The Ice, Cloud and land Elevation Satellite (ICESat): Summary Mission Timeline and Performance Relative to Pre-Launch Mission Success Criteria

Charles E. Webb, H. Jay Zwally, and Waleed Abdalati

National Aeronautics and Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

June 2013
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA scientific and technical information (STI) program plays a key part in helping NASA maintain this important role.

The NASA STI program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA's STI. The NASA STI program provides access to the NASA Aeronautics and Space Database and its public interface, the NASA Technical Report Server, thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA Programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services also include organizing and publishing research results, distributing specialized research announcements and feeds, providing help desk and personal search support, and enabling data exchange services. For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA STI Help Desk at 443-757-5803

- Phone the NASA STI Help Desk at 443-757-5802

- Write to:

 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320
The Ice, Cloud and land Elevation Satellite (ICESat): Summary Mission Timeline and Performance Relative to Pre-Launch Mission Success Criteria

Charles E. Webb
Goddard Space Flight Center, Greenbelt, MD
H. Jay Zwally
Goddard Space Flight Center, Greenbelt, MD
Waleed Abdalati
NASA Headquarters, Washington, D.C.
The Ice, Cloud and land Elevation Satellite (ICESat):
Summary Mission Timeline and Performance Relative to
Pre-Launch Mission Success Criteria

Charles E. Webb, Ph.D.
Principal Scientist, SGT Inc.
Goddard Space Flight Center
Cryospheric Sciences Laboratory

H. Jay Zwally, Ph.D.
ICESat Project Scientist
Goddard Space Flight Center
Cryospheric Sciences Laboratory

Waleed Abdalati, Ph.D.
Chief Scientist
NASA Headquarters
Executive Summary

On June 22, 2010, NASA initiated the decommissioning of the Ice, Cloud and land Elevation Satellite (ICESat) by powering down its on-board instrument, the Geoscience Laser Altimeter System (GLAS). This document reviews the scientific achievements of the mission, particularly with respect to the Mission Success Criteria (MSC) established prior to launch, which stated that ICESat would produce:

(1) A significant improvement in the measurement of the ice sheet surface elevation changes over previous radar altimetry estimates to $dh/dt < 2$ cm/year (1σ value);
(2) Calibrated profiles of global land and ocean surface elevations, especially at high latitudes where there is currently no detailed comprehensive data;
(3) Calibrated profiles of ice sheet surface elevation to better than 25 cm accuracy at the ground location of each laser pulse, to serve as a basis for comparisons to future elevation observations.

Although technical problems were encountered with the lasers on orbit, the GLAS instrument team worked closely with the ICESat science team to develop a modified operations plan. As a result, ICESat has met or exceeded each of the requirements established to define the mission as a success.

First, elevation change results from Greenland show that $\sigma_{dh/dt}$ is ~1 cm/yr for most of the ice sheet, and that larger errors observed along the margins have been significantly reduced relative to previous radar remote-sensing missions. Second, although the pre-launch changes to the MSC increased the emphasis on cryospheric science, calibrated elevation profiles have been routinely produced over ocean and land surfaces, throughout the mission, at latitudes up to ±86°. Third, elevation differences from intra-campaign crossovers in Antarctica have a standard deviation of 25 cm or less for surfaces with slopes less than 2°, which encompasses the vast majority of the ice sheet.

ICESat data has also been used to make significant scientific contributions outside the areas defined by the MSC. In particular, it played a critical role in the discovery of new subglacial lakes in Antarctica, enhancing our understanding of water transfer beneath the surface. ICESat also contributed important information about sea-ice freeboard and thickness at a time of record-low extent in the Arctic Ocean. Finally, despite technical problems with the green channel, remarkably detailed profiles of the planetary boundary layer and atmospheric aerosols were obtained for the first time.
1. Introduction

The Ice, Cloud and land Elevation Satellite (ICESat) mission was conceived, primarily, to quantify the spatial and temporal variations in the topography of the Greenland and Antarctic ice sheets. It carried on board the Geoscience Laser Altimeter System (GLAS), which measured the round-trip travel time of a laser pulse emitted from the satellite to the surface of the Earth and back. Each range derived from these measurements was combined with precise, concurrent orbit and pointing information to determine the location of the laser spot centroid on the Earth. By developing a time series of precise topographic maps for each ice sheet, changes in their surface elevations can be used to infer their mass balances.

