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Abstract

Prediction intervals provide a measure of the probable
interval in which the outputs of a regression model can be
expected to occur. Subsequently, these prediction intervals
can be used to determine if the observed output is anomalous
or not, conditioned on the input. In this paper, a procedure
for determining prediction intervals for outputs of non-
parametric regression models using bootstrap methods is
proposed. Bootstrap methods allow for a non-parametric
approach to computing prediction intervals with no specific
assumptions about the sampling distribution of the noise or
the data. The asymptotic fidelity of the proposed prediction
intervals is theoretically proved. Subsequently, the validity
of the bootstrap based prediction intervals is illustrated via
simulations. Finally, the bootstrap prediction intervals are
applied to the problem of anomaly detection on aviation
data.

1 Introduction

In regression models, the estimated mean square error
is often the only indicator of the quality of the predicted
model. However, the mean square error estimate is in-
sufficient to answer several questions about the model,
including: (i) Which regions of the input space is the
prediction quality good or poor?, and (ii) Conditioned
on the input, which observed output values in the test
set are anomalies? Such questions can be answered
by specifying prediction intervals within which the pre-
dicted variable is likely to fall at a specified confidence
level for a given input configuration.

1.1 Previous work In this section, we highlight
previous work done in the areas of prediction intervals
and anomaly detection. Subsequently, we contrast the
contribution of this paper to the work highlighted in
this section.

1.1.1 Prediction intervals Prediction intervals
have been exclusively studied for parametric linear
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regression models [9]. In this body of work, two
assumptions were made throughout: (i) the data was
being generated via a linear model + noise, and (ii)
the regression method being used was least-squares
linear regression. Prediction intervals for linear models
can be broadly classified into two types - (i) closed
form expressions for empirical prediction intervals as
a function of the data [22, 18, 19], and (ii) bootstrap
based estimates of the prediction intervals [26]. The
classical closed form prediction interval expressions
were originally computed under the assumption of the
noise being normally distributed [22], before being
generalized [18, 19]. Stine [26] proposed prediction
intervals based on bootstrap resampling of the training
data.

1.1.2 Anomaly detection While anomaly detec-
tion has been extensively studied in literature [6], tradi-
tional anomaly detection algorithms (1-SVM [20], k-NN
based methods: iOrca [2], GEM [12], BP-kNNG [24],
and density based methods: LOF and iForest [16]) do
not address the following problem: For multivariate
data of the form (x, y) : x ∈ R

d, y ∈ R, given nomi-
nal training data and a test point (x0, y0), traditional
anomaly detection methods are capable of checking ei-
ther if the multivariate test point (x0, y0) is anomalous,
or if the marginal test point y0 is anomalous. How-
ever, in a scenario where the last dimension y is nom-
inally an unknown function of the input x, traditional
anomaly detection algorithms are incapable of checking
if the marginal test point y0 is nominal or anomalous
given the input x0.

1.2 Contribution In this paper, an algorithm for
determining prediction intervals for outputs of general
non-parametric regression models is proposed using
bootstrap methods. In contrast to the work done in [22,
18, 19, 26, 13], where the underlying model is known to
be linear, our algorithm does not make any assumptions
about the underlying data model or noise distribution.
Subsequently, using the prediction intervals, a novel
anomaly detection algorithm is proposed to test if the
observed output of a test point is an anomaly or not,



conditioned on the observed input.
The rest of this paper is organized as follows. In

Section 2, the problem is formally stated. In Section
3, the non-parametric regression models are described
in detail. The bootstrap procedure for determining
prediction intervals is described, and their validity is
proved theoretically and via simulations in Section 4.
The proposed theory is applied to the problem of
anomaly detection in Section 5. The proposed anomaly
detection algorithm is applied to determine aircraft in
a fleet which are consuming abnormally large amounts
of fuel. Finally, conclusions are given in Section 6.

2 Preliminaries

Throughout this paper, we assume the following model:

(2.1) y(x) = ψ(x) + ǫ(x),

where ψ(x) : R
d → R is some unknown, but de-

terministic, continuous, (p, C) smooth1 function, and
ǫ(x) : R

d → R is an uniform random field used to
model noise. In particular, for any x1, .., xt, assume
that ǫ(x1), .., ǫ(xt) are iid, 0-mean and have finite vari-
ance σ2 <∞.

Assume that the observed data pairs (x, y) are
drawn from some underlying joint density f(x, y). In

particular, let R = {(xi,yi), i = 1, 2, ..} iid∼ f(x, y)
denote a stream of observed training data. Also let R(r)
denote the first r samples in R: R(r) = {(xi,yi), i =
1, .., r}.

