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Abstract 
 

As fracture mechanics material testing evolves, the governing test standards continue to be 

refined to better reflect the latest understanding of the physics of the fracture processes involved.  

The traditional format of ASTM fracture testing standards, utilizing equations expressed directly 

in the text of the standard to assess the experimental result, is self-limiting in the complexity that 

can be reasonably captured.  The use of automated analysis techniques to draw upon a rich, 

detailed solution database for assessing fracture mechanics tests provides a foundation for a new 

approach to testing standards that enables routine users to obtain highly reliable assessments of 

tests involving complex, non-linear fracture behavior.  Herein, the case for automating the 

analysis of tests of surface cracks in tension in the elastic-plastic regime is utilized as an example 

of how such a database can be generated and implemented for use in the ASTM standards 

framework.  The presented approach forms a bridge between the equation-based fracture testing 

standards of today and the next generation of standards solving complex problems through 

analysis automation.  
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Introduction  
Mechanical test standards are intended to enable users to test materials in a controlled and 

consistent manner to evaluate a material property repeatably from one laboratory to another.  In 

the realm of fracture toughness test standards, the test methods take a complicated physical 

process, the fracture of materials, and distill it through fracture mechanics principles to single 

material property–the fracture toughness.  This is not a trivial task due to the complex nature of 

the fracture process and the wide range of applicable material types with their various associated 

fracture mechanisms.  As the fracture mechanics community develops further understanding of 

the detailed mechanics of fracture processes, the authors of fracture mechanics testing standards 

struggle with two, sometimes opposing, goals: 1) creating test standards that accurately reflect 

the physics of the problem and consistently produce the “most correct” answers, and 2) creating 

test standards that are not overly complex and burdensome for the user.  Ideally both of these 

goals would be achieved: fracture mechanics test standards could capture and explain the physics 

of the problem, while not being arduous to use or require particularly unique expertise to execute 

reliably. 

All of the current ASTM fracture testing standards such as E399 [1] and E1820 [2] take the 

three-dimensional (3-D) reality of the fracture test and, through the use of various assumptions, 

simplify the problem to a two-dimensional planar form to report an average fracture toughness 

representing the entire crack front.  In general, the simplifications required to reduce all the 

relations needed to evaluate the fracture mechanics test into a tractable form for conveyance in 

print limits the ability to accommodate heightened complexity, such as multiple forms of non-

linearity.  For example, E1820 addresses material plasticity through the use of ηpl factors to 

calculate the plastic portion of the J-integral, but does not address the through-thickness 



3 
 

 
 

nonlinear variation of the crack front J-integral values. These simplifying assumptions are not 

inappropriate; in fact, they allow standards to provide manageable equations for the calculation 

of toughness values that are reasonable engineering approximations of the actual 3-D problem.  

However, the current framework of test standards requiring this level of distillation of the 

solution clearly limits the scope of test complexity that can be accommodated. 

As more complicated fracture toughness tests are considered for standardization, it may not 

be practical or desirable to reduce the fracture toughness test analysis down to a simple equation 

form.  Consider the difficulties that arise in assessing laboratory fracture toughness tests with 

surface cracks. (see Figure 1)  In these tests, due to practical specimen size limitations, the 

material fracture toughness is commonly not reached until well beyond the linear-elastic fracture 

mechanics (LEFM) limit.  In addition the surface crack toughness test is highly three-

dimensional with a crack driving force that varies nonlinearly along the crack perimeter.  The 

advance of surface crack fracture testing is hindered significantly by the lack of a readily 

available set of solutions to correlate the applied force and observed crack mouth opening 

displacement (CMOD) in a surface crack experiment to an evaluation of the elastic-plastic J-

integral or deformation state of a test specimen at fracture.  Currently, the only practical way to 

fully analyze such a test is through the use of elastic-plastic finite element analysis.  A 

convenient and practical set of elastic-plastic surface crack solutions could help mitigate many of 

these obstacles; however, to date, it has proven impractical to reduce the 3-D elastic-plastic 

surface crack solution to a set of equations suitable for inclusion in a testing standard.  Herein, 

the authors utilize the surface crack example to illustrate the use of analysis automation to offer a 

solution to this dilemma and argue for a new generation of test standards based on more 

advanced, automated methods of test analysis. 
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In the years prior to the advent of routine finite element based fracture mechanics analysis, 

many researchers provided alternative and robust engineering solutions to the elastic-plastic 

surface crack problem, though subject to many practical limitations.  An excellent summary of 

the development of elastic-plastic J-integral solutions up to the year 1999 is given by McClung 

et al. [3].  Apart from FEA, the commonly used methods for calculating elastic-plastic J-integral 

solutions usually follow one of two basic techniques [4]: the Electric Power Research Institute 

