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The absolute planetary timescale 
n  One of the legacies of the Apollo 

samples is the link forged between 
radiometric ages of rocks and relative 
ages according to stratigraphic 
relationships and impact crater size-
frequency distributions 
n  Ejecta from Copernicus at Apollo 12 
n  Imbrium Basin impact-melt breccias 

from Apollo 14 and 15  
n  KREEP-poor IMBs from Apollo 16 

record the age of Nectaris and/or 
Imbrium 

n  Highland massifs at Apollo 17 give 
age of Serenitatis, and younger 
samples from Tycho 

n  Materials from Luna 24 record the 
age of Crisium basin 
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This axis depends on both 
elapsed time and rate of 

impacts/time = flux	
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The lunar impact flux 

n  Amount of impact melt should 
scale with # and size of 
impactors, and therefore reflect 
the flux of impactors in the inner 
solar system 

n  This is important, because the 
bombardment history of the 
Moon is magnified on the Earth 
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The lunar impact flux (1995) 
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The lunar impact flux (today) 
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Cohen et al. 2005, Cohen et al. 2001, Cohen et al. 2010, 
Culler et al. 1999, Grange et al. 2009, Hudgins et al. 2010, 
Levine et al. 2005, Nemchin et al. 2007, Norman et al. 
2006, Norman et al. 2010, Norman et al. 2012, Zellner et 
al. 2005, Zellner et al. 2009	
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A record of bombardment 
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a. Increased 
recent flux?	



b. The classic 
Cataclysm	



c. What was 
happening before 

3.9 Ga?	
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Increased recent flux? 
n  Spherule dating shows increase at 400 Myr ago (Culler et al. 2000) 
n  Modeling predicts that the lunar impact flux over the last 3 Gy has been 

relatively constant – asteroids driven out of the main belt through a 
combination of collisions, non-gravitational (Yarkovsky) thermal drift 
forces, and resonances, with an equilibrium size distribution 

n  Increase and diversity of young 
spherules may be related to 
increasing porosity of upper 
regolith, or gardening under of 
older spherules  (Hörz 2000, Muller 
et al. 2000) 

n  But asteroid breakup events 
happen! (e.g. L-chondrite parent 
body at 460 Myr, Baptistina at 160 
Ma, Bottke et al. 2007) 
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The classic Cataclysm 
n  Many Apollo 14, 16, 17 rocks crystallized at 4.5 Ga but experienced Pb 

loss at 3.9 Ga Tera et al (1974) 
n  Subsequent Rb-Sr and Ar-Ar ages on impact-melt rocks corroborate the 

large number of ~3.9 reset or disturbance ages 
n  Elements of the classic 

cataclysm: 
n  Widespread lunar 

metamorphism by 
impact 

n  Created at least three 
large basins in <0.2 Gyr 
(Serenitatis, Imbrium, 
Orientale) 

n  Resurfaced much of the 
lunar nearside 

n  An important time in 
Earth-Moon system 
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Ex cathedra 
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The classic Cataclysm 
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n  Nice Model (Tsiganis et al., 
Morbidelli et al. and Gomes et al. 
2005): Planet/planetesimal 
interaction causes Uranus and 
Neptune to migrate outward 
(destabilizing icy planetesimals - 
Trojan asteroids) and Jupiter to 
move inward, sweeping 
resonances through asteroid belt 
(late heavy bombardment) 

n  Consistent with secular sampling 
of asteroid belt (Strom et al. 
2005); modeling of main belt 
asteroids predicts production of 
large lunar basins, long tailoff at 
Earth, and siderophile veneer 
(Minton and Malhotra 2010; 
Bottke et al. 2011) 
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What was happening before 3.9 Ga? 
n  Apollo breccias and clasts with reset ages of 

4.1-4.3 Ga (Norman et al. 2010, Shuster et al. 
2010, Hudgins et al. 2008) 

n  Zircon grains in Apollo breccias with 
overgrowth or recrystallization ages 3.9-4.3 
Ga (Pidgeon et al. 2007, Grange et al. 2011) 

n  Impact events at 4.2 Ga proposed for lunar 
melt breccias based on Sm-Nd and Re-Os 
dating (Norman et al. 2007, Fischer-Gödde & 
Becker 2012) 

n  Clasts in Apollo 16 “ancient” breccias all date 
to ~3.9 Ga (Cohen et al. 2010); new solar 
wind trapping model confirms this measure of 
antiquity is not reliable (Joy et al. 2012) 

n  Are these recording ancient basin-forming impact events? 
n  Sawtooth model (Morbidelli et al. 2012) puts time constraints onto the 

