ − 8.04 × 10−3(Rbody + 7.82) (13)

Using this relationship, the increase in the radiative heating due to precursor absorption may be computed from

the following

Δqr,precurs =
dqr

dU
× (Ualt − U∞) (14)

The above analysis provides a convenient approach for estimating the impact of precursor absorption on the

radiative heating, given the radiative heating for the non-precursor case.
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3.0 COUPLED ABLATION

The primary physical phenomenon captured rigorously by a coupled ablation analysis, but approximated with

varying degrees of accuracy by an uncoupled analysis, is the mixing and diffusion of ablation products through

the boundary layer. For the diffusion-limited oxidation regime experienced by NASA’s Orion or MSL vehicles,

the recession rate is dependent upon the amount of elemental oxygen reaching the vehicle surface, which is

strongly dependent on the mixing and diffusion of ablation products through the boundary layer. If the heat

conducted into the surface is of primary interest instead of the recession rate, the mixing and diffusion of

ablation products through the boundary layer strongly influence the diffusive flux component of the convective

heating, as well as the gas enthalpy at the wall, which drive the heat conducted into the surface in the diffusion-

limited oxidation regime.

Similarly, for the sublimation regime experienced by NASA’s Pioneer-Venus probe, Galileo probe, or a

future Mars return to Earth, the recession rate and heat conducted into the surface are strongly dependent on the

radiative heating driven surface temperature. The magnitude of the radiative flux reaching the surface to drive

the surface temperature, and therefore the recession rate and heat conducted into the surface, is dependent on the

distribution of ablation products through the flow. These ablation products provide a layer of low temperature

strongly absorbing molecules that absorb a significant fraction of the radiative heating directed towards the

surface.

This section presents the details of the developed coupled ablation analysis. The basic two-temperature

thermochemical nonequilibrium flowfield model discussed in Section 2.1 is applied throughout this section.

The implementation of the governing surface equations for an ablating surface are presented in Section 3.1.

Definitions of the three developed solution approaches, which highlight the influence of the uncoupled ablation

approximations, are provided in Section 3.5.

3.1 Governing Surface Equations

The two primary governing surface equations that influence a coupled ablation solution are the surface energy

balance and the elemental mass balance. The approach developed to solve these equations is described in this

section.

The energy equation at the surface of a charring ablator is written as

qc + αqrad − εσTw
4 − ṁc(hw − hc) − ṁg(hw − hg) − qcond = 0 (15)

The first two terms are the convective and absorbed radiative heating, which are a function of the flight condi-

tion, vehicle geometry, wall temperature, and injection of ablation products. The third term is the re-radiation

from the ablator surface, which is a function of only the wall temperature and surface emissivity. The fourth

and fifth terms are the enthalpy of injected char and pyrolysis gas, respectively. While hw is the enthalpy of

the gas at the wall, which is computed assuming chemical equilibrium at the surface elemental composition,

temperature, and pressure, the enthalpy of the solid char (hc) and pyrolysis gas (hg) are typically determined

experimentally and provided in table or curve-fit form for a given ablator. Finally, the heat conducted into the

surface, qcond, represents the inability of the previous three terms from relieving the incoming convective and

radiative heat fluxes.

The elemental mass balance equation is written for each element k as

ṁc(c̃c,k − c̃w,k) + ṁg(c̃g,k − c̃w,k) − J̃k = 0 (16)

where c̃w,k, c̃c,k, and c̃g,k are the elemental compositions of the gas at the wall, char, and pyrolysis gas, respec-

tively, and J̃k is the diffusive flux of element k. Note that the transformation from species to elements involves
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the identification of the fraction of element k in each species j. This is determined by multiplying the elemental

weight, M̃k by the number of atoms of that element in the species, α̃k,j and dividing by the species weight Mj .

Thus, the transformation from species to elemental mass fraction is achieved through the following equation

c̃k =
∑

j

Fk,jcj (17)

where Fk,j is defined as

Fk,j =
α̃k,jM̃k

Mj
(18)

Similarly, J̃k is written as

J̃k =
∑

j

Fk,j

⎛
⎝ρDj

dχj

dz
− cw,j

∑
j

ρDj
dχj

dz

⎞
⎠ (19)

where χj is species mole fraction, Dj is the species diffusion coefficient, and z is the distance normal to the

wall.

For equilibrium ablation, the equilibrium char constraint provides an additional equation that allows ṁc

to be computed assuming equilibrium chemistry at the surface temperature, pressure, elemental composition.