(EPRI) approach [5-7] or the reference stress method (RSM) [8].  The EPRI and RSM techniques 

have found wide application in analysis of structures, but have limited application in the detailed 

assessment of surface crack laboratory tests.  Understanding the crack tip conditions at the point 

the fracture toughness is reached in an experimental surface crack test requires knowledge of the 

specimen geometry, the applied force, P, the resulting CMOD response, the elastic-plastic flow 

properties of the material, and a corresponding solution for the J-integral versus φ relationship as 

it evolves with increasing specimen deformation.  The current RSM and EPRI solutions for 

surface cracks do not provide the user with the full P versus CMOD trace which serves as the 

most fundamental connection between experiment and analysis.  The measured CMOD value 

provides the most robust predictor of the J-integral values at the crack tip [4,9].  In addition, 

most of the current RSM and EPRI solutions only provide results at a limited number of crack 

perimeter φ locations and have J versus φ relationships that are based on either linear-elastic 

solutions (RSM) or fully plastic solutions (EPRI), neither of which capture the changes in the J 

versus φ distribution and maximum J-integral location as elastic-plastic deformation increases. 

Working within an ASTM task group, the authors have developed a new surface crack 

testing standard, still in the approval balloting process as of this writing.  The current version of 

the test standard provides mandatory equations (Newman-Raju Equations [10,11]) for solutions 
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within the linear-elastic regime, but requires the use of an independent FEA for test evaluations 

in the elastic-plastic regime.  Once released, it will be the first ASTM fracture mechanics testing 

standard allowing a test result to be obtained from a method other than standardized equations 

codified in print. Though both flexible and enabling in scope, this method for evaluating an 

elastic-plastic surface crack test result requires a unique and time-consuming FEA for each test.  

While elastic-plastic fracture mechanics (EPFM) assessment of surface cracks has become 

significantly more accessible through improved finite element interfaces such as FEACrack™ 

[12] or ABAQUS® CAE [13], the cost of such assessments in analysis time, code licensing, and 

requisite user expertise remain, unfortunately, a significant impediment to common use.   

With the advent of today’s computing power and inexpensive data storage, an alternative 

method for providing a solution to a complex mechanics problem is to pre-solve the solution 

space and provide a method for interpolating to the correct solution through automated analytical 

methods.  A fracture mechanics test, even a complicated one such as the elastic-plastic surface 

crack test, is a bounded problem based on the practical limitations of specimen geometries, 

engineering material properties, and defined loading conditions.  In addition, an automated 

method for interpolating between pre-solved solutions eliminates the need for the user to 

interpret and program the equations from the standard and, thereby, should result in a more 

reliably “standard” answer for the test.  The methodology of pre-solving the problem and 

interpolating to an answer allows the common user to get a high fidelity solution that captures 

the latest understanding in the physics of the problem without the restrictions and distillations 

associated with equations.  This methodology directly utilizes the 3-D FEA solutions, avoiding 

the need to fit numerous nonlinear equations to the solution space and the loss of fidelity that 

usually accompanies such multi-dimensional fits.  This approach forms a bridge between the 
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equation-based ASTM fracture testing standards of today and the next generation of standards 

for complex problems. 