The following section summarizes the Mission Success Criteria (MSC) established for the ICESat mission. Section 3 provides an overview of ICESat mission operations, from launch through decommissioning, and discusses the on-orbit technical challenges faced by the instrument and science teams. Section 4 assesses the overall performance of the ICESat observatory with respect to the MSC, and Section 5 reviews additional scientific contributions made using data collected during the mission. Section 6 describes the ICESat data products and where they have been archived.

2. Mission Success Criteria

The Level-1 requirements in the EOS Program Plan (February 2001) established an initial set of MSC for the ICESat mission. Prior to launch, however, the Single Photon Counting Modules – the detectors for the atmospheric green channel – were determined to be unreliable, but they were declared to be non-essential for the success of the mission. As a result, the MSC were modified, and documented in a separate memorandum, dated December 2002 (see Appendix A). The official Level-1 requirements were not updated at that time, nor at any time since. The revised MSC defined success as “an improvement by a significant factor over our current knowledge of ice sheet elevation variability and mass balance.” Specifically, they stated that ICESat would produce:

(1) A significant improvement in the measurement of the ice sheet surface elevation changes over previous radar altimetry estimates to \(\frac{dh}{dt} < 2 \) cm/year (1σ value);

(2) Calibrated profiles of global land and ocean surface elevations, especially at high latitudes where there is currently no detailed comprehensive data;

(3) Calibrated profiles of ice sheet surface elevation to better than 25 cm accuracy at the ground location of each laser pulse, to serve as a basis for comparisons to future elevation observations.
3. Mission Summary

The ICESat mission began with a launch on January 12, 2003, from Vandenberg Air Force Base, on a Boeing Delta-II rocket. The first of the three lasers in the on-board GLAS instrument was commanded to begin firing on February 20. The initial returns showed strong and well-behaved waveforms, yielding high-quality surface and cloud elevation measurements. After only two weeks, however, the laser energy began to decline at a much faster rate than expected, with some indications suggesting problems in the laser pump diodes. This decline continued until March 29, when Laser 1 ceased firing after 36 days of on-orbit operation.

The Independent GLAS Anomaly Review Board (IGARB) was assembled to: (1) determine the cause of the premature failure of Laser 1; (2) assess the likelihood of similar failures for Lasers 2 and 3; and (3) recommend steps to prolong the on-orbit lifetimes of the two remaining lasers in support of the overall mission objectives. In its report, the board concluded that an excess of indium solder, applied during the manufacture of the laser diode arrays, contributed to the failure of Laser 1. The interaction of this solder with gold conducting wires led to the formation of gold-indide compounds, which gradually corroded the wires. A second contributing factor in the failure was the development of a shunt current in a diode array bar, forcing the redistribution of current among the gold wires. This accelerated gold-indide formation and increased thermal stresses, causing wire fatigue, and eventually, a short to ground, which fused the bond wires open.

Based on its analysis of the Laser 1 failure, the IGARB recommended that Laser 2 be operated at a lower temperature, to slow the growth of the gold-indide compounds. Furthermore, in anticipation of similarly shortened lifetimes for the two remaining lasers, the mission operations plan was revised to balance spatial and temporal coverage requirements in support of the scientific objectives. The planned 183-day repeat cycle was replaced with a 91-day repeat cycle, but a decision was made to operate GLAS only during a 33-day near-repeat subcycle of this new orbit, three times per year: Winter (February/March), Spring (May/June) and Fall (September/October).