2.1 Notation Denote the cumulative distribution
function corresponding to f(x, y) by F (x, y). For some
fixed set of realizations R(r), let FR(r)(x, y) be the cor-
responding empirical distribution function [28]. Let E

be the expectation wrt the underlying probability dis-
tribution F (x, y).

Also, we will denote random variables and vectors
in bold text, and indicate the weak convergence of
sequences of random variables or vectors by ⇒. Denote
the l∞ distance between two distributions F (.), G(.) by

d∞(F,G) = sup
t∈R

|F (t) −G(t)|.

Finally, for any given training data set Z = {(xi, yi), i =
1, .., n}, denote the regression model estimated using Z
by y̌Z(.).

2.2 Problem statement Assume that r iid training
realizations R(r) are available for estimating the model

1Please refer to Definition 1 [14] for details about (p, C) smooth
functions

ŷr(x) = y̌R(r)(x) using non-parametric regression meth-
ods. Given this training data, the goal of this paper is
to provide a prediction interval for a future observation
y0 = y(x0) corresponding to an input x0. In particular,
our goal is to determine prediction intervals at level α:

Iα,r(x0) = (lα,r(x0),uα,r(x0)),

using the input R(r) such that the probability

Pr{y(x0) ∈ Iα,r(x0)} ≈ 1 − α.

The last statement will be made precise in section 3.3.

3 Regression models

In this section, we discuss the estimation of the function
ψ(.) using non-parametric regression methods, given the
set of training realizations R(r). Any of the popular
non-parametric regression techniques including nearest
neighbor regression [8], kernel regression [17], local poly-
nomial regression [10], partitioning regression [11], sup-
port vector regression [1], artificial neural networks [23]
and decision tress [5] can be used to determine the re-
gression model. However, we require that the regres-
sion model satisfies some regularity conditions which are
listed below.

3.1 Regularity assumptions on regression

model The model ŷr(x) is assumed to be a determin-
istic, continuous function of the training data R(r).
The model ŷr(x) is also assumed to converge to a limit
denoted by ŷ(x) as r → ∞. Finally, the MSE rate

er(x0) = E[ŷr(x) − ψ(x)]2

is assumed to decay to 0. In particular, let

(3.2) er(x0) = O(r−2γ),

for some γ > 0.
We note that all the non-parametric regression

models listed in the previous section satisfy these as-
sumptions. For details, please refer to [14] for nearest
neighbor, polynomial and kernel regression methods, [7]
for support vector regression, [15] for artificial neural
networks, and [21] for decision trees.

3.1.1 Optimal rates Stone [27] showed that for
(p, C) smooth function ψ(.), the optimal minimax rate
of convergence that can be obtained by non-parametric
regression estimates is given by r−2p/(2p+d). Con-
sequently, this implies that γ is bounded above by
p/(2p+ d) and therefore by 1/2.



3.2 Bootstrapping Resample the training data
R(r) a total of t times, each time drawing a set of r
realizations with replacement. Denote these t sets of r
realizations by Bi(r) = {xi1, ..,xir}, i = 1, .., t. For each
set of bootstrap realizations Bi(r), i = 1, .., t, determine
the regression fit ȳi,r(x) = y̌Bi(r)(x). Fix t = rγ .

3.3 Formal problem statement In the next sec-
tion, we will determine prediction interval Iα,r(x0) such
that

lim
r→∞

rγ

√
log log r

[Pr{y(x0) ∈ Iα,r(x0)} − (1 − α)] = 0.

In the sequel, denote the function ar(γ) =
√

log log r/rγ .

4 Prediction intervals

The output y(x0) at input x0 is forecast using ŷr(x0).
The prediction interval for y0 = y(x0) is determined as
follows. The future observation y0 can be written as

y0 = y(x0) = ψ(x0) + ǫ(x0)

= ŷr(x0) + ψ(x0) − ŷr(x0) + ǫ(x0)

= ŷr(x0) + ηr(x0) + ǫ(x0),(4.3)

where
ηr(x0) = ψ(x0) − ŷr(x0),

is the error in the model. To determine the prediction
interval for y0, we first analyze the distribution of
y0 − ŷr(x0) = ηr(x0) + ǫ(x0). Denote the distribution
of ǫ(x0) by Hǫ(.) and the distribution of ηr(x0) by
Hηr(x0)(.).

