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Executive Summary 
 
 On June 22, 2010, NASA initiated the decommissioning of the Ice, Cloud and 
land Elevation Satellite (ICESat) by powering down its on-board instrument, the 
Geoscience Laser Altimeter System (GLAS). This document reviews the scientific 
achievements of the mission, particularly with respect to the Mission Success 
Criteria (MSC) established prior to launch, which stated that ICESat would 
produce:  
 

(1) A significant improvement in the measurement of the ice sheet surface 
elevation changes over previous radar altimetry estimates to dh/dt < 2 
cm/year (1! value); 

(2) Calibrated profiles of global land and ocean surface elevations, 
especially at high latitudes where there is currently no detailed 
comprehensive data; 

(3) Calibrated profiles of ice sheet surface elevation to better than 25 cm 
accuracy at the ground location of each laser pulse, to serve as a basis 
for comparisons to future elevation observations. 

 
 Although technical problems were encountered with the lasers on orbit, the 
GLAS instrument team worked closely with the ICESat science team to develop 
a modified operations plan. As a result, ICESat has met or exceeded each of the 
requirements established to define the mission as a success. 
 
 First, elevation change results from Greenland show that !dh/dt is ~1 cm/yr 
for most of the ice sheet, and that larger errors observed along the margins have 
been significantly reduced relative to previous radar remote-sensing missions. 
Second, although the pre-launch changes to the MSC increased the emphasis on 
cryospheric science, calibrated elevation profiles have been routinely produced 
over ocean and land surfaces, throughout the mission, at latitudes up to ±86°. 
Third, elevation differences from intra-campaign crossovers in Antarctica have a 
standard deviation of 25 cm or less for surfaces with slopes less than 2°, which 
encompasses the vast majority of the ice sheet. 
 
 ICESat data has also been used to make significant scientific contributions 
outside the areas defined by the MSC. In particular, it played a critical role in 
the discovery of new subglacial lakes in Antarctica, enhancing our understanding 
of water transfer beneath the surface. ICESat also contributed important 
information about sea-ice freeboard and thickness at a time of record-low extent 
in the Arctic Ocean. Finally, despite technical problems with the green channel, 
remarkably detailed profiles of the planetary boundary layer and atmospheric 
aerosols were obtained for the first time. 
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1. Introduction 
 
 The Ice, Cloud and land Elevation Satellite (ICESat) mission was conceived, 
primarily, to quantify the spatial and temporal variations in the topography of 
the Greenland and Antarctic ice sheets. It carried on board the Geoscience Laser 
Altimeter System (GLAS), which measured the round-trip travel time of a laser 
pulse emitted from the satellite to the surface of the Earth and back. Each range 
derived from these measurements was combined with precise, concurrent orbit 
and pointing information to determine the location of the laser spot centroid on 
the Earth. By developing a time series of precise topographic maps for each ice 
sheet, changes in their surface elevations can be used to infer their mass balances.   
 
 The following section summarizes the Mission Success Criteria (MSC) 
established for the ICESat mission. Section 3 provides an overview of ICESat 
mission operations, from launch through decommissioning, and discusses the on-
orbit technical challenges faced by the instrument and science teams. Section 4 
assesses the overall performance of the ICESat observatory with respect to the 
MSC, and Section 5 reviews additional scientific contributions made using data 
collected during the mission. Section 6 describes the ICESat data products and 
where they have been archived. 
 
2. Mission Success Criteria 
 
 The Level-1 requirements in the EOS Program Plan (February 2001) 
established an initial set of MSC for the ICESat mission. Prior to launch, 
however, the Single Photon Counting Modules – the detectors for the 
atmospheric green channel – were determined to be unreliable, but they were 
declared to be non-essential for the success of the mission. As a result, the MSC 
were modified, and documented in a separate memorandum, dated December 
2002 (see Appendix A). The official Level-1 requirements were not updated at 
that time, nor at any time since. The revised MSC defined success as “an 
improvement by a significant factor over our current knowledge of ice sheet 
elevation variability and mass balance.” Specifically, they stated that ICESat 
would produce: 
 

(1) A significant improvement in the measurement of the ice sheet surface 
elevation changes over previous radar altimetry estimates to dh/dt < 2 
cm/year (1! value); 