As an example of a pre-solved solution methodology, this paper briefly describes a simple 

and robust method developed by the authors for analyzing surface crack tension tests based on an 

array of 600, 3-D nonlinear finite element models for surface cracks in flat plates under tension 

loading.  The solution space covers a wide range of crack geometric parameters and material 

properties.  The solution of this large array of nonlinear models was made practical by computer 

routines that automate the process of building the finite element models, running the nonlinear 

analyses, post-processing model results, and compiling and organizing the solution results into 

multi-dimensional arrays.  The authors have developed a methodology for interpolating between 

the geometric and material property variables that allows the user to estimate the J-integral 

solution around the surface crack perimeter (φ ) as a function of loading condition from the 

linear-elastic regime continuously through the fully elastic-plastic regime.  In addition to the J-

integral solution, the complete force versus CMOD record is estimated to provide a direct anchor 

to the experimental result.  The user of this interpolated solution space need only know the crack 

and plate geometry and the basic material flow properties to reliably evaluate the full surface 

crack J-integral and force versus CMOD solution; thus, a solution can be obtained very rapidly 

by users without elastic-plastic fracture mechanics finite element modeling experience.  The 

solution method has been incorporated into a computer program with a graphical user interface 

(GUI) to allow easy access to the solution space.     

	  

	  

	  



7 
 

 
 

Surface Crack Solution Procedures  
The process of building the new space of surface crack solutions was logistically intense.  

Though computationally each part of the process followed mostly well established paths, 

combining those parts effectively into a functional whole required planning at every level.  This 

section provides a brief summary of the solution space and methods.  Details of the 

computational procedures and solution verifications are given in NASA/TP-2013-217480 [14].  

The logistics of building, executing, and then assembling the solution space was made practical 

only through automation.  

Solution Space 

The solution space for this array of models is four-dimensional.  Two dimensions are used to 

describe surface crack geometric variation, and two dimensions are used to describe material 

property variation. The material and geometric spaces were carefully crafted to provide sufficient 

coverage for most common engineering problems without becoming so large as to be intractable.  

The following sections summarize the choices and reasoning for the material and geometric 

dimensions of the solution space. 

Material Space - Using a linear then power law (LPPL) representation of the stress-strain 

response defined by 

   ;      ,
n

ys ys
ys ys ys ys
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the material response can be fully defined by just 3 parameters: σys, ε ys or E, and n, where σys is 

a representative a yield stress, and ε ys a corresponding yield strain defined by ε ys = σys /E, with 

the elastic modulus, E, and n is the strain hardening exponent.  If the yield strength is normalized 

to unity for all materials (σys = 1), then only εys and n are required to define the shape of the 
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stress-strain curve throughout the space.  For convenience of eliminating small fractional 

numbers, the reciprocal of the yield strain is commonly used, E/σys. 

Figure 2 illustrates the material space for the study described in terms of the six E/σys and 

five n values resulting in thirty different material combinations.  In all cases, σys = 1 and 

Poisson’s ratio, ν = 0.30.  The names of several common engineering materials are overlaid on 

the material matrix in Figure 2 to illustrate how some common materials are represented in the 

material matrix.  The low E/σys values of 100 to 200 are materials capable of high values of 

elastic strain, thus they have low elastic modulus and relatively high yield strength, such as many 

high performance titanium and aluminum alloys.  The opposite end of the E/σys space with 

values of E/σys = 1000 have very little elastic strain capability due to high elastic modulus and 

low yield strength.  Austenitic stainless steels are a common example of this material class.   

The other dimension of the material space is the strain hardening exponent, n.  The values of 

n range from 3 to 20, spanning the hardening characteristics of most all structural metals from 

very high strain hardening (n = 3) to almost elastic-perfectly plastic behavior (n = 20).   The 

specific values of n for this study were chosen to uniformly divide the strain hardening response 

in the stress versus plastic strain space. 

Geometric Space - Figure 3 illustrates the geometric solution space for this study as sketches 

of cross-sections through the crack plane arranged in terms of crack depth-to-thickness ratio 

(a/B) and crack depth-to-half-length ratio (a/c) with 0.2 ≤ a/c ≤ 1.0 and 0.2 ≤ a/B ≤ 0.8 for a total 

of 20 different geometries.  For each a/B and a/c combination in Figure 3, the smaller, upper 

illustration is a sketch of the crack plane cross-section drawn in proportion to the other 

geometries. (The illustrations for a/c = 0.2, a/B = 0.6 and a/c = 0.2, a/B = 0.8 are half-symmetry 
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drawings to allow space for the proportional sketches.)  These sketches allow the reader to 

visualize the difference in overall cross-section size for each geometry.  For each a/B and a/c 

combination in Figure 3, the lower illustration is a close up view of the crack plane cross-section 

with the thickness held constant for all geometries.  The close-up sketches better illustrate the 

semi-elliptical crack shape in relation to the specimen thickness.  For all geometries, B = 1 and 