With this revised operational scenario in place, Laser 2 began firing on September 25, 2003, while in the 8-day repeat cycle of the calibration orbit. As with Laser 1, the initial returns provided high-quality surface and cloud elevation measurements. The satellite transitioned to the 91-day repeat cycle on October 4, and GLAS was scheduled to continue operating for one complete 33-day subcycle. Further analysis of the early science data, however, suggested a misalignment of the laser beam within the telescope field-of-view. Prior to launch, it had been determined that this alignment was sensitive to the temperature of the GLAS optical bench, and that, as a result, a minimum temperature of 16.2°C should be maintained. Nonetheless, due to difficulties with the control of the component
loop heat pipe that regulated this temperature, the ICESat project decided to begin Laser 2 operations with a bench temperature of 14.2°C.

After the misalignment was revealed, a command to raise the temperature of the component loop heat pipe was uploaded to the satellite, in an attempt to steer the laser beam more into the telescope field of view. Unfortunately, because the memory configuration of the ground command test bed did not map directly to the configuration on board the satellite, this command erroneously raised the temperature of the laser loop heat pipe. The error was recognized within a single orbit pass, and corrected within another. Subsequent commands successfully raised the temperature of the component loop heat pipe, and the beam alignment noticeably improved. The ICESat project then extended the period of operations for Laser 2 by two weeks, to allow for the collection of a complete 33-day data set following the alignment correction.

Shortly after the unintended thermal spike to the laser, the transmit energy began to decline more rapidly. A newly constituted GLAS Anomaly Review Board (GARB), consisting of internal GSFC laser experts, concluded that it was likely the result of a photo-darkening process occurring at and near the GLAS frequency doubler, which converts a portion of the laser-output near-infrared (1064 nm) beam to a green (532 nm) wavelength, for use in the atmospheric measurements. The board observed that the electrical power required to heat the doubler decreased as the laser energy declined, suggesting that the laser light passing through the doubler crystal was being increasingly absorbed. They concluded that this was likely due to trace levels of hydrocarbons, outgassed from adhesives used in the laser, interacting with the 532-nm photons. The command error that led to the increase in the laser temperature probably accelerated this process.

This operations period, designated the L2a campaign, came to an abrupt end on November 19, when the on-board computer was reset after a new basetime was uploaded, triggering the satellite to enter a sun-acquisition, safe-hold mode. Given the proximity to the planned end date for the campaign, two days later, and the initial uncertainty surrounding the cause of the computer reset, the ICESat project decided to delay any restart of Laser 2 until the following Spring opportunity in 2004.

Lasting for a total of 55 days, the L2a campaign consumed approximately one-third of the laser’s energy for altimetry. As the Spring 2004 opportunity approached, the ICESat project proposed significantly lowering the laser temperature, from 27°C to 16°C. Initially, the GARB opposed this because it would involve operating the laser at a temperature outside the nominal limits, and for which there was little test data. This issue was not resolved in time for the Spring opportunity, and the L2b campaign began on February 17, 2004. Shortly after, during an around-the-world calibration scan, the satellite entered a sun-acquisition, safe-hold mode, when an unfavorable Sun geometry caused limits
in the flight software to be violated. The satellite was reoriented, and science data collection resumed within 12 hours. The laser energy output steadily declined until March 5, when the transmit gain was increased. The transmit energy stabilized for several days, before resuming a gradual decline, and the campaign concluded on March 21.

After additional deliberation, the GARB unanimously recommended lowering the laser temperature to 16°C, and the necessary commands were uploaded early in the L2c campaign, which began on May 18, 2004. Once this temperature change was implemented, the rate of laser energy decline slowed significantly, leaving approximately 5 mJ available for altimetry by the end of the Summer 2004 opportunity. By this point, Laser 2 had operated on orbit for nearly three times as long as Laser 1, a reflection of the lessons learned by the instrument team, and establishing a solid basis for Laser 3 operations. As a result, a decision was made to switch to Laser 3 for future campaigns, and to return to Laser 2 only when the former’s energy had been depleted.

On October 3, 2004, Laser 3 was commanded to begin firing at the start of the Fall opportunity. Table 1 summarizes all of the campaigns conducted with this laser. The 532-nm (green) energy was significantly lower than expected, and the GARB later concluded that this was likely due to a mechanical shift of the doubler crystal, caused by shrinkage of the polymer used in its mount. The near-infrared energy for altimetry, however, declined at a much slower rate than for either of the other lasers. This has been attributed to the lower operating temperature of the laser, a longer outgassing time, and lower green energy, all of which contribute to reduced levels of photo-darkening. Laser 3 ceased firing on October 19, 2008, after a total of 354 days on on-orbit operation.