(2) Calibrated profiles of global land and ocean surface elevations, 
especially at high latitudes where there is currently no detailed 
comprehensive data; 

(3) Calibrated profiles of ice sheet surface elevation to better than 25 cm 
accuracy at the ground location of each laser pulse, to serve as a basis 
for comparisons to future elevation observations. 
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3. Mission Summary 
 
 The ICESat mission began with a launch on January 12, 2003, from 
Vandenberg Air Force Base, on a Boeing Delta-II rocket. The first of the three 
lasers in the on-board GLAS instrument was commanded to begin firing on 
February 20. The initial returns showed strong and well-behaved waveforms, 
yielding high-quality surface and cloud elevation measurements. After only two 
weeks, however, the laser energy began to decline at a much faster rate than 
expected, with some indications suggesting problems in the laser pump diodes. 
This decline continued until March 29, when Laser 1 ceased firing after 36 days 
of on-orbit operation. 
  
 The Independent GLAS Anomaly Review Board (IGARB) was assembled to: 
(1) determine the cause of the premature failure of Laser 1; (2) assess the 
likelihood of similar failures for Lasers 2 and 3; and (3) recommend steps to 
prolong the on-orbit lifetimes of the two remaining lasers in support of the overall 
mission objectives. In its report, the board concluded that an excess of indium 
solder, applied during the manufacture of the laser diode arrays, contributed to 
the failure of Laser 1. The interaction of this solder with gold conducting wires 
led to the formation of gold-indide compounds, which gradually corroded the 
wires. A second contributing factor in the failure was the development of a shunt 
current in a diode array bar, forcing the redistribution of current among the gold 
wires. This accelerated gold-indide formation and increased thermal stresses, 
causing wire fatigue, and eventually, a short to ground, which fused the bond 
wires open. 
 
 Based on its analysis of the Laser 1 failure, the IGARB recommended that 
Laser 2 be operated at a lower temperature, to slow the growth of the gold-indide 
compounds. Furthermore, in anticipation of similarly shortened lifetimes for the 
two remaining lasers, the mission operations plan was revised to balance spatial 
and temporal coverage requirements in support of the scientific objectives. The 
planned 183-day repeat cycle was replaced with a 91-day repeat cycle, but a 
decision was made to operate GLAS only during a 33-day near-repeat subcycle of 
this new orbit, three times per year: Winter (February/March), Spring 
(May/June) and Fall (September/October). 
   
 With this revised operational scenario in place, Laser 2 began firing on 
September 25, 2003, while in the 8-day repeat cycle of the calibration orbit. As 
with Laser 1, the initial returns provided high-quality surface and cloud elevation 
measurements. The satellite transitioned to the 91-day repeat cycle on October 4, 
and GLAS was scheduled to continue operating for one complete 33-day subcycle. 
Further analysis of the early science data, however, suggested a misalignment of 
the laser beam within the telescope field-of-view. Prior to launch, it had been 
determined that this alignment was sensitive to the temperature of the GLAS 
optical bench, and that, as a result, a minimum temperature of 16.2°C should be 
maintained. Nonetheless, due to difficulties with the control of the component 
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loop heat pipe that regulated this temperature, the ICESat project decided to 
begin Laser 2 operations with a bench temperature of 14.2°C. 
 
 After the misalignment was revealed, a command to raise the temperature of 
the component loop heat pipe was uploaded to the satellite, in an attempt to 
steer the laser beam more into the telescope field of view. Unfortunately, because 
the memory configuration of the ground command test bed did not map directly 
to the configuration on board the satellite, this command erroneously raised the 
temperature of the laser loop heat pipe. The error was recognized within a single 
orbit pass, and corrected within another. Subsequent commands successfully 
raised the temperature of the component loop heat pipe, and the beam alignment 
noticeably improved. The ICESat project then extended the period of operations 
for Laser 2 by two weeks, to allow for the collection of a complete 33-day data 
set following the alignment correction. 
 