Now, note that ηr(x0) and ǫ(x0) are independent [4].
The error in the prediction centered around ŷr(x0)
therefore has contribution from the following two in-
dependent components: (i) the error due to the model:
ηr(x), and (ii) the error due to the observation noise:
ǫ(x).

4.1 Error distribution In this section, we are going
to investigate the computation of the distributions of
ηr(x) and ǫ(x).

4.1.1 Model error Realizations of the model error
ηr(x0) can be obtained via the bootstrapping approach
as follows. Let the true distribution of the oracle output
ŷ(x0) be denoted by G(.) and the distribution of ŷr(x0)
be denoted by Gr(.). Also denote the distribution of the
bootstrap iid samples ȳi,r(x) by Ĝr(.).

A well known result of the empirical distribution
function [28] is that d∞(F, FR(r)) = O(ar(0.5)). Then,
by direct application of Lemma A.1,

sup
x

|Ĝr(x) −Gr(x)| = O(ar(0.5)).

In other words, the bootstrap based samples ȳi,r(x0)
approximate the distribution of ŷr(x0) up to O(ar(0.5)),
and can therefore be used to compute quantiles of Gr(.).

Let the mean of the distribution Gr(.) be µr and the
mean of G(.) be µ. Then, by (3.2), |µr − µ| = O(r−γ).
Next, let

µ̂r(x0) =

∑m
i=1 ȳi,r(x0)

m
,

and observe that µ̂r(x0) is an estimate of the mean of
Gr. By lemma A.3, the error |µ̂r(x0) − µr| is of order
O(ar(0.5)) with exponentially high probability.

Denote the centered samples mi = ȳi,r(x0) −
µ̂r(x0), and the empirical distribution of these samples
by Ĥr(.). Then, Ĥr(.) will converge weakly to the
distribution of ηr(x0). In particular, the l∞ distance
between the two distributions, d∞(Hηr(x0), Ĥr) is of
order O(ar(0.5)) + O(r−γ).

4.1.2 Observation error Denote the differences
oi = yi(xi) − ŷi(xi). By the bias observation, we ob-
serve that these iid random variables oi will converge
in distribution to the true distribution of the noise ǫ(x),
and the l∞ distance between the two distributions is
O(r−γ).

4.1.3 Distribution of total error From the pre-
vious two sections, we see that mi, i = 1, 2, .., t and
oi, i = 1, 2, .., r correspond to samples which approxi-
mate ηr(x0) and ǫ(x0) with error up to O(ar(0.5)) +
O(r−γ).

By the independence of mi, i = 1, 2, ..,m and
oi, i = 1, 2, .., r, and lemma A.2 it follows that the
set C = {tk = mi + oj , i = 1, 2, ..,m; j = 1, 2.., r}
corresponds to samples of the distribution ηr(x0)+ǫ(x0)
with errors up to O(ar(0.5)) + O(r−γ).

4.2 Prediction interval The prediction interval
Iα,n(x0) can then be specified as follows. Let Cα,
C1−α/2 denote the α/2, 1 − α/2 quantiles of the set
C respectively. Then, define the prediction interval as

Iα,r(x0) = ŷr(x0) + (Cα, C1−α/2).

The procedure for computing this prediction interval
is stated in the form of algorithm 1. The theoretical
and experimental validity of the prediction interval
are established via theorem 4.1 and in section 4.3
respectively.

Theorem 4.1. The prediction interval Iα,r(x0) is an

asymptotic 1 − α prediction interval in the following

sense:

lim
r→∞

Pr{y(x0) ∈ Iα,r(x0)} − (1 − α)

ar(γ)
= 0.



Proof. Let the distribution of the iid realizations {tk}
be given by T̂s,r, and the distribution of ηr(x0) + ǫ(x0)

be given by T̃s,r. Then,

d∞(T̃s,r, T̂s,r) = O(ar(0.5)) + O(r−γ).

Then, the quantiles Cα, C1−α/2 converge to the true

quantiles of T̃s,r at rate O(ar(0.5)) + O(r−γ). This
implies that Pr{ηr(x0) + ǫ(x0) ∈ (Cα, C1−α/2)} =
1 − α + O(ar(0.5)) + O(r−γ). Finally, observing that
O(ar(0.5)) + O(r−γ) = o(ar(γ)) concludes the proof.

