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Particle dampers provide a mechanism for diverting energy away from resonant 
structural vibrations.  This experimental study provides data from a series of acoustically 
excited tests to determine the effectiveness of these dampers for equipment mounted to a 
curved orthogrid panel for a launch vehicle application. Vibration attenuation trends are 
examined for variations in particle damper fill level, component mass, and excitation energy.  
A significant response reduction at the component level was achieved, suggesting that 
comparatively small, strategically placed, particle damper devices might be advantageously 
used in launch vehicle design. These test results were compared to baseline acoustic response 
tests without particle damping devices, over a range of isolation and damping parameters. 
Instrumentation consisting of accelerometers, microphones, and still photography data will 
be collected to correlate with the analytical results.   

Nomenclature 
ESSSA = Engineering and Science Services and Skills Augmentation 
MSFC = Marshall Space Flight Center 

I. Introduction 
 

Highly energetic structural responses of lightly damped aerospace structures to acoustic fields present significant 
problems for the survivability of electronic equipment and the structural integrity of structural members.  For these 
structures, even a slight increase in available damping at the right location, could make a critical difference, by 
reducing the response at resonance.  Validating vibration environment estimates for equipment assembled to vehicle 
panels and refining analytical approaches used to estimate these environments, based on ground or flight tests, is of 
major importance to new launch vehicle programs.  The data acquired from this experimental series should permit 
critical evaluation of the usefulness of particle dampers and suggest estimation methodology useful to the aerospace 
community.   
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Marshall Space Flight Center (MSFC) completed a series of ground test cases using acoustic noise to excite a 
flight-like vehicle panel.  Bare panel responses were compared to a variety of vibration mitigating configurations, 
including the addition of mass, cable harnesses, passive wire-rope isolation, and particle damping.  This paper will 
report on the damping trends observed from response measurements for several different test configurations and 
varying particle damper fill levels.  In addition to answering the question of efficacy, the planned test series was 
designed to characterize the particle damping variation with excitation energy and the ratio of total particle mass to 
overall test article mass.  Since these test configurations and excitation levels were also subjected to other 
damping/isolation methods, the test results will inform analysts as to the relative merits of each particle damping 
method. 

II. Test Overview 
 
The flight-like test article used in acoustic ground testing at MSFC consists of an aluminum orthogrid rib 

stiffened panel.  It has a curved Outer Mold Line (OML) that approximates a 45⁰ section (i.e., 1/8th of the cylindrical 
exterior shell) of a launch vehicle.  The panel is clamped into a baffled test fixture, which separates a reverberant 
chamber from an anechoic room (simulating a flight-like condition, with the exterior panel surface excited by a 
high-energy acoustic field).  The panel is excited by an acoustic noise excitation simulating the liftoff vibroacoustic 
environment and more roughly approximating the ascent flight events.  Note that fixing the baffled panel so that it is 
excited by source room energies on only one side, approximates the loading in-service on the launch vehicle. 
Accelerometer, microphone, and strain gage data measure the response of the panel as well as the transmission loss 
across the panel. 
 

The acoustic field was generated in the MSFC Reverberant Chamber using conditioned/compressed air to drive 
up to four parallel WAS 3000 Modulators, which in-turn feed sound into the room through a single horn.  The 
acoustic field was monitored using an array of microphones in front of the test article.  A standard microphone 
configuration was used, consisting of an array centered in each of seven sectors, 1.5 inches in front of the test panel. 
This acoustic power source was utilized to approximate a diffuse acoustic field in the reverberant chamber.  A 
sketch of the test setup, showing the source and receiver rooms, with the approximate location of the microphone 
array is presented as Figure 1. 
 

 
Figure 1. Test Chamber Plan View. 
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The panel has a smooth outer surface with small orthogrid construction on the interior surface.  The material type 
is an aluminum 2219 alloy.  It is approximately 81 inches in height. The outer surface is described by a diameter of 
216.5 inches.  The arc length is approximately equivalent to one eighth of the full cylinder circumference, which is 
approximately 85 inches.  Pictures of the reverberant chamber (showing the outer surface) and the anechoic chamber 
(showing the interior surface) are presented in Figure 2 and Figure 3. 