<table>
<thead>
<tr>
<th>Year</th>
<th>Campaign</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>L3a</td>
<td>03 Oct – 08 Nov</td>
</tr>
<tr>
<td>2005</td>
<td>L3b</td>
<td>17 Feb – 24 Mar</td>
</tr>
<tr>
<td></td>
<td>L3c</td>
<td>20 May – 23 Jun</td>
</tr>
<tr>
<td></td>
<td>L3d</td>
<td>21 Oct – 24 Nov</td>
</tr>
<tr>
<td>2006</td>
<td>L3e</td>
<td>22 Feb – 28 Mar</td>
</tr>
<tr>
<td></td>
<td>L3f</td>
<td>24 May – 26 Jun</td>
</tr>
<tr>
<td></td>
<td>L3g</td>
<td>25 Oct – 27 Nov</td>
</tr>
<tr>
<td>2007</td>
<td>L3h</td>
<td>12 Mar – 14 Apr</td>
</tr>
<tr>
<td></td>
<td>L3i</td>
<td>02 Oct – 05 Nov</td>
</tr>
<tr>
<td>2008</td>
<td>L3j</td>
<td>17 Feb – 21 Mar</td>
</tr>
<tr>
<td></td>
<td>L3k</td>
<td>04 Oct – 19 Oct</td>
</tr>
</tbody>
</table>

Table 1. ICESat Laser 3 Campaigns
After several failed attempts to restart Laser 3, the ICESat project decided to return to Laser 2. The orbit was adjusted to shift the satellite back to the reference ground tracks that were covered at the end of the L3k campaign, and Laser 2 was restarted on November 25, 2008. After falling below 3 mJ, the laser transmit energy was boosted by increasing the laser temperature on December 9, in accordance with earlier GARB recommendations. This produced a much larger-than-expected jump in the output energy, to more than 8 mJ. At the conclusion of the L2d campaign, on December 17, the laser retained nearly 5 mJ, about what it had at the end of the L2c campaign, more than four years earlier.

With the advent of the Spring 2009 opportunity, Laser 2 was restarted, on March 9. During the L2e campaign, an impressive number of returns were obtained at unprecedented low-energy levels. The laser transmit energy was allowed to decline to nearly 1 mJ. Another, although smaller, increase in the laser temperature again boosted the output energy, which remained stable at 2 mJ until the campaign concluded on April 11. On September 30, the L2f campaign commenced. The transmit laser energy declined gradually, until the laser stopped firing on October 11. After several failed attempts to restart Laser 2, restarts of the other two lasers were attempted, but none succeeded. Decommissioning of the ICESat spacecraft began with powering off the GLAS instrument on June 22, 2010.

4. On-Orbit Performance

Despite the challenges posed by reduced laser lifetimes and limited operational periods, the ICESat mission has demonstrated a remarkable advance in satellite remote sensing of the Earth. The GLAS instrument team worked closely with the science team to understand the technical problems encountered with the lasers. Together, they developed a modified operations plan that extended the lifetimes of the remaining lasers well beyond what was expected after the failure of Laser 1.

This section discusses the results obtained in pursuit of the primary scientific objectives of the mission, as expressed by the revised MSC listed in Section 2. For each criterion, ICESat has met or exceeded the requirement established to define the mission as a success.

Criterion 1

Produce a significant improvement in the measurement of the ice sheet surface elevation changes over previous radar altimetry estimates to \(\frac{dh}{dt} < 2 \text{ cm/year} \) (1\(\sigma \)).