L/W = 2.  Figure 3 lists the 2c, W, and L values for all the geometries.  The plate widths were set 

equal to the greater of 5 2W c= ∗ or 5W B= ∗ to minimize width effects on the J-integral 

solutions and to ensure that the plates maintained a “plate like” width-to-thickness aspect ratio 

for small cracks.  Utilizing these minimum width criteria precludes the need to include the W/2c 

ratio as a third variable in the geometric space [14].   

Finite Element Models 

A total of 600 nonlinear finite element analyses were required to perform the analysis of the 

30 material and 20 geometric combinations.  All of the finite element models (FEMs) were 

created using the commercial finite element mesh creation and post-processing tool FEACrack 

[12], and the finite element analyses were performed using the freely available research code 

WARP3D version 16.3.1 [15].  All of the surface cracked plates were modeled with 3-D quarter-

symmetric FEMs using 20-node reduced integration isoparametric elements (element type 

q3disop in WARP3D).  For each model geometry, Figure 3 lists the total number of nodes and 

elements as well as the number of nodes in the φ direction along the crack perimeter.  Uniform 

axial displacements were applied to all of the nodes on the top surface of the plate to apply 

tension, and the FEMs were loaded with 20 to 30 even load steps with an average of 2-5 Newton 

iterations for convergence within each step to a tight tolerance on residual nodal forces.   
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Computational Automation Methods 

Handling this large array of nonlinear models was made practical by computer routines that 

automate the process of building the finite element models, running the nonlinear analyses, post-

processing model results, and organizing the solution results into multi-dimensional arrays.  

Computer routines were written in Matlab to create the file storage directory structure and serve 

as the overall controller for the model building, execution, and post-processing procedure. 

The FEMs were built using FEACrack in batch control mode on a Windows XP computer 

with Matlab scripts automating FEACrack runs to produce fully defined WARP3D models 

throughout the defined solution space.  For efficient parallel processing analysis, the WARP3D 

models were solved using a Linux-based server.  Once the finite element analyses were 

complete, a compact set of WARP3D packet result files were returned to the Windows XP 

computer for post-processing in batch mode with FEACrack, resulting in a set of 600 text-based 

result files containing all the pertinent model result data.  A set of Matlab scripts then  

consolidated the full data set into arrays of J-integral versus φ values, far field stresses, and 

CMOD values in an easily indexed data structure.  

Interpolation Methodology 

Normalization Scheme - To derive useful results from the solution space, interpolation within 

the geometry and material dimensions is necessary, but scaling of the solutions with respect to 

geometry and material is also required.  The solution space was normalized to a dimensionless 

state to simplify scaling.  There are three primary results in the solution set that need to be 

normalized: J, CMOD, and far-field stress, σ. By dimensional analysis it is clear that the J-

Integral is conveniently normalized by a product of stress and length, therefore the normalized J-

integral value, Jn, can be written as  
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The yield stress and plate thickness are particularly convenient normalizing factors because, as 

discussed previously, both σys and B were defined to have unit value in the model space.  Thus, 

the J-integral result from the analysis does not change when normalized.  The same follows for 

the CMOD and far-field stress results where  

 n
CMODCMOD
B

=  , (3) 

and the normalized far field stress, σn,  is 

 n
ys

σ
σ

σ
=  . (4) 

Solution Space Interpolation - Interpolation within the space provides an estimated solution 

at any crack shape and depth within the geometric space and at any modulus of elasticity and 

strain hardening exponent within the material space.  The solution of interest is the Jn value as a 

function of φ around the crack perimeter, Jn(φ ).  For each of the 600 models in the space, Jn(φ ) 

is calculated as a function of increasing deformation increment.  The state of the deformation 

increment can be described by either the models’ far field stress, σn, or displacement at the crack 

mouth, CMODn.  Though σn (or force) is an intuitive descriptor of the load increment, for elastic-

plastic analysis, the CMOD is a more reliable predictor of J (J is nearly a linear function of 