This relationship is written assuming a solid carbon char as

ρw
cw,C

MC
− Kc,C = 0 (20)

where cw,C is the mass fraction of atomic carbon at the wall and MC is its molecular weight. To complete the

set of governing surface equations, the normal momentum equation is written as

dpw

dz
+ ρwvw

dvw

dz
= 0 (21)

which allows the the wall pressure (pw) to be computed, with the normal velocity (vw) obtained from the mass

continuity equation:

ρwvw = ṁc + ṁg (22)

When combined with a equilibrium chemistry routine that computes species mass fractions and gas enthalpy

for a given pressure, temperature, and elemental composition, Eqs. (15) – (22) provide the Nelements + 4

equations required to compute c̃w,k, Tw, ṁc, pw, and vw. The remaining unknowns in this set of equations

are the pyrolysis injection rate, ṁg, and heat conducted into the surface, qcond. These quantities depend on the

time-history of ṁc and Tw, as well as the material properties, such as char and virgin thermal conductivities

and virgin decomposition rates. The ṁg and qcond are obtained in this work through an iterative procedure that

feeds the ṁc and Tw computed in the flowfield code through Eqs. (15) – (22) to a material response code, which

computes ṁg and qcond.

3.2 Solution Procedure for the Governing Surface Equations

Developing a single solution procedure for Eqs. (15) – (22) stable at both the low to moderate ablating diffusion-

limited oxidation regime, characteristic of an Orion ISS or MSL entry, and the massively ablating sublimation

regime, characteristic of a Mars return or Galileo probe, presents a significant numerical challenge. The trial

and error of many approaches over the years has lead to a simple two dimensional search algorithm.
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The outer loop of this algorithm solves the energy equation, Eq. (15), for Tw while the inner loop solves the

char constraint, Eq. (20), for ṁc.

This procedure begins by defining a upper and lower limits of Tw over which to perform the search algo-

rithm. The upper temperature limit is set by computing the radiative equilibrium wall temperature (TREW ) at

the local convective and radiative heating values. If TREW is less than 3200 K, the upper temperature limit is

set as TREW + 300 K. If If TREW is greater than 3200 K, the upper temperature limit is set to 4500 K. The

lower temperature limit is computed simply to 30% of the input wall temperature, with a lower limit of 800 K

enforced. Once the Tw limits are set, the temperature is set to the middle of the limits, This temperature is then

applied to the inner loop computation for ṁc.

The inner loop computation increase ṁc/(ρ∞U∞) in order of magnitude increments, starting from 1e-6,

until the residual of the energy, fenergy equation changes sign. This residual is written as a modified form of

Eq. (15) as follows

fenergy = qc + αqrad − εσTw
4 − ṁc(hw − hc) − ṁg(hw − hg) − qcond

Tw

T 0
w

(23)

Because qcond is provided by a material response code, it remains constant during the present iterative pro-

cess. The temperature ratio placed on this term, where T 0
w is the initial input temperature for which qcond was

computed, allows for an approximate temperature dependence. The temperature dependences of hc and hg are

represented through provided tables or curve fits. The main challenge in the evaluation of fenergy is comput-

ing hw, which is obtained from an equilibrium chemistry computation at the wall temperature, pressure, and

elemental composition. Solving Eq. (16) for the required elemental mass fractions, for a given ṁc and ṁg, is

nontrivial because there is no explicit dependence of the elemental mass fractions on J̃k. To approximate this

dependence during the iteration process on ṁc, the following approximation is applied

J̃k,approx = J̃0
k (c̃w,k − c̃e,k)/(c̃0

w,k − c̃e,k) (24)

where the superscript “0” refers to the initial input values. When applied to Eq. (16), the following explicit

solution for c̃w,k is obtained

c̃w,k =
c̃e,k + Y ′

c,k c̃c,k + Y ′
g,k c̃g,k

1 + Y ′
c + Y ′

g

(25)

where

Y ′
c,k = ṁc(c̃0

w,k − c̃e,k)/J̃0
k (26)

and

Y ′
c,k = ṁg(c̃0

w,k − c̃e,k)/J̃0
k (27)

Limits on the sum Y ′
k = Y ′

c,k + Y ′
g,k in the denominator of Eq. (25) are required to avoid values near -1, which

may occur in early stages of convergence. These limits are beyond of the scope of this paper. This approach

utilizing Eqs. (24) – (27) is analogous to approximate “B-prime” discussed later in this paper, which would

replace J̃0
k with qc in all these equations, and the elemental mass fractions with enthalpies in Eqs. (26) and (27).

However, while the B-prime approach approximates J̃k with an equal diffusion coefficient film coefficient

model, the present approach converges to the rigorous solution of Eq. (25). This convergence is achieved after

numerous calls to the presently described ablation subroutine, when the computed c̃w,k is equal to the input

value, c̃0
w,k, which results in J̃k,approx = J̃0

k in Eq. (24), therefore removing any diffusion approximation.

Once an order of magnitude range of ṁc is determined over which fenergy changes sign, a simple bisection

approach is applied over this range to determine the ṁc that results in fenergy = 0. Once this ṁc is found, the
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corresponding species density and atomic carbon mass fraction are applied to the char constraint of Eq. (20).

This equation is written in terms of a residual, fchar, as follows

fchar = ρw
cw,C

MC
− Kc,C (28)

where Kc,C is evaluated through a curve fit at Tw. Analysis of this equation allows the fchar values at the lower

and upper temperature limits chosen for this search algorithm to be set to 1e+10 and -1e+10, respectively. With

these values set, the fchar computed at Tw replaces the limit with an opposite sign of fchar, and a new Tw is

chosen as the midpoint between these new limits. The inner loop computation of ṁc is then repeated at the new

Tw and the process repeats itself until fchar is near zero.