Nice model framework, with Imbrium at 3.9, Nectaris at 4.1 and 2/3 of all 
basins prior to that. 
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Where else can we look? 
n  HEDs = Howardites, Eucrites, Diogenites, 

largest achondrite group, spectrally linked 
to Vesta 

n  The HED parent body globally 
differentiated and fully crystallized around 
4.56 Ga (Lugmair and Shukolyukov, 1998) 
n  Eucrites – basaltic crust 
n  Diogenites – cumulate mantle 

n  Dawn shows that Vesta is extensively 
cratered and covered with a well-
developed regolith spectrally similar to 
howardites 
n  Howardites - polymict regolith breccias 

n  Regolith brecciation and heating by 
impacts should be reflected in HED 
disturbance ages 
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Impact-melt clasts in howardites 
n  Most dated rocks and clasts are eucrites - heated and degassed 

without fundamentally changing their character 
n  Impact-melt clasts are less common, smaller, but possibly more likely to 

have been fully degassed, and largely unstudied 
n  Characterized texture, bulk composition, mineralogy, and 40Ar-39Ar ages 

of 37 individual clasts within howardites EET 87513, QUE 94200, GRO 
95574 and QUE 97001 in 100-µm thick, polished sections 
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Clast textures 
n  A01, eucritic clast with a 

classic basaltic texture 
consisting of blocky feldspar 
(gray) and pyroxene (white)  

n  D01, acicular pyroxene and 
plagioclase in an impact-
melt clast 

n  C07, also a microporphyritic 
impact-melt clast, but with a 
higher proportion of relic 
clasts 
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GRO 95574 A01 

EET 87513 C07 
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Clast compositions 
n  Impact-melt clasts 

have a composition 
intermediate 
between eucrites 
and diogenites 

n  Clasts are not a 
previously-
unknown evolved 
basaltic product 
(sorry Duck) 
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40Ar-39Ar data 
n  Not all clasts produced good Ar-Ar data (not enough heating steps, 

discordant “plateaus”, etc.) 
n  Data examined using plateau plots, isochrons, and inverse isochrons, 

most conservative interpretations chosen 
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Disturbance ages in HEDs 
n  Age distribution of all 

HED impact-reset 
rocks (Bogard and 
Garrison (1993, 2003) 
n  a short, intense 

spike at 4.48 Ga, 
n  followed by a period 

of relative 
quiescence, then 

n  ramping up between 
about 4.0 and 3.5 
Ga 
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Impact-melt ages 
n  New impact-melt ages 

(11) predominantly 
3.6-3.8 Ga 

n  Fall well within the age 
distribution of all HED 
impact-reset rocks  
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Resetting material on Vesta 
n  Significant diffusion 

in 100-10,000 y 
(cooling of an 
impact blanket) 
takes >800°C 

n  Typical impact v 
between objects in 
the main belt (5 km/
s) imparts too little 
energy to raise T 
more than a few 
hundred °C 
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Diffusion coefficients in plagioclase and pyroxene (Cassata 
et al. 2008, 2010; Weirich et al. 2012) 

Melting material on Vesta 
n  Melting material requires even 

more energy = higher relative v 
n  Main belt velocity distribution 

unlikely to explain so much melt 
from so many different impact 
events spaced so closely in time 

n  Howardite impact-melt clasts, and therefore probably most of the Vesta 
impacts in this period, must be the result of highly velocitous impacts 
n  Excited main belt (E-Belt) (Bottke et al. 2010)? 
n  Cometary flux of the Nice model (Gomes et al. 2005)? 
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Conclusions 
n  Impact-melt clasts in howardites are rare but present – formed by that 

impact-mixing of other 4 Vesta regolith 
n  Textures demonstrate they were melted and recrystallized 
n  Compositions demonstrate they are a mixture of eucrites and 

diogenites 
n  Impact-melt clast ages range between 3.5 and 4.0 Ga 

n  Coincident with most Ar-reset ages of eucrites and eucritic clasts 
n  Forming impact melt on the surface of Vesta well after solar system 

accretion demands IOUVs (impacts of unusual velocity) 
n  Vestal Cataclysm = A period of bombardment beginning around 4.0 

