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ABSTRACT 

Acoustic experiments demonstrate a novel approach to ranging and detection that exploits the properties of a solvable 
chaotic oscillator. This nonlinear oscillator includes an ordinary differential equation and a discrete switching condition. 
The chaotic waveform generated by this hybrid system is used as the transmitted waveform. The oscillator admits an 
exact analytic solution that can be written as the linear convolution of binary symbols and a single basis function. This 
linear representation enables coherent reception using a simple analog matched filter and without need for digital 
sampling or signal processing. An audio frequency implementation of the transmitter and receiver is described. 
Successful acoustic ranging measurements are presented to demonstrate the viability of the approach. 
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1. INTRODUCTION 

 The wide bandwidth and aperiodic properties of chaos naturally suggest benefits for high-resolution, unambiguous 
ranging in radar, sonar, and ladar systems [1-13]. An obvious, conventional approach might be to substitute chaos for the 
noise source in random-signal radar. In such a system, a segment of the transmitted waveform is sampled and stored, 
using a resolution defined by the signal bandwidth and the Nyquist sampling criterion. The stored signal is then used in a 
correlation receiver to detect a return signal and determine time of flight. The cross-correlations are usually done 
digitally, using a digital signal processor (DSP) and fast-Fourier transforms (FFT). In this approach, the distinguishing 
properties of a chaotic waveform are not used: chaos is simply a wide-bandwidth, random source. 

In contrast, we recently developed an alternative approach to detection and ranging that truly exploits the properties of a 
chaotic waveform to alleviate the most expensive parts of random-signal radar—i.e., sampling, digital memory, and 
digital signal processor—while still maintaining the performance of a correlation receiver [13]. This new approach uses 
chaotic waveforms generated by an analytically solvable nonlinear oscillator comprising an ordinary differential 
equation and a discrete switching state [14-15]. This hybrid oscillator admits an exact solution, which can be written as 
the linear convolution of a symbolic dynamics and a basis function. This analytic representation is significant since it 
enables coherent reception using a simple analog matched filter and only a few stored symbols. 

In this paper, we present recent acoustic experiments that demonstrate this approach to ranging and detection. For these 
experiments, an amplified speaker emits an audio-frequency waveform generated by an electronic realization of the 
hybrid oscillator. The transmitted waveform sounds like noise. A complementary receiver circuit incorporates a matched 
filter for the chaotic waveform, which is mathematically equivalent to a correlation receiver. At repeated intervals, a 
sequence of symbols detected in the symbolic dynamics of the emitted waveform is captured, thereby defining a 
transmitted signal for ranging. The captured symbol sequence is provided to the receiver, where it defines the matched 
filter for the transmitted signal. Practically, the symbols define weights applied to elements of a microphone array, the 
outputs of which are summed and passively filtered. The output of the matched filter is a continuous signal that is 
proportional to the cross-correlation of the transmitted and received signal. In operation, a consistent peak in the output 
of the matched filter is observed, which indicates a detected target. Ranging is derived by the time of flight for the 
consistent peak. 

The entire experimental system is realized using simple analog and digital electronic circuit components. Importantly, 
the receiver does not require waveform sampling or digital signal processing for detection. Real-time measurements 
using only an oscilloscope provide visible evidence of detection and ranging with the system. 
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2. HYBRID CHAOTIC OSCILLATOR 

The central element of the ranging demonstration system is the audio frequency oscillator shown schematically in Fig. 1. 
This electronic oscillator is a physical realization of a chaotic system previously considered by Tsubone and Saito [14] 
and Corron et al. [15]. This oscillator is a hybrid system, containing both an analog harmonic oscillator and digital logic 
circuits. For the acoustic system, we implemented the oscillator in an electronic circuit operating at roughly 10 kHz. The 
circuit is constructed using discrete analog and digital components on a solderless breadboard. 

The dynamics of the oscillator are equivalent to a dimensionless hybrid model including a continuous scalar state v(t) 
and a discrete state s(t). The continuous-time dynamics are described by the differential equation 
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where  = 2 and 0 <   ln 2. Transitions in the discrete state are defined by the guard condition 
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meaning vs(t) is set to the sign of v(t) whenever its time derivative vanishes, and vs(t) maintains this value until the next 
critical point. This oscillator admits an exact, analytic solution 
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where each sm = ±1 and P(t) and R(t) are fixed basis functions. In the solution, each symbol sm modulates the fixed basis 
functions P(t) and R(t) centered at time t = m. Thus, it is correct to think of the symbol sm as the information emitted by 
the oscillator at time t = m, and that the oscillator emits one symbol with each unit of time. The fixed basis functions are 
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which are shown in Fig. 2 for  = ln 2. 
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Figure 1. Exactly solvable chaotic oscillator. 
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Figure 2. Analytic basis functions P(t) (black) and R(t) (gray) for the oscillator model with  = ln 2. 