 Shortly after the unintended thermal spike to the laser, the transmit energy 
began to decline more rapidly. A newly constituted GLAS Anomaly Review 
Board (GARB), consisting of internal GSFC laser experts, concluded that it was 
likely the result of a photo-darkening process occurring at and near the GLAS 
frequency doubler, which converts a portion of the laser-output near-infrared 
(1064 nm) beam to a green (532 nm) wavelength, for use in the atmospheric 
measurements. The board observed that the electrical power required to heat the 
doubler decreased as the laser energy declined, suggesting that the laser light 
passing through the doubler crystal was being increasingly absorbed. They 
concluded that this was likely due to trace levels of hydrocarbons, outgassed from 
adhesives used in the laser, interacting with the 532-nm photons. The command 
error that led to the increase in the laser temperature probably accelerated this 
process. 
 
 This operations period, designated the L2a campaign, came to an abrupt end 
on November 19, when the on-board computer was reset after a new basetime 
was uploaded, triggering the satellite to enter a sun-acquisition, safe-hold mode. 
Given the proximity to the planned end date for the campaign, two days later, 
and the initial uncertainty surrounding the cause of the computer reset, the 
ICESat project decided to delay any restart of Laser 2 until the following Spring 
opportunity in 2004. 
 
 Lasting for a total of 55 days, the L2a campaign consumed approximately 
one-third of the laser’s energy for altimetry. As the Spring 2004 opportunity 
approached, the ICESat project proposed significantly lowering the laser 
temperature, from 27°C to 16°C. Initially, the GARB opposed this because it 
would involve operating the laser at a temperature outside the nominal limits, 
and for which there was little test data. This issue was not resolved in time for 
the Spring opportunity, and the L2b campaign began on February 17, 2004. 
Shortly after, during an around-the-world calibration scan, the satellite entered a 
sun-acquisition, safe-hold mode, when an unfavorable Sun geometry caused limits 
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in the flight software to be violated. The satellite was reoriented, and science 
data collection resumed within 12 hours. The laser energy output steadily 
declined until March 5, when the transmit gain was increased. The transmit 
energy stabilized for several days, before resuming a gradual decline, and the 
campaign concluded on March 21. 
 
 After additional deliberation, the GARB unanimously recommended lowering 
the laser temperature to 16°C, and the necessary commands were uploaded early 
in the L2c campaign, which began on May 18, 2004. Once this temperature 
change was implemented, the rate of laser energy decline slowed significantly, 
leaving approximately 5 mJ available for altimetry by the end of the Summer 
2004 opportunity. By this point, Laser 2 had operated on orbit for nearly three 
times as long as Laser 1, a reflection of the lessons learned by the instrument 
team, and establishing a solid basis for Laser 3 operations. As a result, a decision 
was made to switch to Laser 3 for future campaigns, and to return to Laser 2 
only when the former’s energy had been depleted. 
 
 On October 3, 2004, Laser 3 was commanded to begin firing at the start of 
the Fall opportunity. Table 1 summarizes all of the campaigns conducted with 
this laser. The 532-nm (green) energy was significantly lower than expected, and 
the GARB later concluded that this was likely due to a mechanical shift of the 
doubler crystal, caused by shrinkage of the polymer used in its mount. The near-
infrared energy for altimetry, however, declined at a much slower rate than for 
either of the other lasers. This has been attributed to the lower operating 
temperature of the laser, a longer outgassing time, and lower green energy, all of 
which contribute to reduced levels of photo-darkening. Laser 3 ceased firing on 
October 19, 2008, after a total of 354 days on on-orbit operation.  

 

 
2004 L3a 03 Oct " 08 Nov 

L3b 17 Feb " 24 Mar 
L3c 20 May " 23 Jun 2005 
L3d 21 Oct " 24 Nov 
L3e 22 Feb " 28 Mar 
L3f 24 May " 26 Jun 2006 
L3g 25 Oct " 27 Nov 
L3h 12 Mar " 14 Apr 2007 
L3i 02 Oct " 05 Nov 
L3j 17 Feb " 21 Mar 2008 
L3k 04 Oct " 19 Oct 

Table 1. ICESat Laser 3 Campaigns 
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 After several failed attempts to restart Laser 3, the ICESat project decided 
to return to Laser 2. The orbit was adjusted to shift the satellite back to the 
reference ground tracks that were covered at the end of the L3k campaign, and 
Laser 2 was restarted on November 25, 2008. After falling below 3 mJ, the laser 
transmit energy was boosted by increasing the laser temperature on December 9, 
in accordance with earlier GARB recommendations. This produced a much 
larger-than-expected jump in the output energy, to more than 8 mJ. At the 
conclusion of the L2d campaign, on December 17, the laser retained nearly 5 mJ, 
about what it had at the end of the L2c campaign, more than four years earlier. 
 
