Design and Execution of the Hypersonic Inflatable Aerodynamic Decelerator Large-Article Wind Tunnel Experiment

Alan M. Cassell
NASA Ames Research Center, Entry Systems and Vehicle Development Branch
10th International Planetary Probe Workshop, 17-21 June 2012, San Jose, CA, USA
Outline

- HIAD Overview
- Test Design
- Assembly & Integration
- Testing Operations
- Instrumentation & Data Products
- Summary

Photo credit: Dominic Hart
Inflatable Aeroshell Structures Development

Large-Scale Manufacturability & Material Development

Development of large-scale manufacturing capabilities and advanced, high-temperature capable inflatable structure materials.

Large-Scale Static Load Testing & Model Development

Ground test to demonstrate HIAD scalability and initial structural model development.

Large-Scale Wind Tunnel Testing & Instrumentation Development

Ground tests to characterize HIAD performance under flight-like aerodynamic loading.

3 – 15-meter HIAD Class

- Mars robotic (SMD & ESMD)
- Venus missions (SMD)
- LEO/ISS missions (SMD & SOMD)
- NEO return-robotic (SMD & ESMD)
- Lunar return-robotic (SMD & ESMD)
- Terrestrial robotic missions (DoD)

Technology development & risk reduction for Human Mars missions (ESMD)
HIAD Overview

The HIAD Mission Concept - HEART

Launch Configuration

Stowed HEART HIAD Module (LaRC)

Pressurized Cargo Module (PCM, Orbital Sciences)

Enhanced Antares Fairing (Orbital Sciences)

Interstage to PCM Separation Plane (Orbital Sciences)

Antares to Cygnus Separation Plane (Orbital Sciences)

Cruise Configuration (to and from ISS)

Cygnus Service Module (Orbital Sciences)

Interstage Structure (Orbital Sciences)

Flexible Thermal Protection System (LaRC)

Reentry Configuration

Inflatable Structure (LaRC)
HEART Trajectory

Unmargined aerothermal environments
40 ft x 80 ft (12 m x 24 m) Test Section Operating Specifications

Semi-Elliptical Profile

Maximum Velocity- 300 knots (154 m/s)
Max Dynamic Pressure- 262 psf (12.5 kPa)
Max Drag Load- 32,000 lbs
Test Design

Test Article Descriptions

6 m Baseline

6 m Tri-Torus

Rigid Centerbody

1.7 m

6 m

3 m

0.4 m

3 m
Testing Approach

- Test from highest to lowest inflation setting
- Stabilize tunnel condition q, then do AoA sweeps
- ~60 sec dwell time at each point for data acquisition
- Slew rate for turntable (0.5 deg/sec)
- 379 total test points (with repeats) obtained
Assembly & Integration

Test Article Preparations

6 m HIAD on Handling & Integration Fixture

3 m HIAD Initial Inspection
Key Features:

- Tilt via Facility Cranes to Transfer/Integration Positions
- Manually Rotatable via Bearing
- Radial Rotation Lock

Allows:

- Facile Access- Fore & Aft
- Rapid Instrumentation & Pneumatic Line Integration
- Transfer to/from Test Section
Assembly & Integration

Instrumentation & Pressure Line Set-Up

Instrumentation Feed-thrus

Developmental Instrumentation

Inflation Manifold

Routing Instrumentation & pneumatic lines

Sting/Test Article Interface

Thin film bend sensor

Distribution manifolds

Instrumentation Junction Panel

Deformation Measurement System

To Model
Assembly & Integration

6 m Aerocover Install

Aerocover Transferred from Integration Fixture to 6 m HIAD using overhead crane in NFAC high bay

Aerocover Secured to 6 m Test Article
Assembly & Integration

Custom Support System Hardware

- Model Capture Hooks
- Sting Arm Interface
- Photogrammetry Reference Targets
- Strakes run along struts
- 2 Rear Struts - ~2,000 lbs each
- Front Strut - ~12,000 lbs

Front Strut - ~12,000 lbs

2 Rear Struts - ~2,000 lbs each

Strakes run along struts

Photogrammetry Reference Targets

Sting Arm Interface

Model Capture Hooks
Assembly & Integration

Model Installation

Clam shells door open

HIAD Lowered towards Support Hardware

Test Article Captured onto Hook

Crane jogged to position HIAD
Final Assembly in Test Section

Inflation hoses and instrumentation lines routed from beneath turntable, through front strut and sting arm to test article
Test Operations