 
 

 
Figure 2. Reverb-Side Integration of Test Article.    Figure 3. Anechoic-Side Integration of Test Article. 

III. Test Configurations 
 

Configurations for the test series include mass simulators that can be added to the orthogrid panel.  During the 
first test series, three primary configurations were used; a bare panel, a panel mass-loaded by a small mass simulator 
, and a panel mass-loaded by a larger mass simulator (with a footprint of 28” x 36”).  The supported mass of the 
small and large mass simulators allow further variation by bolting “increment plates” to the mass simulators.  For 
the particle damping test series, the test configuration with a larger mass simulator was used.  The basic 
configurations include: 

 
1. Bare panel without particle dampers 
2. Panel with 4 small particle dampers 
3. Panel with a mass simulator  
4. Panel with passive isolation, a mass simulator, and 4 small particle dampers 
5. Panel with a mass simulator, one mass increment plate, and 4 small particle dampers 
6. Panel with a mass simulator, and 4 large particle dampers 

 
A picture of the large mass simulator configuration is presented in Figures 4.  Particle damper installation and 

assembly details can be seen in Figures 5 and 6.   
 

Within each basic test configuration, the fill level of the particle dampers was set to 0%, 30%, 60%, and 90% full 
(by volume).  Particle fill was achieved by adding or removing steel shot  through an opening at the top of the 
damper housing.  During testing, particles were contained within the damper housing by sealing the access hole with 
a bolt.  Additionally, each basic configuration/fill level, was exposed to four excitation levels wherein responses 
were measured and recorded. 
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Figure 4. Anechoic-Side Integration of Test Article depicting the Case 3 Mass Simulator configured with 
4 Small Particle Dampers. 

 

  

Figure 5.  Arrangement of the Small and Large Particle Damper Assemblies with the Mass Simulator.  (a.) 

One of Four Small Cylindrical Particle Damper Packages installed at Lower Corner of the Mass Simulator.  

(b.) The Large Particle Damper placed BB type particles inside the Bathtub Bracket that mounted the Mass 

Simulator to the Primary Structure. 
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Figure 7. Canister Type Particle Damper Assembly 

 

 
Figure 8. Bracket Type Particle Damper Assembly  (a.)  Installed Bracket.  (b.) Bathtub Cavity in Bracket.  
(c.)Bracket with Cover.  (d.) Bracket filled with BB type Particles. 
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IV. Supporting Characterization of Measurements 
 
MSFC has used this test set up to produce significant sound pressure levels that elicit flight like levels of 

response in the test article system.  Figure 9 shows a plot of the average sound pressure spectrum recorded by the six 
microphones in the reverberant chamber.  Figure 10 presents response level for 5 configurations of the test article 
hardware that were tested without particle dampers.  These serve as a baseline response which will help to illustrate 
the attenuation of response provided when the particle dampers are included during the follow on test series. 

 
 
 
 

 

Figure 9. Example Average Liftoff Sound Pressure Level Repeated for Configurations with/without Particle 
Dampers.  (a.) Half Power Liftoff.  (b.) Half Power Ascent  (c.) Full Power Liftoff.  (d.) Full Power Ascent . 
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Figure 10. Vibration Levels Prior to and After the Addition of Large Bracket-Type Particle Dampers- 
Response for Liftoff Acoustic Spectrum 

 
 
 

Figure 11. Vibration Levels Prior to and After the Addition of Small Canister-Type Particle Dampers. 
(a.) Hard-mounted Response for Liftoff Acoustic Spectrum (b.) Response for Ascent Acoustic Spectrum. 

Particle Dampers Combined with Wire Rope Isolation. 

Normal Dir. 

(a.) 

(b.) 
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V. Conclusions 
 

The results of this engineering development test will examine the effect of particle damping on the vibro-
acoustic response of a launch vehicle exterior panel, exposed to acoustic and aerodynamic forces during launch and 
ascent. The data measured from this test series will be useful for characterizing the potential to attenuate severe 
launch vibroacoustic environments using particle damping devices.  Additionally, the data will provide useful design 
information to size and locate particle damping devices to maximize attenuation. 
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