Single and Multi-Pulse Low-Energy Conical Theta Pinch Inductive Pulsed Plasma Thruster Performance

60th JANNAF Propulsion Meeting / 9th MSS / 7th LPS/ 6th SPS Joint Subcommittee Meeting

JANNAF-2013-3070

Ashley Hallock
Yetispace, Inc.

Adam Martin, Kurt Polzin, Adam Kimberlin, Richard Eskridge
NASA-Marshall Space Flight Center
Inductive Pulsed Plasma Thrusters

- Energy stored in capacitor banks
- High current switch permit discharge through an inductive coil
- Fast-rising current ionizes/electromagnetically accelerates gas

- Demonstrated and potential benefits
 - Electrodeless
 - Potential to use a wide variety of propellants (Ammonia, CO₂, H₂O, etc.)
 - Constant I_{sp} and thrust efficiency over a wide range of power
 - Regime of relative constant efficiency over a range of I_{sp}
 - Potential to process high power in single thruster (high rep rate)
Conical Theta-Pinch (CTP) IPPT

- Propellant potentially more contained and uniform on coil surface
- Three coils fabricated ($\theta=20^\circ$, 38°, 60°) (~240 nH)
- Capacitors located directly behind coil (in pressurized enclosure)
- Spark gap-switched capacitor bank
- Direct thrust stand impulse bit measurement

<table>
<thead>
<tr>
<th>θ</th>
<th>r_{coil}</th>
<th>I_{coil}</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°</td>
<td>4 cm</td>
<td>10 cm</td>
</tr>
<tr>
<td>38°</td>
<td>4 cm</td>
<td>10 cm</td>
</tr>
<tr>
<td>60°</td>
<td>4 cm</td>
<td>5 cm</td>
</tr>
</tbody>
</table>
Capacitor Charging System

- 40 µF capacitor bank
- 16 kJ/s / 40 kV capacitor charging supply (approximate linear power derating with charge voltage)
- Capacitor bank connected to power supply during pulse – necessitates isolation and protection circuitry
- Pushes repetition-rate limit to ability to rapidly trigger spark-gap switch
High-Speed Imaging

- All light (B&W), 125 ns exposures
- Glow begins at front of thruster and grows backwards at start of 1st/2nd half-cycles
- High intensity over coil in first half-cycle; lower in second half-cycle
- Visible non-uniformities
- Lower coil current / lower level of gas(?) in 2nd half-cycle
Single-Pulse Performance

- Max I_{bit} of ~ 1 mN-s
- Max I_{bit} with $\theta=38^\circ$
- Impulse bit peak faster for xenon
 - propellant utilization/more mass near coil?
- High-voltage stand-off issues prevent measurements above flow rates shown
Single-Pulse Performance

- Steady-state mass flow necessitates estimating efficiency

\[t_{\text{char}} = \frac{l}{a} \quad m_{\text{bit}} = t_{\text{char}} \dot{m} \quad \eta = \frac{I_{\text{bit}}^2}{m_{\text{bit}} C V_0^2} \]

- Efficiency on argon higher, but both are low
 - Force vector in CTP partially in wrong direction for thrust
 - Similar to peak values in 20-cm PIT (static-fill in late 1960s)
 - Profile/entrainment losses high w/out pulsed injection
 - PIT MkI / MkV (on argon) efficiencies only 15-30% at high energy per pulse
Repetitive Charging and Pulsing

- Repetition rate operation at 5 Hz (up to 2.5 kW average power)
- Repetition rate limit was trigger module for spark gap switch
- Pulsing over 5 seconds
- Thrust stand average displacement yields average thrust during operation
Repetition-Rate Performance

• Average power of 0.9, 1.6, and 2.5 kW (all at 5 Hz)
• 5 kV data in repetition-rate mode greater than 5x the impulse bit in single pulse mode
• To our knowledge, the highest power repetitively-pulsed (i.e. non-CW) discharge
 • Comparison w/ EO-1 PPT (56-70 W @ 1 Hz in ground testing, 12.6 W @ 1 Hz for in-space pulsing)
Conclusions

• Fabricated and tested CTP IPPTs at cone angles of 20°, 38°, and 60°, and performed direct single-pulse impulse bit measurements with continuous gas flow

• Single pulse performance highest for 38° angle with impulse bit of ~1 mN-s for both argon and xenon

• Estimated efficiencies low, but not unexpectedly so based on historical data trends and the direction of the force vector in the CTP

• Capacitor charging system assembled to provide rapid recharging of capacitor bank, permitting repetition-rate operation

• IPPT operated at repetition-rate of 5 Hz, at maximum average power of 2.5 kW, representing to our knowledge the highest average power for a repetitively-pulsed thruster

• Average thrust in repetition-rate mode (at 5 kV, 75 sccm argon) was greater than simply multiplying the single-pulse impulse bit and the repetition rate
Acknowledgements

- MSFC management: Jim Martin, Patrick McRight, Tom Williams, Mary Beth Koelbl, and Tom Brown
- Work benefited from many technical conversations with J. Boise Pearson and Mike LaPointe (MSFC) and Gregory Emsellem (The Elwing Co.)
- High-speed imaging camera loaned to us by Andy Fitchum
- MSFC technical support staff: Tommy Reid, Doug Galloway, Keith Chavers, David Wilkie, Roger Harper, Stan McDonald, and Mark Black
- NASA interns: Kevin Perdue, Alexandra Toftul, Andrea Wong, Kevin Bonds, and Mark Becnel

- Work funded by the In Space Propulsion Project of the Game-Changing Division (GCD) of NASA’s Office of the Chief Technologist. The GCD principle investigator was Chuck Taylor, and the project manager was Tim Smith.