A complication to the above procedure arises when the ṁg, provided by the material response code, is large

enough to repress ṁc to a value of zero. Such a situation is checked for each Tw iteration by evaluating Eqs. (24)

– (27), along with the corresponding equilibrium chemistry, with ṁc set to zero. If the resulting fchar > 0, then

ṁc is set to zero and the inner loop of the search procedure bypassed. However, because fchar was used to set

ṁc to zero, the outer loop bisection search for Tw applies fenergy instead of fchar.

3.3 Steady State Ablation Approximation

For the present study, ṁg and Tw are either specified from a material response code or obtained using the steady-

state ablation approximation. The steady-state ablation approximation requires the solution of an approximate

surface energy equation:

−qc − αqrad + εσTw
4 + (ṁc + ṁg)hw = 0 (29)

which assumes that the char surface and virgin material recede at the same linear rate. The steady-state ablation

approximation provides the following relationship for ṁg:

ṁg = (
ρv

ρc
− 1)ṁc (30)

It will be stated whenever this approximation is applied through this work. Note that it is convenient for cases

where a time history of the heating environment required for a material response code is not available.

3.4 Uncoupled Ablation Approximations

The assessment and design of reentry heatshields typically involve an uncoupled ablation-flowfield analysis.

This uncoupled analysis consists of applying a non-ablating flowfield prediction, which defines the heat-transfer

coefficient, wall enthalpy and wall pressure, to an equilibrium ablation model, which computes ṁc, ṁg, Tw, and

in-depth material properties. The analysis is referred to as “uncoupled” because the influence of ṁc, ṁg, and Tw

on the flowfield prediction are treated approximately within the ablation model, and hence the ablation model

is not coupled with the flowfield model. For diffusion-limited oxidation cases, the prediction of ṁc is sensitive

to the treatment of J̃k, while for the sublimation regime it is sensitive to qc and the surface energy balance. For

the uncoupled ablation analysis, two fundamental approximations are applied to model the influence of ṁ on

J̃k and qc. These are defined as follows:

1. Approximation #1:

The influence of ṁc and ṁg on the heat-transfer coefficient is approximated as

CH = CH,0
2λB0

exp(2λB0) − 1
(31)
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where CH,0 is the non-abating heat-transfer coefficient. Recall that CH is related to qc as

qc = CH(HT − hw) (32)

This approximation has been assessed by Thompson and Gnoffo[38] and Martinelli et al.[39] for perfect

gas flows.

2. Approximation #2:

The elemental diffusion mass flux at the surface is written as[40]

J̃k = CM (c̃w,k − c̃e,k) (33)

where it is assumed that CM = CH . This approximation allows the elemental mass balance at the wall

to be solved algebraically for the elemental mass fractions at the wall: [40]

c̃w,k =
c̃e,k + B′

cc̃c,k + B′
g c̃g,k

1 + B′
c + B′

g

(34)

A discussion of this approximation is presented by Bianchi et al.[41] for graphite ablation.

3.5 Definitions of Applied Approaches

To make clear the influence of Approximations #1 and #2, solutions will be presented that include both approx-

imations, only Approximation #1, and neither approximation. These three different approaches are defined as

follows:

1. Uncoupled: This approach applies both approximations, and is identical to the typical “uncoupled” ap-

proach applied in heatshield design. It is applied as a post-processing step to a non-ablating solution,

obtained assuming a super-catalytic, radiative equilibrium wall. The non-ablating solution provides qc,0,

hw, and pw. The solution procedure described in Section 3.2 is applied with two modifications. First, the

qc applied in the energy equation is computed using qc,0 and Approximation #1. Second, Eq. 25 is re-

placed by Eq. 34, representing Approximation #2. Note that this approach is identical to the application

of B’ tables often applied in material response codes, although the present approach does not actually

apply any pre-computed tables.

2. Partially-Coupled: This approach removes Approximation #1, but contains Approximation #2. It consists

of a flowfield with coupled ablation, meaning that the injection of ablation products is treated in the

flowfield solution. Therefore, Approximation #1 is not applied because the influence of ṁ on CH is

explicitly treated. However, this approach retains Approximation #2, meaning that Eq. 25 is replaced by

Eq. 34 in the solutions procedure described in Section 3.2.

The application of this approach typically begins by first obtaining a non-ablating flowfield solution.

From this, the procedure outlined in the Section 3.2 (with Eq. 25 replaced by Eq. 34) to obtain ṁc, Tw,

and cw,i is called every 5,000 – 50,000 flowfield iterations, depending on the magnitude of the injections

rates. In between these surface computations, the pseudo-cells at the wall are updated every 50 flowfield

iterations to maintain the computed surface properties, which are assumed equal to the average of the

pseudo-cell values and the values in the first cell above the wall. This procedure is very robust and

converges for a wide range of ablation rates.
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3. Fully-Coupled: The solution approach described in Section 3.2 is applied directly as written, therefore

avoiding the use of both Approximations #1 and #2. This approach provides the most rigorous possible

application of equilibrium ablation.