Prior to the launch of ICESat, Zwally et al. (2002) outlined a procedure for assessing the error in the derived \(\frac{dh}{dt} \) estimates using crossover analysis. At
points where ascending and descending tracks cross, the elevations interpolated from the two profiles are differenced and divided by the time between the observations, yielding \(\frac{dh}{dt} \). Averaging these crossover \(\frac{dh}{dt} \) values over a large enough area (e.g., a typical 100 km x 100 km drainage basin) reduces the error of the spatially averaged \(\frac{dh}{dt} \) to less than 2 cm/year.

After the failure of Laser 1, the adoption of the seasonal campaign strategy shifted the emphasis for \(\frac{dh}{dt} \) recovery from crossovers to repeat-track analysis. The science data, however, revealed that the elevation profiles were typically offset horizontally from the targeted reference track, due to pointing control errors, with offsets varying between 56 and 111 meters (RMS) for different campaigns (Webb et al., 2010).

Figure 1 illustrates the 1\(\sigma\) errors associated with the \(\frac{dh}{dt} \) estimates obtained for Greenland, from ICESat data (2003-2007) and from ERS data (1992-2002). The ICESat results show a clear and significant improvement in accuracy, particularly in the interior of the ice sheet. In this region, which constitutes the vast majority of its area, 1\(\sigma\) errors are below 1 cm/year. Furthermore, along the
margins of the ice sheets, where the rates of elevation change are much higher, the bands of larger errors have been dramatically narrowed.

Criterion 2

Produce calibrated profiles of global land and ocean surface elevations, especially at high latitudes where there is currently no detailed comprehensive data.

The change to the ICESat MSC, in December 2002, increased the emphasis on cryosphere measurements for the mission. Despite this, and the limitations posed by the spatial and temporal coverage, the ICESat data products constitute a substantial, consistently referenced land elevation data set, with unprecedented accuracy and quantified measurement errors. With support from the NASA Earth Surface and Interior program, ICESat data is being used to build a global geodetic ground control point (GCP) database to improve existing digital elevation models (DEMs), such as those from the Shuttle Radar Topography Mission (SRTM) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Each ICESat waveform provides a unique sampling of the elevations within a particular laser footprint (Harding and Carabajal, 2005). In forested areas, this has enabled the determination of the height of the SRTM elevations, measured at the radar phase center, within the vegetation canopy.

Figure 2 shows an example of this application for Australia, where differences between the ICESat elevation profiles and the SRTM DEM revealed 5-meter amplitude, undulating errors in the latter, over hundreds of kilometers (Carabajal et al., 2010). The continental-scale coverage afforded by ICESat can be used to remove these long-wavelength errors from the DEM. Figure 2 also highlights the consistency in the mean elevation differences, across various ICESat campaigns, suggesting very stable performance of the GLAS instrument.

In addition, the United States Geological Survey has led a collaborative effort to assess the accuracy of five ASTER Global DEM (GDEM) tiles, using various sources of ground control, including ICESat-derived geodetic GCPs (Carabajal et al., 2009). Figure 3 illustrates this work, and similar evaluations of an improved version of the ASTER GDEM will be made before it is released. Furthermore, the inclusion of ICESat data during the production of DEMs from other sensors, such as Interferometric Synthetic Aperture Radar (InSAR) enhances the quality of regional models, enabling better process modeling and interpretation (Atwood et al., 2007).
Figure 2. [Left] Mean ICESat centroid – SRTM differences for the L3e observation period. [Center] MODIS land-cover classification. [Right] Histograms of elevation differences for highest, centroid and lowest ICESat elevations (top) and means and standard deviations for centroid elevation differences during Laser 3 campaigns (bottom). (Carabajal et al., 2010)

Figure 3. Evaluation of ASTER DEM tiles, using ICESat altimetry: [Left] ASTER topography with ICESat elevation profiles (black) as geodetic GCPs. [Right] Summary statistics for elevation differences for each tile. (Carabajal et al., 2009)
One of the most important, and challenging, land applications for ICESat data concerns the characterization and monitoring of vegetative cover. The Center for Ecological Applications of Lidar (CEAL) at Colorado State University is investigating the use of lidar remote sensing to study three-dimensional ecosystem spatial structure. They have used ICESat data, in conjunction with multi-spectral Moderate Resolution Imaging Spectroradiometer (MODIS) data, to create a global map of forest canopy height, which is shown in Figure 4.