(and extending to 3.5 Ga) caused by a distinct, high velocity 
population of impactors 

n  Demonstrates the power of synergy between samples, sample ages, and 
dynamical models (thanks NLSI!) 
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n  SPA Sample Return mission concept highly ranked by the 2003 Decadal 
Survey 

n  Science objectives address:  
n  the timing and nature of bombardment in the inner Solar System and 

subsequent effects on planetary evolution and processes 
n  planetary differentiation and magmatic evolution 
n  crustal evolution and the impact process 

n  Sample return is required to 
achieve laboratory-precision data 
(isotopic data, ages, trace-element 
geochemistry) on multiple samples 

New samples from the oldest lunar basin 
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Requirements for dating the SPA event  
n  An impact-melt rock from the SPA basin-forming event. 

23 Arecibo Observatory, April 19, 2013 

Requirements for dating the SPA event  
n  An impact-melt rock from the SPA basin-forming event. 
n  Will there be one in a random scoop sample? 

n  SPA is a different starting point from Apollo sites - the basin melt sheet 
is the basement rock 

n  Modeling shows that SPA material is mostly indigeneous 
n  How will we recognize it compared to other rocks? 

n  Petrographically / texturally  
n  Geochemically / mineralogically 
n  Trace / siderophile elements 
n  Isotopic ratios 
n  Geologic context 

n  How will we know its age is the SPA basin-forming age? 
n  Dominated by age of the SPA basin 
n  Bounded by younger ages of subsequent craters and basalts 
n  Possibly bounded by older ages of igneous rocks 
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OK, but what if we can’t get samples? 
n  Sample return from everywhere 

we’d like ages isn’t feasible 
n  Instruments to measure rock ages 

(geochronology) have been 
proposed, but none have yet 
reached TRL 6, because isotopic 
measurements with sufficient 
resolution are very challenging 

n  We have proposed a new approach 
using flight-heritage components 
combined in a novel way to make 
the required measurements (PIDDP 
2010) 
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Ancient Martian Crust, Syrtis Major 
Image: NASA/JPL/University of Arizona 

Youngest lunar basalt, 
Oceanis Procellarum 

Martian aqueous alteration, 
Meridiani Planum 

Laboratory vs flight instruments 
n  In the laboratory, very precise ages (±0.02 Ma) can be obtained on very small samples 

n  Mass spectrometers are large (room-sized) 
n  Replicate analyses can be run, subsamples can be separated and dated 
n  Same sample can be analyzed by multiple techniques 
n  Samples can be well-characterized and studied (microscopy, electron microprobe, etc.) 

n  Some challenges for a flight instrument include 
n  Miniaturization 
n  Accuracy and reproducibility of measurements 
n  Confidence in interpretation of results 
n  Sample preparation 
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How do we go from this……            to this? 



14	



KArLE principles 

n  Several in situ instruments to measure rock ages have been proposed and 
developed (e.g. AGE, MAX, etc.)….but none have yet flown, because  
n  Isotopic measurements with sufficient resolution are challenging 
n  Correct interpretation of results as an age (rather than a numeric ratio) is 

challenging 

n  The 40K-40Ar system (and its variant, Ar-Ar) is a proven technique sensitive to 
crystallization, aqueous alteration, and impact in returned samples 

D = D0 + P (eλt – 1)   event separates parent from daughter 
t = 1/λ ln [ 1 + ΔD/ΔP]   age isochron from multiple points 

σt = 1/λ σD / (ΔPD)  uncertainty from technique and sample heterogeneity 

n  KArLE is a new development effort under the NASA Planetary Instrument 
Definition and Development Program (PIDDP) begun in 2011  
n  Based on flight components (limited new technology development) 
n  Uses instruments that you would want on a lander/rover anyway 
n  No consumables – can take thousands of measurements 
n  No special sample preparation 
n  Target accuracy ±100 Myr for a 4 Ga sample 
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KArLE concept of operations 

n  Sample introduced by the spacecraft – no special sample preparation required 
n  Infrared laser ablates a pit in the rock 
n  K measured using laser-induced breakdown spectroscopy (LIBS) 
n  Liberated Ar measured using quadrupole mass spectrometry (QMS) 
n  K and Ar related by volume of the ablated pit using optical measurement (OM) 
n  Similar to laser (U–Th)/He dating technique in use in terrestrial laboratories  
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Laser-Induced Breakdown Spectroscopy (LIBS) 
KArLE Breadboard Flight Equivalent 

Ocean Optics LIBS 2500+  
Quantel laser, 1064 nm, 40 mJ, 1-20 Hz 

MSL ChemCam (without telescope) 
Quantel laser, 1067nm, 30 mJ per pulse, 15 Hz 

Pressure dependence: LIBS spectra of 
microcline chip in air (100 shots) and in vacuum 
(1.7E-07 torr; 200 shots). 