CMOD in the plastic regime) [4,9, 16]; so the authors chose to use CMOD as the characteristic 

loading condition in the interpolation methodology.  Figure 4 shows a plot of Jn(φ ) vs. CMODn 

for a solution with 30 load increments.  Open symbols are placed at the φ = 30° location to help 

visualize the Jn vs. CMOD trajectory for a given φ location.  In the solution space, the 
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relationship between σn and CMODn is maintained, thus by dividing σn by the final dimensioned 

area, a prediction of the P vs. CMOD trace is available.  This trace is particularly useful for 

comparison with experimental surface crack test results. 

The solution space consists of 600 result data sets, each containing Jn(φ ) vs. CMODn and σn 

vs. CMODn data.  The space is structured in a four dimensional array that is most easily 

visualized by considering a 4x5 geometry matrix with four rows of a/B ratios and five columns 

of a/c ratios. Within each of the 20 geometric combinations, there exist 30 material solutions 

described by a 5x6 matrix of material solutions, five values of n and six values of E/σys.  The 

solution space is readily indexed by these four dimensions.  For a given model result, R, the 

solution is given by the notation: R(a/B, a/c, n, E/σys).  Figure 5 shows a conceptual illustration 

of the R(a/B, a/c, n, E/σys) solution space with the geometric space at the highest level and the 

entire material space existing at the next level repeated within each geometric combination 

followed by the Jn(φ ) vs. CMODn and σn vs. CMODn data for each of the 600 models at the 

lowest level.    

In general, the actual surface crack geometry and material of interest will not fall directly on 

an existing solution and interpolation is necessary.  To interpolate to a new solution,

( ), , , ysR a B a c n E σ , the first step is to identify the subset of the 600 model space that will be 

active in the interpolation process by determining the location of R in the geometry and material 

matrices.  For illustration, consider a choice of ( )0.5, 0.5, 8, 400ysR a B a c n E σ= = = = that is 

located between the cells labeled g1 through g4 in the geometry matrix of Figure 5.  The four 

“nearest-neighbor” subset solutions are the geometry combinations designated as g1 – g4.  For 

each of the g1 – g4 geometries, a point for R can be placed in the material matrix resulting in 



13 
 

 
 

materials m1 through m4.  Identifying the sets g1 – g4 and their associated m1 – m4 sets, provides 

the 16 nearest-neighbor data sets for use in the interpolation of the R  solution.   

Solution Verification 

The surface crack solutions and the interpolation method were verified through several 

techniques, summarized as follows.  The linear-elastic J-integral solutions were shown to be in 

proper agreement with the Newman-Raju [10,11] solutions.  Domain convergence for the elastic-

plastic J-integral values at the final load step was demonstrated for the complete set of solutions 

at all crack perimeter nodal locations.  Twenty-five benchmark FEMs were created purposefully 

exploiting gaps in the geometry and material solution matrices to test the effectiveness of the 

interpolation method.  The interpolated solutions were able to predict the benchmark J-integral 

and reaction force solutions for a given CMOD value to within a few percent.  Significant effort 

was expended to ensure the reliability of this new tool, and the details of the verification methods 

are discussed in detail in NASA/TP-2013-217480 [14] 

Graphical User Interface Tool 
After the verification was complete, the solution space and interpolation methods were 

incorporated into a Matlab graphical user interface (GUI) tool as shown in Figure 6.  For a set of 

solutions of this magnitude, a convenient and easy-to-use computer program must be created to 

enable ready access to the solutions.  The GUI tool provides an interface for a non-expert to 

quickly interpolate to a fully elastic-plastic solution for a surface crack in tension.  The only 

required inputs are the surface crack dimensions (2c and a), plate cross-section dimensions (W 

and B), and LPPL material properties (E, σys, and n).  With the geometry and material parameters 

entered, the tool interpolates to the appropriate J(φ ) vs. CMOD and σ vs. CMOD solution, 

providing the full solution as CMOD ranges from zero out to the CMOD limit of the solution 
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space at the given input parameters.  With surface crack test design and analysis in mind, the tool 

also has several other useful features such as:  

1. material property import capability with automated material constant fitting, 

2. pre-test prediction capabilities based on a critical J-integral value and critical φ 

location, 

3. test record P vs. CMOD evaluation and comparison with analysis, 

4. the ability to review result plots such as J(φ ), J vs. CMOD, and deformation limit 

comparisons, and, 

5. the ability to save the solution and plot files. 