![Figure 4. Global forest height map. Heights are the 90th percentile of GLAS height observations within a MODIS patch (Lefsky, 2010)](image)

Global ocean surface profiles have been produced routinely with ICESat data. Spatial coverage of the oceans extends to ±86°, well beyond the ±66° latitude limits of traditional, radar-based oceanographic missions, such as TOPEX/Poseidon and Jason 1/2. Urban and Schutz (2005) compared global ocean elevations from ICESat, collected during the L2a campaign, to concurrent measurements made by TOPEX/Poseidon. Figure 5 illustrates a 10-cm bias between the two satellites, which they found by computing the sea-surface anomaly (SSA, measured elevation minus mean sea surface) for each. Furthermore, they noted that, because of its inherently higher resolution, ICESat “measures small-scale ocean variability caused by waves, wind effects and swell.” Nonetheless, after removing this bias, the agreement between the ocean states observed by ICESat and TOPEX/Poseidon (Figures 5a and 5b) is pronounced. Rather than being constant, however, this bias was subsequently found to vary with each ICESat campaign, suggesting a possible link to laser energy levels. The analysis of ocean data continues to play an important role in assessing residual inter-campaign biases, which have also been observed over ice sheets (Gunter et al., 2009).
Figure 5. Global sea surface anomaly (SSA), Sep-Nov 2003: (a) ICESat, -10 cm bias removed; (b) TOPEX; (c) daily averages (Urban and Schutz, 2005)

Figure 6. Ross Ice Shelf, Antarctica: (a) blue line outlines model domain, red line delimits southern limit of TOPEX/Poseidon orbit at 66°S, and green line delineates ice front from MODIS Mosaic of Antarctica (MOA); (b) red dots mark ICESat crossovers included in the study, and additional symbols mark validation data sets, including gravimeter records (+), GPS receivers (o), and tide gauges (□). (Padman et al., 2008)
The expanded latitude coverage afforded by ICESat, relative to TOPEX/Poseidon, for example, has allowed for significant improvements to be made to ocean tide models in the polar regions. Notably, Padman et al. (2008) introduced ICESat elevation measurements from the Ross Ice Shelf to improve existing models for ocean tides near Antarctica. They validated their inverse solution using independent in situ data sets, including GPS receivers deployed on the ice shelf during the austral summers 2003/04 and 2004/05. Figure 6 illustrates the region and data sets included in their analysis.

Criterion 3

Produce calibrated profiles of ice sheet surface elevation to better than 25 cm accuracy at the ground location of each laser pulse, to serve as a basis for comparisons to future elevation observations.

Although dual crossovers — in which the two elevation measurements are from different ICESat campaigns — have been used only on a limited basis in the determination of dh/dt, intra-campaign crossovers still provide significant insight into elevation accuracy. In this approach, elevations at locations where ascending and descending tracks cross within a single ICESat campaign are compared. The resulting elevation differences are assumed to represent the combined effects of orbit, ranging and pointing errors, along with any short-term elevation change. Figure 7 summarizes the standard deviation of all intra-campaign crossovers in Antarctica for each of eleven ICESat campaigns, as a function of slope. Nearly all of the campaigns yield σ values below 25 cm for slopes less than 2°, which encompasses the majority of the ice sheet. The one campaign that exceeds this goal is L2a, which suffered from high saturation in the return signal. Improvements in the saturation correction are expected to bring these crossover results in line with other campaigns.
5. Additional Scientific Contributions

In addition to achieving its primary scientific objectives, ICESat data have been used to make significant contributions outside the areas defined by the MSC. Many of these were published in a 2005 series of three special issues of Geophysical Research Letters (Volume 32, Issues 21-23). They have also been detailed in recent ICESat Senior Review proposals (see, for example, GSFC, 2009).

