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Abstract 

We validate through simulation and experiment that 
artificial magnetic conductors (AMC’s) can be well 
characterized by a transmission line model. The theoretical 
bandwidth limit of the in-phase reflection can be expressed in 
terms of the effective RLC parameters from the surface patch 
and the properties of the substrate. It is found that the 
existence of effective inductive components will reduce the in-
phase reflection bandwidth of the AMC. Furthermore, we 
propose design strategies to optimize AMC structures with an 
in-phase reflection bandwidth closer to the theoretical limit. 

Introduction 
The evolution of modern wireless technology demands 

antennas with high gain, low profile, and broad bandwidth. 
Three ways to achieve high gain in patch antennas include the 
use of (1) a ground plate positioned a quarter wavelength 
away which limits the bandwidth and the size miniaturization; 
(2) an electromagnetic wave absorption material under the 
patch (Refs. 1 and 2) which wastes half of the electromagnetic 
(EM) wave energy; and (3) an artificial magnetic conductor 
(AMC) underneath the patch (Ref. 3). 

An AMC, which is also known as a perfect magnetic 
conductor (PMC) and high impedance surface (HIS), is a 
device that is artificially designed with thickness usually much 
smaller than the EM wavelength. Among all the properties of 
AMCs, the reflection phase is the most interesting one. With a 
normal incident wave from air, the reflection phase of a 
perfect electric conductor (PEC) is 180°, whereas, for an 
AMC, the reflection phase can be between –90° and 90° 
(Ref. 3), resulting in in-phase reflection. As a result, unlike the 
PEC, the close proximity of an AMC to the patch will add the 
incident and reflected waves to significantly increase the gain 
and bandwidth, as well as reduce the overall antenna size. 
Recent research has been focusing on bandwidth 
enhancement. The AMC can be modeled as a parallel LC 

circuit, where the in-phase bandwidth is improved by 
increasing the permeability of the spacer layer (substrate) and 
the separation between the surface patch and the metal back 
plate (Refs. 4 to 7). However, due to Snoek’s limit, low loss 
magnetic materials with high permeability at microwave 
frequency are scarce (Ref. 8). Further miniaturization is 
limited by the allowable substrate thickness. In addition, a 
model with a parallel LC circuit is not applicable in the 
mushroom structure without vias, in which in-phase reflection 
remains (Refs. 6 and 9). In this manuscript, using a 
transmission line (TL) model for structures without vias, we 
will show that the in-phase reflection bandwidth has a 
theoretical limit. We explain why most AMC’s do not reach 
the theoretical bandwidth and will show a design procedure to 
enable us to approach the theoretical limit. 

Simulation and Measurement Set Up 
Four AMC samples with different structures are considered. 

The sample, labeled as AMC_Via, has a via at the center 
connecting the surface patch to the ground plate with 
structural parameters shown in Figure 1 of a = 8 mm, h = 
1.57 mm, d = 0.4 mm, and g = 1 mm. The other three samples 
do not have vias (d = 0 mm) and are labeled as AMC_0.2, 
AMC_0.5, and AMC_1.0 with the number referring to the 
value of g in mm. The metal is copper with conductivity of 
5.8×107 S/m, and the substrate is made of dielectric material 
FR-4 with µ = 1 and ε = 4.4 – j0.088. 

The TL model for an AMC is shown in Figure 1(c). The 
series-connected RLC circuit is used to characterize the surface 
patch. A TLS component is used to represent the existence of the 
substrate which includes the parameters of ɛ, μ, and thickness. 
The metal back plate is modeled as a shorted line. 

HFSS software (Ref. 10) is used to obtain the S-parameters 
of the structure involving the surface patch, via, and substrate, 
which are designated as the front components. With known ɛ, 
μ and the thickness of the substrate, the values of R, L, and C 
can be found by fitting the TL model shown in Figure 1(d) to 
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the S-parameters of the front components (surface patch and 
substrate). To validate the TL model, we compare S-
parameters (transmission and reflection) of the AMC front 
components with those of an HFSS simulation. The ideal 
situation arises when both results match throughout the 
frequency range of interest. 
 

 
Figure 1.—Schematics and dimensions of the 

AMC structure in both (a) top view and (b) side 
view. The TL model of (c) an AMC structure, 
and (d) the surface patch for achieving the RLC 
circuit by fitting. 

In HFSS simulations, only one unit is used. Several pairs of 
master and slave boundaries are set on the lateral sides of the 
unit to mimic the infinite periodic distribution of the AMC 
units (Ref. 10). In studying the properties of the surface patch 
without the ground plate, two Floquet excitation ports are set 
on the front and back sides of the structure to obtain both 
reflection (S11) and transmission (S21). The distance between 
the port and the structure is as far as 20 mm to mimic the 
plane wave propagation condition. Only one Floquet 
excitation port is used since the reflection is the only 
parameter of interest. 

In the experimental measurements, two antennas are 
connected to the Agilent 8712ES network analyzer and are 
positioned in front of the sample. The distance between the 
antenna and sample is larger than 2D2/λ to produce the plane 
wave propagation condition, where D is the diameter of the 
smallest sphere containing the horn antenna and λ is the 
wavelength of the microwave. The reflection of the AMC 
sample is calculated by Meas

Metal
Meas
AMCAMC SSR = , where Meas

AMCS  

and Meas
MetalS  are the measured transmission between the two 

antennas when the AMC sample and a thick circular metal 
plate of area 2rA p=  are respectively located in front of the 
antennas.  