Consolidation of these new elastic-plastic surface crack solutions and the corresponding 

interpolation methodology into an easily accessible program represents a significant bridge for 

the practicing engineer toward commonplace elastic-plastic assessment of surface crack tests.   

Interpolated Solution of the Round Robin Surface Crack Test 
The GUI tool was used to create an interpolated solution to compare with the author-led 

inter-laboratory round robin (RR) concerning the elastic-plastic analysis of surface cracked 

plates as documented in NASA/TM-2012-217456 [9].  A surface crack tension test was 

performed to serve as the basis for the RR work.  The experiment existed of a 2219-T8 

aluminum specimen with W = 88.82 mm, B = 9.50 mm, L = 177.8 mm (uniform cross-section 

length), a = 6.17 mm, and 2c = 12.70 mm as shown in Figure 7.  The specimen was loaded under 

displacement control in tension until ductile tearing was detected.  The tearing force was 252 kN 

corresponding to a tearing CMOD of 0.114 mm, and the location of maximum tearing along the 
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crack front was at φ = 17°.  The round robin participants were requested to blindly predict the 

force versus CMOD trace and to provide J versus φ at forces of 200, 252, and 289 kN.  

The interpolated solution is compared to the FE analyses of the other fourteen RR 

participants. In the following section the authors’ original FE analysis performed for the RR is 

labeled “FEA,” and the other participants’ results are labeled “Labs 2-15.”  A LPPL 

approximation of the material’s stress-strain curve is required to estimate an interpolated solution 

to the problem.  The interpolated solutions assume the same elastic properties provided to the RR 

participants (E = 74.46 GPa and ν = 0.33) with the exception that ν is a fixed value of 0.30 in all 

the interpolated solutions.  The authors conducted a study on the sensitivity of the interpolated 

solution to the choice of σys and n, and determined that the interpolated solution is fairly 

insensitive to reasonable choices of flow properties [14].  Values of σys = 365.4 MPa and n = 9.5 

were chosen as representative of an “average” choice for material flow properties and were used 

to solve for the interpolated result shown here. 

Figure 8 shows the comparison of the P versus CMOD test data with the authors original 

FEA, the interpolated solution, and the analysis results of other RR participants, labs 2-15.  The 

interpolated solution falls directly within the family of the RR results.  It is important to recall 

that the interpolated solution is generic, so the final CMOD of the Int 3 solution is not part of the 

prediction; rather, it is the P versus CMOD trace up through any specified CMOD value of 

interest.  Figure 9 compares the J-integral values at φ = 17° versus the CMOD results the 

interpolated solution and all of the lab solutions.  Again the interpolated solution is in excellent 

agreement with the family of solutions represented in the round robin.  It is clear from the trace 

of the interpolated solution that it passes cleanly through the family of RR results and provides 
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an answer of equivalent quality as may be expected from a custom finite element assessment of 

the test.   

Conclusions  
This paper presents a case for moving beyond equation-based test standards for certain 

classes of complicated fracture mechanics tests.  Using automated and standardized computer 

tools to calculate the pertinent test result values has several advantages such as: 

1. allowing high-fidelity solutions to complex nonlinear phenomena that would be 

impractical to express in written equation form, 

2. eliminating errors associated with the interpretation and programing of analysis 

procedures from the text of test standards, 

3. lessening the need for expertise in the areas of solid mechanics, fracture mechanics, 

numerical methods, and/or finite element modeling, to achieve sound results, 

4. and providing one computer tool and/or one set of solutions for all users for a more 

“standardized” answer. 

In summary, this approach allows a non-expert with rudimentary training to get the best practical 

solution based on the latest understanding with minimum difficulty. 