As with the Partially-Coupled approach, it is convenient to begin the solution procedure with a converged

non-ablating flowfield solution. The ṁc and Tw values are then computed using the procedure described

in Section 3.2. An important step in this procedure is the updating of the elemental and species mass

fractions at the wall for the given ṁc, ṁg, and Tw values. Instead of using Eqs. (24) – (27), which were

required to handle the large variation in ṁc encountered within the search algorithm, the pseudo cells at

the wall are updated by approximating J̃k as follows

J̃k,approx = A1
c̃k,1

c̃0
k,1

− A0
c̃k,0

c̃0
k,0

+ B1c̃k,1 + B0c̃k,0 (35)

where

An =
∑

j

Fk,jρDj
χj,n

Δz
(36)

Bn = −
∑

j

Fk,jcj,n

∑
j

ρDj
(χj,1 − χj,0)

Δz
(37)

The psuedo cell is identified by the subscript “0”, while the first cell above the wall is identified by the

subscript “1” (the superscript “0” refers to the initial input values, as before). The distance between the

cell centers is Δz. Substituting this relationship into Eq. (16) allows c̃k,0 to be solved algebraically for

the given ṁc and ṁg. Updates to the surface using this approach are made every 2 - 5 flowfield iterations,

which allows the chemistry at the wall to evolve to the appropriate values for the given ṁc, ṁg, and Tw.

Once this is achieved after every 5,000 – 50,000 flowfield iterations, depending on the magnitude of the

injections rates, the ablation routine described in Section 3.2 is called for new ṁc and Tw values.

3.6 Earth Entry Case at 6 km/s

3.6.1 Analysis of 6 km/s Earth Entry Case with Fixed Ablation Rates
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Figure 22: Specified ablation rates and wall temperature.

To evaluate the differences between the Uncoupled,

Partially-Coupled, and Fully-Coupled approaches defined

in Section 3.5, cases with specified ṁc, ṁg, and Tw

are studied here for each approach. The validity of Ap-

proximation #1 is assessed by comparing the CH val-

ues predicted by the Uncoupled and Partially-Coupled ap-

proaches. Recall that CH is computed from Eq. (31) for

the Uncoupled approach, which represents Approximation

#1, while it is computed directly from Eq. (32) for the

Partially-Coupled approach. If the CH values agree be-

tween the Uncoupled and Partially-Coupled approaches,

then Eqs. (33) and (34) will predict the same c̃w,k values at

the surface (because B′
c and B′

g will be identical and CM =

CH ). Thus, if ṁc was to be computed from Eq. (20) instead

of held fixed (as will be done in the next section), then the
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Table 8: Comparison of Uncoupled, Partially-Coupled, and Fully-Coupled approaches with fixed ṁ and Tw at the stagnation-
point.

Approach qc CHx102 c̃w,C c̃w,O c̃w,H cw,C

(W/cm2) (kg/(m2s))

Uncoupled 38.0 2.11 0.171 0.263 1.62e-2 4.1e-17
Partially-Coupled 34.6 1.92 0.181 0.264 1.71e-2 3.2e-16

Fully-Couped 36.4 1.94 0.205 0.322 1.02e-2 8.2e-19

Uncoupled and Partially-Coupled approaches would pre-

dict the same ṁc. However, if the predicted CH values differ, then the predicted ṁc would be expected to differ

accordingly. Generally, a larger CH translates to a larger ṁc.

The validity of Approximation #2 is assessed by comparing the c̃w,k values predicted by the Partially-

Coupled and Fully-Coupled approaches. Recall that Approximation #2 is the only difference between these

two approaches. For a given temperature and pressure, the c̃w,k values define the atomic carbon mass fraction

at the wall (cw,C). The cw,C values are of interest because they are present in the char equilibrium constraint

of Eq. (20), which will be applied in the next section to compute ṁc . Generally, a larger cw,C in the present

analysis will translate to a smaller ṁc in the computed–ṁc analysis of the next section. It will be convenient to

compare c̃w,k values, as they provide a compact means for interpreting the chemical composition at the surface.

Typically, larger values of c̃w,C are associated with larger values of c̃w,O, because CO is the dominant species

(along with N2) at the surface. The lower the c̃w,O value, the less CO that can be formed, and the more c̃w,C

that is available for forming atomic carbon.

The elemental mass fractions applied in this study for Avcoat are taken from Bartlett [42], and are equal to:

[C, H, O, N, Si] = [0.49, 0.00, 0.27, 0.00, 0.24] for the char and [C, H, O, N, Si] = [0.55, 0.09, 0.34, 0.02, 0.00]

for the pyrolysis gas.