Calculation and Measurement Result 
Table I shows the extracted RLC parameters by fitting the 

S-parameter of the front component simulated using HFSS. 
The fitted results are excellent as shown in Figure 2. It should 
be pointed out that the LC resonance frequencies based on the 
parameters shown in Table I are higher than 100 GHz for all 
four structures. In the considered frequency range (2 to 
10 GHz), the impedance of the AMC structure is dominated 
by the effective capacitive component C in the RLC group. 
For example, at 12 GHz, the impedance of the L and C 
components of the AMC_Via sample are j5.93 W and – 
j88.89 W, respectively. It is also interesting that the RLC 
parameters are very similar for AMC_1 and AMC_Via 
samples, which confirms that the function of the via in the 
structure may not be important to the in-phase reflection 
performance (Refs. 6 and 9). 
 

TABLE I.—THE RLC PARAMETERS OF AMC SAMPLES 
OBTAINED BY FITTING THE S-PARAMETERS OF 

THE FRONT COMPONENT 

 
AMC_0.2 AMC_0.5 AMC_1 AMC_Via 

R (Ohm) 1.3466 2.1094 3.5812 3.5574 
L (10–9 H) 0.0182 0.0425 0.1027 0.0957 
C (10–12 F) 0.3964 0.2725 0.1811 0.1817 

 

Figure 3 shows the phase of the reflection obtained from the 
HFSS simulation (red circles) and the TL model (blue lines) of 
each AMC structure. The results from the TL model match 
well with the HFSS simulations, showing that the frequency of 
0° reflection phase decreases with decreasing g. It can be   
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Figure 2.—S-parameters of the front components of 

the samples (a) AMC_0.2, (b) AMC_0.5, (c) AMC_1 
and (d) AMC_Via from HFSS simulation (squares 
and circles) and calculated by using the extracted 
RLC parameters in Table I. 

 
Figure 3.—The experimental data (black squares), 

and HFSS simulated results (red circles) and TL 
model calculated results (blue lines) of the 
samples (a) AMC_0.2, (b) AMC_0.5, (c) AMC_1 
and (d) AMC_Via. 
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observed that the discrepancy between the model results and 
experiment increases as g increases. The RLC parameters of 
the surface patch are affected by the addition of the metal 
ground plate due to the change of the electric field 
distribution, which influences the C component. Samples with 
smaller g (closer patch) have less effect on the C component 
from the ground plate due to confinement of the electric field 
between the patches. 

Figure 3 also shows the experimental measurement of the 
four AMC samples (black dots). In order to satisfy the infinite 
periodic boundary condition, each sample has a size of 190 by 
203 mm, which is more than four times the wavelength of the 
electromagnetic wave in vacuum at the frequency with 0° 
phase reflection. Due to the limitation of the horn antenna 
working frequency, we are only able to measure the reflection 
from 4.5 to 10 GHz. It is clear that the experimental results 
agree very well with simulations for all samples. Since the TL 
model calculation is very similar to HFSS simulation and 
experimental results, it is reasonable to believe that the TL 
model will be able to characterize and quantitatively calculate 
the behavior of other AMC configurations.  

Analysis of the TL Model 
By analyzing the TL model in Figure 1(c), the existence of 

the L component of the surface patch will reduce the 
bandwidth of the in-phase reflection. Since we are only 
interested in the reflection phase behavior of the AMC 
structure, we assume a lossless AMC with a negligible 
inductive component and the thickness of the substrate is 
much smaller than the EM wavelength. Then the center 
frequency f0,center and normalized bandwidth NBW0 of the in-
phase reflection in this baseline model can be derived to be: 
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Where c is the speed of light in vacuum, C is the capacitive 
component of the surface patch, Z0 is the intrinsic impedance 
of vacuum, and h and m are the thickness and the permeability 
of the substrate, respectively. Using a Taylor expansion to 
include the effect of a small but not negligible inductive 
component, the normalized bandwidth becomes 
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Equation (3) shows how the inductive component in the 
transmission line affects the in-phase reflection bandwidth. 
Since the coefficient of L is negative, NBWL will have the 
maximum value NBW0 when L = 0. Furthermore, considering 
the property of the coefficient of L, three conclusions referring 
to the strategy of broadening the in-phase reflection bandwidth 
can be drawn: 
 
1. The NBW of the AMC structures has a theoretical 

limitation which is expressed by Equation (2) using a thin 
substrate approximation. 

2. Decreasing the inductive component L is an efficient way 
to push the NBW of an AMC closer to its theoretical 
limit. 

3. Increasing the permeability of the substrate decreases the 
coefficient of L but enhances the L component. It is 
unclear that the use of a magnetic substrate will increase 
the NBW closer to the theoretical limit. However, it is 
certain that, according to Equation (3) the reduction of 
NBW caused by the existence of the inductive component 
can be minimized through increasing either the thickness 
of the substrate h or the capacitive component of the 
surface patch. 

Conclusion 
We have demonstrated in both HFSS simulation and 

experimental measurements that our TL model is able to 
describe the reflection phase behavior of AMC structures. A 
theoretical limit of the in-phase reflection bandwidth is 
derived using the TL model. The reduction of the in-phase 
reflection is caused by the existence of the inductive 
component of the surface patch, which can be minimized by 
using a thicker substrate or increasing the capacitive 
component of the surface patch.  
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