 

 

3. TRANSMITTER 

The existence of fixed basis functions can be exploited for efficiently sampling the transmitted signal and storing a 
reference waveform. Here we show a transmitter design that achieves this important functionality. 

The complete transmitter is shown in Fig. 3. At the center of the transmitter is the chaotic oscillator. The transmitted 
signal is the continuous state of the free-running chaotic oscillator, which is amplified and emitted by a conventional 
speaker. The additional circuitry at the bottom of the transmitter schematic derives a clock signal from the regular return 
times of the oscillator. The clock signal drives a binary shift register, which uses the signal s(t) for the data input. A 
divide-by-N counter circuit provides a signal to alternately enable and disable the shift register. For our experimental 
system, we typically use the value N = 1024. 

In operation, the free-running oscillator generates a chaotic waveform that is continuously emitted from the speaker. 
While the shift register is enabled, the symbolic logic state s(t) is sampled for each return and stored in the shift register. 
At any time, a fixed number of the most recent values of the logic state s(t) are stored, which correspond to a sequence of 
amplitudes sm generated by the free-running oscillator. Although the figure only shows an eight-bit shift register, for the 
acoustic system we used a twelve-bit register. 

After shifting N successive returns through the register, the shift register is disabled by the signal from the divide-by-N 
circuit. When disabled, the contents of the shift register are locked, thereby storing symbols that identify the signal 
transmitted just prior to the disabling transition. These stored symbols effectively define a reference waveform to use for 
detection and ranging in a correlation receiver. Compared to the usual Nyquist sampling criteria, this symbolic 
representation provides at an order of magnitude reduction in the sampling and storage requirements for the reference 
waveform. 



v(t)

LC-R

S
H

IF
T 

R
E

G
IS

TE
R

N

CLK

EN

DATA
s0
s-1
s-2
s-3
s-4
s-5
s-6
s-7

+


+


+


TRIG

vs(t) s

 
Figure 3. Acoustic transmitter incorporating the exactly solvable chaotic oscillator. 
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Figure 4. Typical transmitter waveforms, including the derived clock and trigger signals. Dots shown on the switching 
waveform indicate the most recent eight symbols stored in the shift register when disabled. 

 

 

A simulated waveform and shift register content is shown in Fig. 4. The top plot shows the oscillator waveforms v(t) and 
vs(t). The continuous waveform v(t) is the transmitted waveform emitted by the speaker. The middle plot shows the clock 
signal that is extracted from the oscillator waveforms and defines the symbol timing. The bottom waveform shows the 
trigger signal derived by the divide-by-N operation from the clock signal. The shift register is disabled by the low-to-
high transition of the trigger signal. The dots in the top plot show the most recent eight symbols captured and stored by 
the shift register when it is disabled by the trigger. These symbols define a reference waveform for the correlation 
receiver. 
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Figure 5. Acoustic correlation receiver that realizes a matched filter for the solvable oscillator. 

 

 

4. CORRELATION RECEIVER 

The second advantage in using an exactly solvable chaotic oscillator is the availability of a simple matched filter for the 
basis function [16]. This filter enables the construction of a simple correlation receiver for a chaotic waveform segment 
defined by truncated symbol sequence [13]. For the acoustic system, we implement a receiver using discrete circuit 
components and without requirement for a DSP. 

The matched filter for a solvable chaotic waveform is 
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where v  is the received signal,  is an intermediate state, and  is the output of the matched filter [13]. The finite 
symbol sequence sm for 1 , ,0m N    defines the reference waveform for the filter. The function of the matched filter 
is mathematically equivalent to a correlation with the reference waveform. For a signal corrupted by additive white 
Gaussian noise (AWGN), the matched filter is the optimal linear receiver for detecting the signal [17]. 

Fig. 5 shows a schematic implementation of the matched filter for the acoustic ranging system. The received waveform 
impinges on a microphone array, shown at top. The spacing of the microphones in the array is chosen to realize the 
evenly spaced time delays in the first equation of the matched filter. Differential amplifiers between adjacent 
microphones provide the difference signal of successively lagged signals, which are multiplied by ±1 according to the 
symbols defining the reference waveform. The summed differences are integrated and drive the harmonic filter to 
generate the matched filter output. 

5. RANGING SYSTEM 

The transmitter and receiver were constructed and installed in an acoustically anechoic chamber for demonstration and 
test. The speaker was positioned at different ranges in front of the microphone array, as shown in Fig. 6. A handheld 
oscilloscope, triggered on the disable signal to the shift register, was used to monitor the receiver output. The transmitter 
and matched filter states were also connected to a computer for instrumentation and tuning purposes. 



 
Figure 6. Acoustic ranging system using solvable chaos installed in an anechoic test chamber. 