 With the advent of the Spring 2009 opportunity, Laser 2 was restarted, on 
March 9. During the L2e campaign, an impressive number of returns were 
obtained at unprecedented low-energy levels. The laser transmit energy was 
allowed to decline to nearly 1 mJ. Another, although smaller, increase in the laser 
temperature again boosted the output energy, which remained stable at 2 mJ 
until the campaign concluded on April 11. On September 30, the L2f campaign 
commenced. The transmit laser energy declined gradually, until the laser stopped 
firing on October 11. After several failed attempts to restart Laser 2, restarts of 
the other two lasers were attempted, but none succeeded. Decommissioning of the 
ICESat spacecraft began with powering off the GLAS instrument on June 22, 
2010. 
 
4. On-Orbit Performance 
 
 Despite the challenges posed by reduced laser lifetimes and limited 
operational periods, the ICESat mission has demonstrated a remarkable advance 
in satellite remote sensing of the Earth. The GLAS instrument team worked 
closely with the science team to understand the technical problems encountered 
with the lasers. Together, they developed a modified operations plan that 
extended the lifetimes of the remaining lasers well beyond what was expected 
after the failure of Laser 1.  
 
 This section discusses the results obtained in pursuit of the primary scientific 
objectives of the mission, as expressed by the revised MSC listed in Section 2. 
For each criterion, ICESat has met or exceeded the requirement established to 
define the mission as a success. 
 
Criterion 1 
 
Produce a significant improvement in the measurement of the ice sheet surface 
elevation changes over previous radar altimetry estimates to dh/dt < 2 cm/year 
(1!). 
 
 Prior to the launch of ICESat, Zwally et al. (2002) outlined a procedure for 
assessing the error in the derived dh/dt estimates using crossover analysis. At 
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points where ascending and descending tracks cross, the elevations interpolated 
from the two profiles are differenced and divided by the time between the 
observations, yielding dh/dt. Averaging these crossover dh/dt values over a large 
enough area (e.g., a typical 100 km x 100 km drainage basin) reduces the error of 
the spatially averaged dh/dt to less than 2 cm/year. 
 
 After the failure of Laser 1, the adoption of the seasonal campaign strategy 
shifted the emphasis for dh/dt recovery from crossovers to repeat-track analysis. 
The science data, however, revealed that the elevation profiles were typically 
offset horizontally from the targeted reference track, due to pointing control 
errors, with offsets varying between 56 and 111 meters (RMS) for different 
campaigns (Webb et al., 2010). 

 
 

 
 
 
 
 
 
 
 
 
 Figure 1 illustrates the 1! errors associated with the dh/dt estimates 
obtained for Greenland, from ICESat data (2003-2007) and from ERS data (1992-
2002). The ICESat results show a clear and significant improvement in accuracy, 
particularly in the interior of the ice sheet. In this region, which constitutes the 
vast majority of its area, 1! errors are below 1 cm/year. Furthermore, along the 

Figure 1. [Left] Map of !
<dH/dt>

 for ICESat (2003-2007), computed 
from cell-averaged <dH/dt> solutions at individual reference 
points (Zwally et al., submitted). [Right] Map of !

dH/dt 
for ERS 

(1992-2002), computed from time-series analysis of crossover 
differences (Zwally et al., 2005) 
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margins of the ice sheets, where the rates of elevation change are much higher, 
the bands of larger errors have been dramatically narrowed. 
 
 
 
 
 
 
Criterion 2 
 
Produce calibrated profiles of global land and ocean surface elevations, especially 
at high latitudes where there is currently no detailed comprehensive data. 
 