The present analysis was applied to a 3.6 m radius sphere at a free-stream velocity and density of 6.0 km/s

and 3.0e-4 kg/m3, respectively. The specified ablation rates and wall temperatures along the body are shown

in Fig. 22. So that these specified values would have reasonable profiles and magnitudes, they were obtained

assuming steady-state ablation and using the Partially-Coupled approach. For the laminar case, the result-

ing stagnation-point surface properties predicted using the Uncoupled, Partially-Coupled, and Full-Coupled

approaches are listed in Table 8. As mentioned previously, the influence of Approximation #1 is seen by com-

paring the CH values predicted by the Uncoupled and Partially-Coupled approaches. Table 8 shows that the

Uncoupled CH is 10% larger than the Partially-Coupled value. This indicates that the Uncoupled approach

will likely predict, for the computed–ṁc analysis presented in the next section, a larger ṁc than the Partially-

Coupled approach. Also mentioned previously, the influence of Approximation #2 is seen by comparing the

c̃w,k values predicted by the Partially-Coupled and Fully-Coupled approaches. Table 8 shows that the Parially-

Coupled c̃w,C value is 10% smaller than the Fully-Coupled value, while the c̃w,O value is roughly 20% smaller.

The larger amount of oxygen relative to carbon for the Fully-Coupled approach results in less atomic carbon

at the wall, as seen in the last column of Table 8. For the computed–ṁc analysis, this indicates that the Fully-

Coupled approach will likely predict a larger ṁc than the Partially-Coupled approach. Note that this analysis

suggests that Approximations #1 and #2 will have offsetting influences in the computed–ṁc analysis when

comparing the Uncoupled and Fully-Coupled ṁc values.

The trends mentioned in the previous paragraph for the stagnation-point, are shown to be true downstream

of the stagnation point. The Uncoupled and Partially-Coupled CH values along the body are compared in

Fig. 23 for the turbulent and laminar cases. The CH differences between the Uncoupled and Partially-Coupled

STO-AVT-218 - Radiation and Gas-Surface Interaction Phenomena in High Speed Re-Entry 2- 23



Influence of Coupled Radiation and Ablation on the Aerothermodynamic Environment of
Planetary Entry Vehicles

mmmemememmmmemememmemmemmmemmmmmemmmemmmemmmmmmmmmmmmmmememmmmmemmmmmmmemmmmmmmmmmmmmmmmmmmmmmmmmmmmmemmmmmmmmemmmmmememmmmmmmmemmmmmmmmmmmmmemmmmemmmemmmmmmmmmeemeeemmmmmeeeemmeeentntntntntntntnttntnttnttntnttntnnnttntntntntnntnntntnttntnntnttntnntttntnnntnttnnttntnnntnntttnttnnntntttntnnttnntntttnntntnnnttnnnntnttttnttttttnntnntn ooooooooofooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

approaches seen here for the turbulent case are not consistent with the downstream laminar results. Instead

of the Uncoupled CH being larger than the Partially-Coupled value, it is seen to be roughly 15% smaller than

the Partially-Coupled value. This difference will have a significant influence on the computed ṁc analysis

presented in the next section. This is especially true because the trends in the c̃w,k values predicted by the

Partially-Coupled and Fully-Coupled approaches, and compared along the body in Fig 24, are similar to the

laminar case. This means that Approximations #1 and #2 will both result in ṁc increases (in contrast to their

offsetting increase and decrease for the laminar case).
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Figure 23: Predicted CH values along the body.
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Figure 24: Predicted c̃w,k values along the body for
the turbulent case.

The inaccuracy of Approximation #1 in turbulent regions was observed in the previous paragraph. This

behavior is anticipated to have a significant influence on the computed ṁc analysis presented in the next section.

Therefore, it will be studied in more detail here. The non-ablating (qc,0), Uncoupled, and Partially-Coupled qc

values are compared in Fig. 25 for the turbulent case. This figure shows that the Partially-Coupled qc becomes

nearly equal to the non-ablating value in the downstream turbulent regions. This behavior is not followed by

the Uncoupled approach, which is the reason for the disagreement in the CH values shown in Fig. 23. Note that

qc may be separated into two components, the conductive component:

qc,cond = kve
dTve

dz
+ ktr

dTtr

dz
(38)

and the diffusive component:

qc,diff = ρ
∑

i=species

Jihi (39)

These components are presented in Fig. 26 for the non-ablating and Partially-Coupled cases. It is seen that the

conductive component is reduced and the diffusive component is increased with the introduction of ablation.

The increase of the diffusive component at the stagnation point (therefore, not influenced by turbulence) is

a result of the different chemistry near the wall for the ablating case. The larger increase of the diffusive

component downstream of the stagnation point, however, is a result of turbulence. This turbulent downstream

region is strongly dependent on the Scturb, and less so on the other details of the turbulence model. If Scturb is

increased above the present value of 1.0, the influence of turbulent diffusion decreases. If a large Scturb value

is applied to both the non-ablating (which drives the Uncoupled result) and Partially-Coupled solutions, the

agreement between the Uncoupled and Partially-Coupled qc (and CH ) values becomes significantly better.
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Figure 25: Comparison of qc values along the body for
the turbulent case.
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Figure 26: Comparison of the diffusive and conductive
components for the turbulent case.

