Piezoelectrically Initiated Pyrotechnic Igniter

Lyndon B. Johnson Space Center, Houston, Texas

This innovation consists of a pyrotechnic igniter and piezoelectric initiation system. The device will be capable of being initiated mechanically; resisting initiation by EMF, RF, and EMI (electromagnetic field, radio frequency, and electromagnetic interference, respectively); and initiating in water environments and space environments.

Current devices of this nature are initiated by the mechanical action of a firing pin against a primer. Primers historically are prone to failure. These failures are commonly known as misfires or hang-fires. In many cases, the primer shows the dent where the firing pin struck the primer, but the primer failed to fire. In devices such as “T” handles, which are commonly used to initiate the blowout of canopies, loss of function of the device may result in loss of crew. In devices such as flares or smoke generators, failure can result in failure to spot a downed pilot.

The piezoelectrically initiated ignition system consists of a pyrotechnic device that plugs into a mechanical system (activator), which on activation, generates a high-voltage spark. The activator, when released, will strike a stack of electrically linked piezo crystals, generating a high-voltage, low-amperage current that is then conducted to the pyro-initiator. Within the initiator, an electrode releases a spark that passes through a pyrotechnic first-fire mixture, causing it to combust. The combustion of the first-fire initiates a primary pyrotechnic or explosive powder. If used in a “T” handle, the primary would ramp the speed of burn up to the speed of sound, generating a shock wave that would cause a high explosive to go “high order.” In a flare or smoke generator, the secondary would produce the heat necessary to ignite the pyrotechnic mixture.

The piezo activator subsystem is redundant in that a second stack of crystals would be struck at the same time with the same activation force, doubling the probability of a first strike spark generation. If the first activation fails to ignite, the device is capable of multiple attempts.

Another unique aspect is in the design of the pyrotechnic device. There is an electrode that aids the generation of a directed spark and the use of a conductive matrix to support the first-fire material so that the spark will penetrate to the second electrode.

This work was done by Asia Quince, Maureen Dutton, Robert Hicks, and Karen Burnham of Johnson Space Center. Further information is contained in a TSP (see page 1). MSC-24841-1

Folding Elastic Thermal Surface — FETS

By using tape-spring hinges, the FETS avoids the need for lubricants.

NASA’s Jet Propulsion Laboratory, Pasadena, California

The FETS is a light and compact thermal surface (sun shade, IR thermal shield, cover, and/or deployable radiator) that is mounted on a set of offset tape-spring hinges. The thermal surface is constrained during launch and activated in space by a thermomechanical latch such as a wax actuator.

An application-specific embodiment of this technology developed for the MATMOS (Mars Atmospheric Trace Molecule Occultation Spectrometer) project serves as a deployable cover and thermal shield for its passive cooler. The FETS fits compactly against the instrument within the constrained launch envelope, and then unfolds into a larger area once in space. In this application, the FETS protects the passive cooler from thermal damage and contamination during ground operations, launch, and exposure to heated UPW improve the removal of 1- to 5-micron-sized particles.

This work was done by Judith H. Allton and Eileen K. Stansbery of Johnson Space Center, Michael J. Calaway of Jacobs Technology, and Melissa C. Rodriguez of Geocontrol Systems Inc. Further information is contained in a TSP (see page 1). MSC-24499-1

https://ntrs.nasa.gov/search.jsp?R=20130013834 2019-06-03T14:56:57+00:00Z

The figure depicts the FETS in its stowed and deployed states during high vacuum testing at JPL.