 The change to the ICESat MSC, in December 2002, increased the emphasis 
on cryosphere measurements for the mission. Despite this, and the limitations 
posed by the spatial and temporal coverage, the ICESat data products constitute 
a substantial, consistently referenced land elevation data set, with unprecedented 
accuracy and quantified measurement errors. With support from the NASA 
Earth Surface and Interior program, ICESat data is being used to build a global 
geodetic ground control point (GCP) database to improve existing digital 
elevation models (DEMs), such as those from the Shuttle Radar Topography 
Mission (SRTM) and the Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER). Each ICESat waveform provides a unique sampling of the 
elevations within a particular laser footprint (Harding and Carabajal, 2005). In 
forested areas, this has enabled the determination of the height of the SRTM 
elevations, measured at the radar phase center, within the vegetation canopy.  
 
 Figure 2 shows an example of this application for Australia, where differences 
between the ICESat elevation profiles and the SRTM DEM revealed 5-meter 
amplitude, undulating errors in the latter, over hundreds of kilometers (Carabajal 
et al., 2010). The continental-scale coverage afforded by ICESat can be used to 
remove these long-wavelength errors from the DEM. Figure 2 also highlights the 
consistency in the mean elevation differences, across various ICESat campaigns, 
suggesting very stable performance of the GLAS instrument.  
 
 In addition, the United States Geological Survey has led a collaborative 
effort to assess the accuracy of five ASTER Global DEM (GDEM) tiles, using 
various sources of ground control, including ICESat-derived geodetic GCPs 
(Carabajal et al., 2009). Figure 3 illustrates this work, and similar evaluations of 
an improved version of the ASTER GDEM will be made before it is released. 
Furthermore, the inclusion of ICESat data during the production of DEMs from 
other sensors, such as Interferometric Synthetic Aperture Radar (InSAR) 
enhances the quality of regional models, enabling better process modeling and 
interpretation (Atwood et al., 2007). 
 

ICESat has measured elevation change in Greenland with an accuracy 
of < 1 cm/year over the majority of the ice sheet 
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Figure 2. [Left] Mean ICESat centroid – SRTM differences for 
the L3e observation period. [Center] MODIS land-cover 
classification. [Right] Histograms of elevation differences for 
highest, centroid and lowest ICESat elevations (top) and means 
and standard deviations for centroid elevation differences 
during Laser 3 campaigns (bottom). (Carabajal et al., 2010) 

 

   

Figure 3. Evaluation of ASTER DEM tiles, using ICESat altimetry: [Left] 
ASTER topography with ICESat elevation profiles (black) as geodetic 
GCPs. [Right] Summary statistics for elevation differences for each tile. 
(Carabajal et al., 2009) 
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 One of the most important, and challenging, land applications for ICESat 
data concerns the characterization and monitoring of vegetative cover. The 
Center for Ecological Applications of Lidar (CEAL) at Colorado State University 
is investigating the use of lidar remote sensing to study three-dimensional 
ecosystem spatial structure. They have used ICESat data, in conjunction with 
multi-spectral Moderate Resolution Imaging Spectroradiometer (MODIS) data, to 
create a global map of forest canopy height, which is shown in Figure 4. 
 

 
  
 
 
 
 Global ocean surface profiles have been produced routinely with ICESat 
data. Spatial coverage of the oceans extends to ±86°, well beyond the ±66° 
latitude limits of traditional, radar-based oceanographic missions, such as 
TOPEX/Poseidon and Jason 1/2. Urban and Schutz (2005) compared global 
ocean elevations from ICESat, collected during the L2a campaign, to concurrent 
measurements made by TOPEX/Poseidon. Figure 5 illustrates a 10-cm bias 
between the two satellites, which they found by computing the sea-surface 
anomaly (SSA, measured elevation minus mean sea surface) for each. 
Furthermore, they noted that, because of its inherently higher resolution, ICESat 
“measures small-scale ocean variability caused by waves, wind effects and swell.” 
Nonetheless, after removing this bias, the agreement between the ocean states 
observed by ICESat and TOPEX/Posedion (Figures 5a and 5b) is pronounced. 
Rather than being constant, however, this bias was subsequently found to vary 
with each ICESat campaign, suggesting a possible link to laser energy levels. The 
analysis of ocean data continues to play an important role in assessing residual 
inter-campaign biases, which have also been observed over ice sheets (Gunter et 
al., 2009).  
 
 

Figure 4. Global forest height map. Heights are the 90th percentile of GLAS 
height observations within a MODIS patch (Lefsky, 2010)  
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L2a campaign (Sep-Nov 2003). 
 