As a practical example, the authors presented an automated method to determine the elastic-

plastic solution for a surface crack plate in tension using interpolation methodologies. This new 

set of elastic-plastic surface crack solutions, the interpolation methodology, and the simple GUI 

implementation represents a significant step toward commonplace assessment of surface cracks 

by the J-integral.  This is particularly true for the case of standardized experimental evaluation of 

surface crack fracture toughness.  Unfortunately, the use of elastic-plastic experimental methods 



17 
 

 
 

in the evaluation of fracture toughness of materials continues to lag significantly behind linear-

elastic methods, even for common two-dimensional geometries such as the compact tension 

specimen, despite the advantages in flexibility and breadth of information elastic-plastic methods 

reveal.  Surface crack toughness testing can provide the most direct measure of material 

performance in structurally representative configurations; yet, the detailed working knowledge of 

finite element modeling currently required to properly assess a surface crack test in the elastic-

plastic regime (as most are) has kept surface crack toughness testing reserved mainly as a 

domain for the specialist.  The costs in modeling time and software infrastructure are largely 

prohibitive for most experimental labs.  The interpolation methodology and solution space 

described herein represents a new evolutional step in tools for the analyst and experimentalist 

alike.   

A strong case can be made for developing automated analysis tools for certain classes of 

complicated fracture testing standards and for providing standard computer tools as a companion 

with the ASTM standards.  This is a novel concept in the ASTM fracture testing arena, but 

standard computer programs are already being used with other ASTM standards that cover 

complicated physical phenomena or processes such as: ASTM C1340/C1340M-10 - Standard 

Practice for Estimation of Heat Gain or Loss Through Ceilings Under Attics Containing Radiant 

Barriers by Use of a Computer Program, ASTM F 2815 - Standard Practice for Chemical 

Permeation through Protective Clothing Materials: Testing Data Analysis by Use of a Computer 

Program, and ASTM E2807 - Standard Specification for 3D Imaging Data Exchange, Version 

1.0 [17-19].  The verification, validation, and round-robin processes required of a computer tool 

closely parallel the methods that are used to ensure the solution validity for equations included in 

test standards.  In many ways an automated solution method using a computer program can be 
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thought of as a complicated equation that cannot be simply written down on a page; instead the 

answer has to be obtained through the use of automated numerical methods. For the surface 

crack example presented here, the automated interpolation method has the advantage of being a 

bounded problem with verified solutions that populate the space.   

Of course providing a standard computer tool with an ASTM standard requires consideration 

of some technical details.  As with any analytical method, users have to input appropriate 

analysis values to get reasonable solutions. Most gross input errors can be mitigated or detected 

by analysis comparison back to the actual test data such as the force versus CMOD data for the 

surface crack test.  For any test standard incorporating automated analysis tools, the governing 

task group has to be willing to create the solutions and build the analytical tools to make the 

solutions useable and accessible.  Computer tools also require consideration of details 

concerning configuration control, tool publishing, platform releases, and file sharing.  None of 

these obstacles are insurmountable, and the advantages of automated analysis tools easily 

outweigh any difficulties. 

As more complicated fracture toughness tests are considered for standardization, automated 

analysis tools provide a viable option for obtaining test results.  The use of automated analysis 

tools allows the creation and practical implementation of advanced fracture mechanics test 

standards that capture the physics of a nonlinear fracture mechanics problem without adding 

undue burden or expense to the user. Providing ASTM fracture testing standards with companion 

computer tools has many advantages and has already been implemented by other ASTM 

committees.  The authors especially hope the automated analysis methods presented here will 

provide a useful method for advanced surface crack test analysis. 
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Figure 1.  Illustration of a semi-elliptical surface crack in a flat plate. 
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Figure 2.  Illustration of the material space. 
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Figure 3.  Illustration of the geometric space. 
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Figure 4.  Example illustration of the J(φ ) versus CMOD space. 
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Figure 5.  Conceptual illustration of the interpolation space. 
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Figure 6.  Computer program with GUI for automated elastic plastic surface crack analysis. 
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Figure 7.  Round robin specimen configured for testing. 
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Figure 8.  Interpolation, FEM , and RR participant results compared to experimental force versus 

CMOD response. 
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Figure 9.  Comparison of interpolation, FEM, and RR participant results for J(φ = 17°) versus 
CMOD. 

 

 