Notably, Fricker et al. (2007) identified specific sites in Antarctica where changes in surface elevation suggested repeated filling and emptying of subglacial lakes, as shown in Figure 8. The volumes of water and their rates of transfer were determined to be much larger than those previously thought possible. Smith et al. (2009) subsequently used ICESat data to produce the first comprehensive survey of subglacial lakes in Antarctica. Figure 9 shows a map of their results.
Figure 8. [Left] Locations of elevation change events detected by ICESat on the Whillans and Mercer Ice Streams, with colors indicating the magnitude of the changes. [Right] Repeat ICESat elevation profiles across oscillating (upper), rising (middle) and falling (lower) regions. (Fricker et al., 2007)
The nature of the ICESat data has also lent itself to the application of techniques from other disciplines. For example, Pritchard et al. (2009) applied triangular irregular networks to ICESat elevations to determine dh/dt in both Greenland and Antarctica. Their method allows them to distinguish between dynamically induced elevation changes, and those associated with accumulation or melt. Their results, shown in Figure 10, led them to conclude that “the most profound changes in the ice sheets currently result from glacier dynamics at ocean margins.”
One of the most important contributions made by ICESat has been its monitoring of sea ice. Farrell et al. (2009) developed a new method for sea-surface height retrieval to compute the first-ever time series of sea ice freeboard in the Arctic Ocean, spanning five years, between 2003 and 2008. They conclude that this trend is “due to thinning of the sea ice pack, rather than changes in snow cover.” Figure 11 illustrates the dramatic decline in freeboard that they observed between the start and end of this period.

Kwok and Rothrock (2009) used their ICESat-derived freeboard calculations to generate estimates of sea ice thickness in the Arctic Ocean. They noted a large decline over the same five-year period, from 2003 to 2008. In addition, they examined submarine ice draft data, extending back to 1958, to place the ICESat trends into a broader historical context. Figure 12 shows this overall trend, revealing long-term thinning of Arctic sea ice, beginning in the early 1980s.
Figure 11. Polar stereographic maps of Arctic sea ice freeboard in February/March 2003 (left) and February/March 2008 (right) (Farrell et al., 2009)

Figure 12. Interannual changes in winter (blue) and summer (red) ice thickness from regression analysis (RA) of submarine data and 10 ICESat campaigns, with error bars shown in blue (Kwok and Rothrock, 2009)
Finally, despite the technical limitations of the 532-nm (green) channel, ICESat has provided remarkable results in atmospheric science. Palm et al. (2005) used GLAS attenuated backscatter data to produce the first-ever global mapping of the depth and structure of the planetary boundary layer (PBL), shown in Figure 13.

![Figure 13](image)

Figure 13. [Top] GLAS attenuated backscatter (yellow) showing the PBL, along with the ECMWF model forecast (black) for Track 52 over the Pacific Ocean on October 1, 2003; [Bottom] Global map of the GLAS-derived PBL for October 2003 (Palm et al., 2005)

Spinhirne et al. (2005) also provided the first global measurements of the true height distribution of aerosol layers in the atmosphere. They found that the 532-nm (green) channel in GLAS provided much better resolution than the 1064-nm (near-infrared) channel. In Figure 14, for example, they noted the finer detail visible in the upper plot, showing aerosols emanating from convective clouds, during a pass over Western Australia.
6. ICESat Data Products

The National Snow and Ice Data Center (NSIDC), at the University of Colorado at Boulder, archives and distributes 15 ICESat data products. The four Level-1A products, designated GLA01 through GLA04, contain global altimetry, atmosphere, engineering and laser-pointing data, respectively. In addition, global waveform parameters, elevation and backscatter data are available in three Level-1B products: GLA05 through GLA07, respectively. Four of the Level-2 products, GLA08 through GLA11, pertain to atmospheric measurements, providing global data related to the planetary boundary layer, cloud heights, aerosol vertical structure, and optical depth data, respectively. Altimetry data from the Antarctic and Greenland ice sheets, sea ice, land surface, and oceans are available in the final four Level-2 products: GLA12 through GLA15, respectively.

As of this writing, these data products and detailed descriptions of their parameters can be found at: http://nsidc.org/data/icesat/data.html.