 
 
 
 
 
 
 

 
 

Figure 6. Ross Ice Shelf, Antarctica: (a) blue line outlines model 
domain, red line delimits southern limit of TOPEX/Poseidon orbit 
at 66°S, and green line delineates ice front from MODIS Mosaic of 
Antarctica (MOA); (b) red dots mark ICESat crossovers included 
in the study, and additional symbols mark validation data sets, 
including gravimeter records (+), GPS receivers (o), and tide 
gauges (). (Padman et al., 2008) 

Figure 5. Global sea surface 
anomaly (SSA), Sep-Nov 
2003: (a) ICESat, -10 cm 
bias removed; (b) TOPEX; 
(c) daily averages (Urban 
and Schutz, 2005) 

(c) 
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 The expanded latitude coverage afforded by ICESat, relative to 
TOPEX/Poseidon, for example, has allowed for significant improvements to be 
made to ocean tide models in the polar regions. Notably, Padman et al. (2008) 
introduced ICESat elevation measurements from the Ross Ice Shelf to improve 
existing models for ocean tides near Antarctica. They validated their inverse 
solution using independent in situ data sets, including GPS receivers deployed on 
the ice shelf during the austral summers 2003/04 and 2004/05. Figure 6 
illustrates the region and data sets included in their analysis.  
  
 
 
 
 
 
Criterion 3 
 
Produce calibrated profiles of ice sheet surface elevation to better than 25 cm 
accuracy at the ground location of each laser pulse, to serve as a basis for 
comparisons to future elevation observations. 
 
 Although dual crossovers — in which the two elevation measurements are 
from different ICESat campaigns — have been used only on a limited basis in the 
determination of dh/dt, intra-campaign crossovers still provide significant insight 
into elevation accuracy. In this approach, elevations at locations where ascending 
and descending tracks cross within a single ICESat campaign are compared. The 
resulting elevation differences are assumed to represent the combined effects of 
orbit, ranging and pointing errors, along with any short-term elevation change. 
Figure 7 summarizes the standard deviation of all intra-campaign crossovers in 
Antarctica for each of eleven ICESat campaigns, as a function of slope. Nearly all 
of the campaigns yield ! values below 25 cm for slopes less than 2°, which 
encompasses the majority of the ice sheet. The one campaign that exceeds this 
goal is L2a, which suffered from high saturation in the return signal. 
Improvements in the saturation correction are expected to bring these crossover 
results in line with other campaigns. 
 
 

ICESat has provided high-quality elevation data over oceans and 
land, increasing coverage significantly in the polar regions  

ICESat has measured elevations in Antarctica with an accuracy of 
< 25 cm over the majority of the ice sheet 
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Figure 7. Standard deviations of all Antarctic intra-campaign 
crossovers versus slope 

 
5. Additional Scientific Contributions 
 
 In addition to achieving its primary scientific objectives, ICESat data have 
been used to make significant contributions outside the areas defined by the 
MSC. Many of these were published in a 2005 series of three special issues of 
Geophysical Research Letters (Volume 32, Issues 21-23). They have also been 
detailed in recent ICESat Senior Review proposals (see, for example, GSFC, 
2009). 
 
 Notably, Fricker et al. (2007) identified specific sites in Antarctica where 
changes in surface elevation suggested repeated filling and emptying of subglacial 
lakes, as shown in Figure 8. The volumes of water and their rates of transfer were 
determined to be much larger than those previously thought possible. Smith et 
al. (2009) subsequently used ICESat data to produce the first comprehensive 
survey of subglacial lakes in Antarctica. Figure 9 shows a map of their results. 
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Figure 8. [Left] Locations of elevation change events detected by ICESat on the 
Whillans and Mercer Ice Streams, with colors indicating the magnitude of the 
changes. [Right] Repeat ICESat elevation profiles across oscillating (upper), rising 
(middle) and falling (lower) regions. (Fricker et al., 2007) 
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Figure 9. Locations and volume-range estimates for 124 active lakes 
under the Antarctic ice sheet, with colors indicating volume range. 
Background shading shows a combination of satellite-radar-derived 
surface velocities (Joughin et al., 2006) and balance velocities 
(Bamber et al., 2009). (Smith et al., 2009) 