Test Articles Installed in Wind Tunnel

- 6 m, 0 deg Yaw
- 6 m, -25 deg Yaw
- 3 m with Aerocover
- 3 m with TPS
Test Operations

HIAD Video Compilation
Instrumentation & Data Overview

Photogrammetry System

Top View

Side View

Front View

Summary Table

<table>
<thead>
<tr>
<th>Pair</th>
<th>Location</th>
<th>Distance</th>
<th>Model Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>East High</td>
<td>45.47</td>
<td>6m at -15 deg or higher</td>
</tr>
<tr>
<td>2</td>
<td>East Low</td>
<td>45.47</td>
<td>6m at -15 deg or higher</td>
</tr>
<tr>
<td>3</td>
<td>Ceiling Dome</td>
<td>46</td>
<td>Upper portion of HIAD for most solutions</td>
</tr>
<tr>
<td>4</td>
<td>Mic Stands</td>
<td>53</td>
<td>Solutions used in all data</td>
</tr>
</tbody>
</table>
Photogrammetry System

Further details on Photogrammetry System can be found in Kushner et al, AIAA, 22nd Aerodynamic Decelerator Systems and Technology Conference
Photogrammetry Data

Overlay of Baseline (Dark Grey) on Tri-Torus
-15 deg AoA, 50 psf, I3 Inflation Setting

Further details on Photogrammetry Data can be found in Kazemba et al, AIAA, 22nd Aerodynamic Decelerator Systems and Technology Conference

3 m Aerocover

3 m w/ TPS

Deflected surface data ready for CFD grid generation
Instrumentation & Data Overview

Test Article Surface Pressures

- **105 Embedded Pressure Taps**
- **Flexible Tubing**
- **Tap Orifice**
- **Low Profile Design**

- **Orifice Size:** 0.020”
- **Profile Height:** 0.060”

Legend:
- Large Unsupported (strap structure) Aerocover Areas – Most Likely Largest Areas of Deflection.
- Pressure Tap on Torus Peak
- Pressure Tap in Valley (minimum) of Tori
- Pressure Tap Directly Between Torus Peak and Tori Valley
Instrumentation & Data Overview

Surface Pressure Data

Tri-Torus: i2, 50psi, 0°

Baseline: i2, 50psi, 0°

Tri-Torus - Baseline
Load Pins & Load Cells

Load Pin Distribution Map

Further details on Strap Load Measurements can be found in Swanson et al, AIAA, 22nd Aerodynamic Decelerator Systems and Technology Conference.
Summary:
- Very successful test series - all primary test objectives were met
- Two 6 m configurations and two 3 m configurations tested.
- Comprehensive set of data products - ~ 400 data channels monitored
- Ability to investigate Aero/Structural performance over a wide range of conditions
- Full 3-d imaging of forward surface for CFD & FEA model development
- Characterization methodology for structural strap materials
- Embedded instrumentation development for pressure and localized state measurements

Results Overview

<table>
<thead>
<tr>
<th>Model Configuration</th>
<th># Test Points</th>
<th>Primary Data Products</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Photogrammetry</td>
</tr>
<tr>
<td>6 m Tri-Torus</td>
<td>151</td>
<td>Full Model Coverage</td>
</tr>
<tr>
<td>6 m Baseline</td>
<td>106</td>
<td>Full Model Coverage</td>
</tr>
<tr>
<td>3 m</td>
<td>94</td>
<td>Full Model Coverage</td>
</tr>
<tr>
<td>3 m w/ TPS</td>
<td>28</td>
<td>Full Model Coverage</td>
</tr>
</tbody>
</table>
Acknowledgements- Core Test Team

Pictured (left to right)
- Laura Kushner
- Greg Swanson
- Justin Littell
- Alan Cassell
- Keith Johnson
- Anthony Calomino
- Neil Cheatwood
- Bill Quach
- Steve Hughes
- Brian Gilles
- Sean Hancock
- Paul Anderson
- Leo Lichodziejewski

Not Pictured
- Jeff D. Brown
- Cole Kazemba
- Lin Li
- Kevin Tran
- Vinh Tran
- Tim Schmidt
Questions?