3.6.2 Analysis of 6 km/s Earth Entry Case with Computed Char Ablation Rates

The present section engages Eq. (20) to allow ṁc to be computed as part of the flowfield solution. The

differences in the ṁc predicted using the Uncoupled, Partially-Coupled, and Fully-Coupled approaches are of

particular interest, and are the main results of this paper. The ṁg and Tw values are fixed to the same values

as in the previous section. Note that the restriction of fixed Tw could be easily removed by applying Eq. (29).

This was not done here to simplify the interpretation of the results, and because in the diffusion-limited regime

studied here, Tw has a weak influence on ṁc. It is assumed that for practical applications a material response

code will provide ṁg, and this value will likely not be sensitive to ṁc. Thus, holding ṁg fixed in the present

study is justified.

The differences in qc, CH , and c̃w,k predicted by the Uncoupled, Partially-Coupled, and Fully-Coupled

approaches were presented in the previous section for fixed ṁc values (with ṁg and Tw also fixed). In the

discussion of those results, the results of the present section were correctly anticipated, as will be shown.

The 3.6 m radius sphere at a free-stream velocity and density of 6.0 km/s and 3.0e-4 kg/m3 considered

in the previous subsection is considered here. The ṁg and Tw values are fixed to those shown in Fig. 22.

The resulting ṁc values are presented along the body in Figs. 27 and 28 for the laminar and turbulent cases,

respectively. For the laminar case, the Fully-Coupled ṁc is only slightly larger than the Uncoupled result, while

it is 20% larger than the Partially-Coupled result. This peculiar result that the Uncoupled approach is in better

agreement (with the Fully-Coupled approach) than the Partially-Coupled approach was to be expected from

Section 3.6.1, which showed that for the laminar case Approximations #1 and #2 result in offsetting errors. In

other words, removing Approximation #1 causes the ṁc difference seen between the Uncoupled and Partially-

Coupled approaches, which for the laminar case is a 20% decrease in ṁc. This is a result of Approximation #1

over-predicting CH , as was shown in Fig. 23. Similarly, removing Approximation #2 causes the ṁc difference

seen between the Partially-Coupled and Fully-Coupled approaches, which for the laminar case is about a 23%

increase in ṁc.

For the turbulent results shown in Fig. 28, the comparison between approaches in the downstream region

is significantly different than the laminar results. As was discussed in Section 3.6.1, in regions of turbulence

Approximation #1 under-predicts CH , which is the opposite of the laminar trend. As a result, removing Ap-

proximation #1 causes an increase in ṁc. The influence of Approximation #2 is the same for the turbulent

case as it is for the laminar case, and therefore removing it also causes an increase in ṁc. Because remov-
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ing Approximations #1 and #2 both provide increases in ṁc, instead of providing offsetting differences as in

the laminar case, the difference between the Uncoupled and Fully-Coupled results is significant, with the the

Fully-Coupled ṁc being 49% larger than the Uncoupled value at s = 2.0 m.
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Figure 27: Predicted laminar ṁc values the 6 km/s Earth
entry case.
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Figure 28: Predicted turbulent ṁc values for the 6 km/s
Earth entry case.

3.7 Mars Entry Case at 5.26 km/s

To show the influence of Approximations #1 and #2 for a Mars entry vehicle, this section presents an analysis

similar to that of the previous subsection, but with a free-stream composition of 0.974 CO2 and 0.026 N2. A

4-m radius sphere at a velocity of 5.26 km/s and a density of 6.96e-4 kg/m3 is considered with a solid carbon

char and pyrolysis mass fraction composition of [C,H,O,N] = [0.40, 0.145, 0.435, 0.02].

For the fixed char rate, pyrolysis rate, and wall temperature shown in Fig. 29, the influence of Approxi-

mations #1 and #2 on the elemental oxygen reaching the surface is seen in Fig. 30. Similar to the behavior

observed in the previous section for the Earth entry cases, the Fully-Coupled approach predicts more elemental

oxygen at the surface than the Uncoupled approach for a given ṁc, ṁg, and Tw. Note that for this Mars entry

case the elemental oxygen at the wall is lower than the boundary layer edge value of 0.708, while for the Earth

entry case it was larger.
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Figure 29: Specified surface values for the 5.26 km/s Mars
entry case.

0 0.01 0.02 0.03 0.04 0.05
0.45

0.5

0.55

0.6

0.65

0.7

0.75

Distance along stag. line

O
xy

ge
n 

E
le

m
en

ta
l M

as
s F

ra
ct

io
n

No ablation
Uncoupled
Fully−Coupled

Figure 30: Elemental mass fraction of oxygen through the
boundary layer for the Mars entry case with specified ṁc,
ṁg , and Tw.
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If the char equilibrium constraint is enforced and ṁc is computed instead of specified, with ṁg and Tw

fixed to the values in Fig. 29, the resulting ṁc values from the three approaches are presented in Figure 31.