   
 The nature of the ICESat data has also lent itself to the application of 
techniques from other disciplines. For example, Pritchard et al. (2009) applied 
triangular irregular networks to ICESat elevations to determine dh/dt in both 
Greenland and Antarctica. Their method allows them to distinguish between 
dynamically induced elevation changes, and those associated with accumulation 
or melt. Their results, shown in Figure 10, led them to conclude that “the most 
profound changes in the ice sheets currently result from glacier dynamics at 
ocean margins.”  
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Figure 10. Rates of elevation change for Greenland (left) and 
Antarctica (right). The white dashed line delineates the southern 
latitude limit for radar altimetry measurements in Antarctica, and 
the black lines identify drainage basins (Pritchard et al., 2009) 

 
 One of the most important contributions made by ICESat has been its 
monitoring of sea ice. Farrell et al. (2009) developed a new method for sea-
surface height retrieval to compute the first-ever time series of sea ice freeboard 
in the Arctic Ocean, spanning five years, between 2003 and 2008. They conclude 
that this trend is “due to thinning of the sea ice pack, rather than changes in 
snow cover.” Figure 11 illustrates the dramatic decline in freeboard that they 
observed between the start and end of this period. 
  
 Kwok and Rothrock (2009) used their ICESat-derived freeboard calculations 
to generate estimates of sea ice thickness in the Arctic Ocean. They noted a large 
decline over the same five-year period, from 2003 to 2008. In addition, they 
examined submarine ice draft data, extending back to 1958, to place the ICESat 
trends into a broader historical context. Figure 12 shows this overall trend, 
revealing long-term thinning of Arctic sea ice, beginning in the early 1980s. 
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Figure 11. Polar stereographic maps of Arctic sea ice freeboard in 
February/March 2003 (left) and February/March 2008 (right) 
(Farrell et al., 2009) 

 

 
Figure 12. Interannual changes in winter (blue) and summer (red) 
ice thickness from regression analysis (RA) of submarine data and 
10 ICESat campaigns, with error bars shown in blue (Kwok and 
Rothrock, 2009) 
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 Finally, despite the technical limitations of the 532-nm (green) channel, 
ICESat has provided remarkable results in atmospheric science. Palm et al. 
(2005) used GLAS attenuated backscatter data to produce the first-ever global 
mapping of the depth and structure of the planetary boundary layer (PBL), 
shown in Figure 13.   
  
 

 
 

 
 

Figure 13. [Top] GLAS attenuated backscatter (yellow) 
showing the PBL, along with the ECMWF model forecast 
(black) for Track 52 over the Pacific Ocean on October 1, 
2003; [Bottom] Global map of the GLAS-derived PBL for 
October 2003 (Palm et al., 2005) 

 
 Spinhirne et al. (2005) also provided the first global measurements of the 
true height distribution of aerosol layers in the atmosphere. They found that the 
532-nm (green) channel in GLAS provided much better resolution than the 1064-
nm (near-infrared) channel. In Figure 14, for example, they noted the finer detail 
visible in the upper plot, showing aerosols emanating from convective clouds, 
during a pass over Western Australia. 
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Figure 14. GLAS 532-nm (top) and 1064-nm (bottom) atmospheric 
data over track shown at right, from Western Australia to 
southern China (Spinhirne et al., 2005) 

 
6. ICESat Data Products 
 
 The National Snow and Ice Data Center (NSIDC), at the University of 
Colorado at Boulder, archives and distributes 15 ICESat data products. The four 
Level-1A products, designated GLA01 through GLA04, contain global altimetry, 
atmosphere, engineering and laser-pointing data, respectively. In addition, global 
waveform parameters, elevation and backscatter data are available in three 
Level-1B products: GLA05 through GLA07, respectively. Four of the Level-2 
products, GLA08 through GLA11, pertain to atmospheric measurements, 
providing global data related to the planetary boundary layer, cloud heights, 
aerosol vertical structure, and optical depth data, respectively. Altimetry data 
from the Antarctic and Greenland ice sheets, sea ice, land surface, and oceans are 
available in the final four Level-2 products: GLA12 through GLA15, respectively. 
 
 As of this writing, these data products and detailed descriptions of their 
parameters can be found at: http://nsidc.org/data/icesat/data.html. 
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