Heterogeneity: LIBS calibration curve 
using pressed powder samples. Test chips 

analyzed with XRF for bulk K2O content, 
but vary in mineral K content. 
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Quadrupole Mass Spectrometry (QMS) 
KArLE Breadboard Flight Equivalent 

Hiden HAL/3F 51 Residual Gas Analyzer 
1-50 Da ± 1 Da; 6E17 cps/mol 

MSL Sample Analysis at Mars (SAM) mass spectrometer 
2-535 Da ± <1 Da; 1E18 cps/mol 

Background, volume of 
release, laser pulse rate: 40Ar 
abundance in rhyolite during 
LIBS ablation. Ar buildup from 
background is small compared 
to the release from the sample. 
The measurement is the total 
release from 370 laser shots.  
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Relating K and Ar measurements 

n  Volume × rock density 
yields the ablated 
sample mass - 
necessary to relate 
absolute Ar and relative 
K measurements  

n  Optical metrology with a 
measurement goal 2% 
in ablation volume, 
constrained by distance 
to sample, vibration 
environment, pit 
dimensions, pit 
geometry, etc. 

KArLE Breadboard Flight Equivalent 

Keyence VK-X200 Laser Confocal Microscope 
KLA/Tencor MicroXAM Vertical Scanning Interferometer 

Phoenix Atomic Force 
Microscope 

Volume of ablation pits using 
vertical scanning interferometry 
(left) and laser confocal 
microscopy (right).  
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Deriving an age 
n  An age is the interpretation of a 

geologic event 
n  remote sensing for geologic 

setting 
n  imaging and microscopic imaging 

for petrology 
n  microanalytical techniques for 

chemical and mineralogic 
composition and variation 

n  Multiple measurements to ensure 
validity of fundamental assumptions 
n  Isochron helps age precision 
n  Variation shows whether the 

sample components are cogenetic 
n  Intercept shows whether the 

system has been closed to 
addition/loss El Capitan (Opportunity sol 29) 

False color 
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KArLE PIDDP Goals / Success Metrics 

n  Each individual component is accurate to the standards and has 10% or 
less uncertainty 

n  Measured ages of real samples come within 10% of the published age 
n  Trade between uncertainty in each age and the number of measurement 

points is fully characterized 
n  Operational workflow and component requirements of the breadboard are 

fully understood 
n  A candidate flight design produced whose mass, volume, and power are 

well-characterized is produced 

PIDDP 
 2011-2014 

Breadboard 
(component 

tests and 
trades) 
TRL 1-4 

MatISSE 
2014-2017 

Brassboard 
(integration and 

environment 
tests) 

TRL 4-6 

Mission 
2017-? 

Flight Unit 
(flight unit build 

and 
qualification) 

TRL 6-9 
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A violent early solar system…and beyond 
n  A post-Apollo view of a dynamic solar 

system 
n  Precise ages of returned lunar 

samples & meteorites 
n  Large numerical simulations of planet 

formation & migration 
n  In situ investigation of impact-affected 

terrains 
n  Spitzer observations show a band of icy 

dust around Eta Corvi (1 Gyr old) – a 
possible extrasolar system cataclysm 
where outer icy bodies are pummeling 
inner rocky worlds 
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A violent early solar system…and beyond 
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n  Precise ages of returned lunar 

samples & meteorites 
n  Large numerical simulations of planet 

formation & migration 
n  Spitzer observations show a band of icy 

dust around Eta Corvi (1 Gyr old) – a 
possible extrasolar system cataclysm 
where outer icy bodies are pummeling 
inner rocky worlds 

n  Catastrophe – 1,700 lunar craters / 22,000 terrestrial impact craters 
n  Catalyst – delivery of 1023 g of asteroidal/cometary material to the Earth 
n  Cauldron – impact-generated hydrothermal systems may be niches 
n  Crucible – extreme environments affect evolutionary paths 
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