 

 

-5

0

5

-5

0

5


(t)

/6
4 

 (V
)

-0.001 0.000 0.001 0.002 0.003

-5

0

5

t  (s)

r = 59 cm

r = 81 cm

r = 43 cm

 
Figure 7. Receiver output for 64 averaged returns at three speaker positions. 

 

 

In operation, a consistent spike in the matched filter output was evident at a delay corresponding to the distance from 
speaker to microphone array. In a single return for one instance of the reference waveform, this peak may be 
indistinguishable from background noise, intersymbol interference, or waveform sidelobes. However, the consistent 
peak emerges when multiple receiver outputs are averaged, which was conveniently provided by the oscilloscope. 
Typical outputs for 64 averaged returns are shown in Fig. 7, which shows the detection and correctly estimated range at 
three speaker positions. 

6. CONCLUSIONS 

We successfully demonstrated acoustic ranging using a simple and inexpensive experimental system by exploiting the 
properties of exactly solvable chaos. Notably, correlation receiver capability is achieved using analog hardware, and 
significant pulse compression is obtained without the sampling and storage requirements of a comparable random signal 
waveform. This successful demonstration enables the development of new, low-cost sonar and radar technologies using 
chaotic waveforms. 
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Chaotic Waveforms

• Wide bandwidth
– high range resolution
– low probability of 

detection
– anti-jamming

• Non-repeating
– unambiguous ranging
– multi-user

• Auto-synchronizing
– power combining
– beam steering

• Simple devices
– low cost
– efficient

Chaotic Waveforms Appear Well 
Suited for Radar Applications…
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Example: Binary Phase Shift Keying (BPSK)

Designing a Waveform
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Receiver Constraints

• Want correlation performance 
• Cannot afford digital processing

• What if we use a very simple, analog matched filter?
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Linear Synthesis:
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Chaotic Oscillator
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• Hybrid oscillator circuit (analog and digital components):
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Simulation Waveform 9
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Simulation Averaged Matched Filter
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Experimental System

Microphone Array Speaker

~60 cm



Experimental System

oscillator clock ~10 kHz   3-cm microphone spacing oscilloscope averaging



Measured Waveform 1
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Measured Waveform 2
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Measured Waveform 3
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Measured Waveform 4
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Measured Waveform 5
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Measured Waveform 6
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Measured Waveform 7
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Measured Waveform 8

-1

0

1

 

v(
t) 

 (V
)

-0.001 0.000 0.001 0.002 0.003

-5

0

5

(
t) 

 (V
)

t  (s)

+ - - + + - - - + - -



Measured Waveform 9
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Measured Average Matched Filter
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Range Measurements
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Conclusions

• Acoustic Ranging Using Solvable Chaos
– Hybrid Oscillator

• binary symbols
• basis pulse

– Matched Filter
– Exploits Chaos in Meaningful Way
– Simple, Low-Cost Components

• Concept for Low-Cost UWB Radar
– No Analog-to-Digital Conversion
– No DSP-FFT Correlations
– Reduced Sampling and Storage
– Matched Filter Performance
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• Square pulse

   2 t P t   M

    2 1 t P t   M M

• Linear transformation

• Matched filter



Differential Equation

• Waveform…

… satisfies the differential equation

… where
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Guard Condition
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• Waveform also satisfies…
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Chaotic Electronic Oscillator

Chaos

T. Saito and H. Fujita, “Chaos in a manifold linear system,” Electron. Commun. Jpn. 64A, 9 (1981).

• Interpret as a dynamical system…
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T. Saito and H. Fujita, “Chaos in a manifold linear system,” Electron. Commun. Jpn. 64A, 9 (1981).



Analytic Solution
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• Model admits an exact solution (easily verified):

where each
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Symbols vs. Nyquist Sampling
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• Nyquist-Shannon sampling requirement

• Symbolic representation
only 1 sample per cycle,

1 bit per sample

at least 2 samples per cycle, 
Nb bits per sample

Order of Magnitude 
Reduction in Sampling and 

Storage Requirements
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Correlation Receiver

• Channel Model

• Correlation Receiver
– optimal linear filter for detecting a given signal in additive 

white Gaussian noise (AWGN)
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• Correlation Receiver

Correlation with 
Basis Function

Correlation with 
Reference Waveform

Manipulations 
Exploiting Linear 

Receiver



Matched Filter for Basis Function
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• Basis Function

• Matched Filter

• Linear Filter

- impulse response is time reversal of basis function…
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Integrate and Dump
Transforms 
impulse to 

square pulse

Harmonic Filter
Second-order 

damped oscillator

• Consider the driven, damped harmonic, linear filter…
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Correlation Receiver

Correlation Receiver

Integrate and Dump:

Harmonic Filter:
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