As anticipated from the larger elemental oxygen mass fraction predicted by the Fully-Coupled approach in the

specified ṁc analysis of the previous paragraph, the Fully-Coupled approach predicts larger ṁc values than

the Uncoupled approach. This 70% larger ṁc at the stagnation point indicates the inadequacy of the Uncou-

pled approach for predicting surface recession for Mars entry cases. The corresponding convective heating is

presented in Fig. 32, which does not show the same level of disagreement as the ṁc.
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Figure 31: Predicted ṁc values the 5.26 km/s Mars entry
case.
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Figure 32: Predicted qc values the 5.26 km/s Mars entry
case.

4.0 COUPLED ANALYSIS OF A COMPLETE MARS RETURN ENTRY TRAJECTORY

The Mars return trajectory considered here is NASA’s 50,000 ft/s trajectory, presented in Table 9. This trajectory

was studied considerably in the 1960s and 70s as a benchmark Mars return case. The geometry is chosen as a

3.1 m sphere to approximate the Apollo stagnation region. The heat shield is set to 4.5 cm of Pioneer-Venus

heritage carbon phenolic. This would approximately double the heat shield mass relative to Apollo’s Avcoat

heat shield.

The solution procedure for obtaining a fully coupled ablation and radiation solution, with the pyrolysis rate

and qcond obtained from a material response code, consists of obtaining a steady state ablation solution for each

point in the trajectory. The wall temperatures and char rates obtained from these solutions are then applied as

inputs to a material response code, which outputs the pyrolysis rate and qcond. Coupled flowfield solutions are

then recomputed with the steady state ablation approximation removed to obtain updated wall temperatures and

char rates. This process is repeated until the char and pyrolysis rates are unchanged between iterations.

The peak heating region of the trajectory between t = 7.4 – 110 s, which contains the most significant

radiation and ablation coupling, is considered in Section 4.0.1, while the later trajectory points between t =

110 – 500 s are considered in Section 4.0.2. The later portion of the trajectory contains significantly weaker

heating, char and pyrolysis rates, but is important for sizing the ablator thickness due to the redistribution of the

sharp temperature gradients present through the material at the end of the peak heating trajectory phase. This

temperature redistribution through conduction drives the temperature at the ablator–structure interface (bondline

temperature), which represents one of the primary design constraints for choosing the ablator thickness. The

design limit for the bondline temperature depends on the bonding agent between the ablator and supporting
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Table 9: Free-stream conditions for the Mars return trajectory.

time Velocity density Temperature
(s) (km/s) (kg/m3) (K)

7.4 14.74 1.35e-7 221.9
15 14.74 1.43e-6 173.2
22 14.76 1.54e-5 165.6
29 14.76 6.89e-5 198.1
37 14.52 1.83e-4 229.7
45 14.08 3.79e-4 256.6
52 13.54 4.73e-4 265.3
59 12.86 4.73e-4 265.3
67 12.19 4.73e-4 265.3
74 11.65 4.73e-4 265.3
82 11.11 4.73e-4 265.3
89 10.67 4.73e-4 265.3
104 9.77 4.73e-4 265.3
111 9.50 4.73e-4 265.3
119 9.16 4.73e-4 265.3
130 8.75 4.73e-4 265.3
150 8.06 4.73e-4 265.3
200 6.77 4.73e-4 265.3
300 5.09 4.73e-4 265.3
400 3.99 6.08e-4 262.3
450 3.41 9.79e-4 261.1
500 2.68 2.19e-3 260.1

structure, and range between 600 – 800 K. A limit of 600 K is considered in this work.

4.0.1 Analysis of Peak Heating Region of Trajectory

Figure 33 presents the char rate, pyrolysis rate, and wall temperatures obtained from the initial steady state ab-

lation approximation and the final solution coupled with the material response code. The significant differences

between the pyrolysis rates seen early in the trajectory are to be expected, since the steady-state ratio of char

and pyrolysis rates is fixed by Eq. (30). The difference between the magnitude of the char rate peaks is a result

of the steady state approximation of qcond implied in Eq. (29). Because this peak ablation region is sublimation

dominated, the char rate is sensitive to the wall temperature, and therefore the energy equation. The radiative

and convective heating along the trajectory are presented in Fig. 33 for the steady state and detailed solutions.

The relatively good agreement between the steady-state and detailed heating confirms that qcond is responsible

for the difference in peak char rates. Note that the details of the stagnation point radiative heating at t = 45 s was

presented in Section 2.4. The wall temperatures along the trajectory presented in Fig. 35 show the expected

result of lower temperatures in the early part of the trajectory for the detailed solution. The larger pyrolysis

rates and qcond for the detailed solution are responsible for these lower temperatures.
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Figure 33: Simulated char and Pyrolysis injection rates at
the stagnation point for the Mars return trajectory.
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Figure 34: Simulated radiative and convective at the stag-
nation point for the Mars return trajectory.
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Figure 35: Simulated wall temperatures at the stagnation
point for the Mars return trajectory.