7. Acknowledgments

The authors would like to thank the ICESat Science Team, and its leader, Prof. Bob Schutz, of the University of Texas at Austin, for their review of the final manuscript. They would also like to acknowledge the support of the NASA Cryospheric Sciences Program in compiling this assessment.
Bibliography

Braun, M., A. Humbert, and A. Moll (2009), Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability, *The Cryosphere, 3*, 41-56.

Farrell, S. and S. Laxon (2004), Using ICESat/GLAS to detect changes in Arctic sea ice, Proceedings of the 55th International Astronautical Congress, 4-8 October, Vancouver, Canada, IAC-04-B.4.08.

Fricker, H., R. Coleman, L. Padman, T. Scambos, J. Bohlander, and K. Brunt (2009), Mapping the grounding zone of the Amery Ice Shelf, East Antarctica using InSAR, MODIS and ICESat, *Antarctic Science, 21* (5), 515-532, doi:10.1017/S095410200999023X.

GSFC (2009), Plan for continued operation and additional scientific advances with the ICESat mission: exploring the Earth in three dimensions, NASA Senior Review, 24 March.

Hart, W., J. Spinhirne, S. Palm, and J. Spinhirne (2005), GLAS spaceborne lidar observations of clouds and aerosols, Óptica Pura y Aplicada, 39 (1), 117-123.

Helmer, E. and M. Lefsky (2006), Forest canopy heights in Amazon River basin forests as estimated with the Geoscience Laser Altimeter System (GLAS), USDA Forest Service Proceedings, RMRS-P-42CD.

Yong, P., Y. Xinfang, L. Zengyuan, S. Guoqing, C. Erxue, and T. Bingxiang (2006), Waveform length extraction from ICESat GLAS data and forest application analysis, *Scientia Silvae Sinicae, 42* (7), 137-140.

Appendix A
Ice, Clouds and land Elevation Satellite (ICESat)
Mission Success Criteria
November 2002

National Aeronautics and Space Administration
Office of Earth Science

Ghassem R. Asrar
Associate Administrator for
Earth Science

Date
BACKGROUND
The Ice, Ground and land Elevation Satellite (ICESat) mission provides a subset of the overall Earth Observing System (EOS) program, primarily land and sea ice products. ICESat is planned to start a three year mission with a five year goal with a launch in December 2002.

ICESat MISSION OVERVIEW
The ICESat mission will measure changes in elevation of the Greenland and Antarctic ice sheets as part of NASA’s Earth Observing System (EOS) of satellites. Time series of elevation changes will enable determination of the present day mass balance of the ice sheets, study of associations between observed ice changes and polar climate, and estimation of the present and future contributions of the ice sheets to the global sea level rise. Other scientific objectives of the ICESat include: global measurements of cloud heights and the vertical structure of clouds and aerosols; precise measurement of land topography and vegetation canopy heights; and measurements of sea ice roughness, sea ice thickness, ocean surface elevations, and surface reflectivity. The Geoscience Laser Altimeter System (GLAS) on the ICESat has a 1064 nm laser channel for surface altimetry and dense cloud heights and a 532 nm lidar channel for the vertical distribution of clouds and aerosols.

The ICESat will be launched into a 94° inclination, 600 km circular orbit with a 183 day repeat pattern. The on-board GPS receiver is designed to provide radial orbit determinations to better than 5 cm, and star trackers on board are designed to enable laser spot imaging footprints to 6 m horizontally. The spacecraft attitude control system should control the pointing of the laser beam to within ±35 m of reference surface tracks at high latitudes.

MISSION SUCCESS CRITERIA
Success for the ICESat mission is defined as an improvement by a significant factor over our current best knowledge, provided by radar altimetry, of the land ice elevation variability. Specifically:

1. Produce an improvement in the measurement of the land ice thickness variability over previous radar altimetry to $\delta(dh/dt) < 2$ cm/year (1σ value).

2. Produce calibrated profiles of global land and ocean surface elevations, especially at high latitudes where there is currently no detailed comprehensive data.

3. Produce calibrated profiles of ice sheet surface elevation to 25 cm accuracy at each laser illumination shot.