The temperature and density profiles through the ablator at the stagnation point, for various trajectory

points, are presented in Figs. 36 and 37. Recession is indicated in these figures by the gradual change in the

minimum “distance into the heatshield” for each trajectory point. The temperature profiles in Fig. 36 indicate

that the ablator has provided successful protection through the peak heating phase of the trajectory, with the

temperatures at the back of the heatshield remaining at their ambient values with 1.5 cm of ablator to spare.

However, as the temperature gradients seen here are redistributed in the later phase of the trajectory, the entire

4.5 cm of ablator will be required to keep the bondline temperature below 600 K, as shown in the next section.

Figure 37 shows the transition from the char at 1179 kg/m3 through the pyrolysis zone and to the virgin material

at 1464 kg/m3. The significant recession is seen to limit the thickness of the char throughout most of the

trajectory.
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Figure 36: Temperature profiles through the ablator at the
stagnation point for the Mars return trajectory.
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Figure 37: Density profiles through the ablator at the stag-
nation point for the Mars return trajectory.

Considering the non-stagnation point results, Figures 38 – 42 present the radiative heating, convective

heating, char rates, pyrolysis rates, and wall temperatures along the body at various trajectory points. An

observation of note from these figures is that the convective heating, which is assumed laminar, is largest

downstream of the stagnation point where the ablation rates are lower. However, these peak values are negligible

relative to the local radiative heating, except at the late 90 and 104 s trajectory points. Future studies should

treat the more realistic turbulent case, which will result in larger convective heating values.

Another important observation from these figures is that the pyrolysis rates are dominant in the far down-

stream region, where the heating is still relatively high, but the lower pressure reduces the char rates. This is

seen more clearly in Fig. 43, which presents the distance of the of the surface (recession) and pyrolysis zone

interface at the end of the considered trajectory. It is seen that beyond 3 m the recession is negligible while the

pyrolysis zone has proceeded considerably into the surface.
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Figure 38: Radiative heating along the body for a range of
trajectory points.
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Figure 39: Convective heating along the body for a range
of trajectory points.
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Figure 40: Radiative heating along the body for a range of
trajectory points.
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Figure 41: Convective heating along the body for a range
of trajectory points.

0 1 2 3 4 5
500

1000

1500

2000

2500

3000

3500

4000

Distance along Surface (m)

T w
 (K

)

30 s
45 s
60 s
74 s
90 s
104 s

Figure 42: Surface temperature along the body for a range
of trajectory points.
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Figure 43: Recession and pyrolysis zone interface, both
relative to the original surface location, at t=110 s.

4.0.2 Analysis of Cool Down Region of Trajectory

The char and pyrolysis rates at the stagnation point during the later the part of the trajectory are presented in

Fig. 44, while the corresponding heating rates and wall temperatures are presented in Figs. 45 and 46. The char

rates are seen to be two orders of magnitude lower than the peak char rate, which is a result of this trajectory

region being dominated by diffusion limited oxidation. Figure 45 shows that the radiative heating is negligible

in this region.
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Figure 44: Simulated char and Pyrolysis injection rates at
the stagnation point during the later trajectory phase.

150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

time (s)

H
ea

tin
g 

(W
/c

m
2 )

qrad
qconv

Figure 45: Simulated radiative and convective at the stag-
nation point during the later trajectory phase.

150 200 250 300 350 400 450 500
0

500

1000

1500

2000

2500

time (s)

T w
 (K

)

Figure 46: Simulated wall temperatures at the stagnation
point during the later trajectory phase.

The temperature and density distributions through the ablator during the later trajectory points are presented

in Figs. 47 and 48. The t = 800 s trajectory point represents the final cool down phase of the trajectory, with a

wall temperature specified at 800 K and a char rate set to zero. Figure 47 shows that the bondline temperature

remains below 600 K throughout this later phase of the trajectory, while Fig. 48 shows that roughly 0.5 cm of

virgin material remains at the end of the trajectory. A comparison of the recession and pyrolysis zone interface

at t = 110 s and 800 s is presented in Fig. 49. Although the heating is mild during the later phase, the long time

duration is seen to provide significant pyrolysis.
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Figure 47: Temperature profiles through the ablator at the
stagnation point during the later trajectory phase.
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Figure 48: Density profiles through the ablator at the stag-
nation point during the later trajectory phase.
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Figure 49: Comparison of recession and pyrolysis zone
interfaces, both relative to the original surface location,
at t=110 s and 800 s.

4.0.3 Impact of Radiative Heating Uncertainty on Ablator Thickness

The parametric uncertainty of the radiative heating was determined in Section 2.2.2, based on the study of

Johnston et al. [23], to be near ±50% for a range of velocities. Applying this uncertainty value as a margin, and

recomputing the char rates, surface temperatures, and material response results in a recession of 2.6 cm and py-

rolysis zone interface of 4.1 cm. An ablator thickness of 6.2 cm is required to maintain a bondline temperature

below 600 K. This nearly 50% increase in the ablator thickness resulting from a 50% increase in the radia-

tive heating indicates the importance of reducing the radiative heating uncertainty at Mars return conditions.

Furthermore, this sensitivity requires that ablation and radiation coupling are treated with the highest level of

modeling fidelity possible.
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