Algorithm 1 Prediction intervals for regression models

1: procedure PredictInterval(R(r), α, x0)
2: Build regression model ŷr

3: Initialize error sample set E = φ
4: for each training sample (xi, yi) do

5: Compute error oi = yi(xi) − ŷr(xi)
6: E → E ∪ {oi}
7: end for

8: Build t bootstrap samples Bi from R(r)
9: Initialize bootstrap sample set D = φ

10: for each bootstrap sample Bi do

11: Build regression models ȳi,r(x)
12: Obtain centered samples mi

13: D → D ∪ {mi}
14: end for

15: Build the set C by convolving D and E
16: Obtain Cα, C1−α/2:
17: the α/2, 1 − α/2 quantiles of the set C
18: Set Iα,r(x0) = ŷr(x0) + {Cα, C1−α/2}
19: Return Iα,r(x0)
20: end procedure

4.3 Simulations In this section, the proposed boot-
strap based prediction intervals are validated through a
series of Monte-Carlo experiments.

4.3.1 Simple linear model In the first experiment,
we generate data drawn from a simple linear model

y = 3x+ 5 + ǫ,

where x is drawn uniformly between [0, 1] and ǫ is
drawn iid from N(0, σ2) with σ = 0.1. The size of
the training set is r = 100. For doing regression, we
use the artificial neural network regression method and
then compute prediction intervals based on bootstrap
samples as described in algorithm 1. Finally, we
contrast the proposed prediction intervals with the
classical parametric prediction intervals [22] which have
been derived for linear regression.
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Figure 1: Comparison of parametric 95% prediction
intervals based on linear regression and and bootstrap
based 95% prediction intervals based on artificial neural
networks on data generated via a linear model. (b) is a
zoomed version of (a). From the figures, it is clear that
there is excellent agreement between the paramteric and
bootstrap based prediction intervals.

In the classical model for simple linear regression,
under the assumption that the noise is distributed iid
N (0, σ2), the appropriate prediction interval [22] for a
future value y0, given explanatory level x0, is

Jα,n(x0) = ŷ(x0) ± tα/2σ̂

√

1 +
1

n
+

(x̄− x0)2
∑n

i=1(x̄− xi)2
,

where σ̂ is the estimate of the noise.
We evaluate and plot the true response, noisy ob-

servations and 95 % prediction intervals corresponding
to the parametric linear regression and non-parametric
neural network regression models along s = 100 loca-
tions placed uniformly in the [0, 1] interval in Fig. 1.
From Fig. 1, it is clear that there is excellent agree-
ment between the parametric prediction intervals based
on linear regression and and bootstrap based prediction



intervals based on artificial neural networks. The pre-
diction intervals based on the bootstrap are marginally
wider, accounting for the slower O(r−γ) rate of conver-
gence of the non-parametric neural network regression
method in comparison to the linear regression method,
which enjoys a parametric O(r−1/2) rate of convergence.

4.3.2 Simple polynomial model To illustrate the
non-parametric advantage that our bootstrap prediction
interval algorithm enjoys, we repeat the previous exper-
iment, but with one difference: we generate the training
data according to the model:

y = 3x2 + 5 + ǫ.

The results are shown in Fig. 2. From Fig. 2, it is clear
that the parametric prediction interval is inaccurate due
to mis-specification of the model. On the other hand,
the non-parametric bootstrap based prediction interval
is able to accurately determine the correct prediction
interval.

4.3.3 Multivariate example In the next experi-
ment, we consider the following non-linear model

y = exp(x1) + x2x
2
3 + log(|x4 + x5|) + ǫ,

with x = (x1, .., x5) drawn from a multivariate random
variable with mean vector m = [0.1, 0.2, 0, 0.05, 1.2] and
covariance matrix

Σ =













1.00 0.43 0.45 −0.29 −0.69
0.43 1.00 0.25 −0.36 −0.36
0.45 −0.36 1.00 −0.91 −0.36
−0.29 −0.36 −0.91 1.00 0.49
−0.69 −0.36 −0.36 0.49 1.00













We draw a total of r = 1000 training samples, and
determine the prediction intervals corresponding to
α = {.005, .01, .02, .05, .1, .2} at s = 100 uniformly
placed points in the [0, 1]5 grid. Subsequently, we
compute the experimentally observed coverage width of
the prediction intervals for each of the desired coverage
widths α ∈ {.005, .01, .02, .05, .1, .2}. The results are
shown in table 1. From table 1, it is clear that there is
excellent agreement between the two sets of values.

For visual illustration, we plot the true response,
the noisy test samples, and the estimated prediction
intervals as a function of the sorted index of the true
response in Fig. 3. From the figure, it is clear that
the estimated prediction intervals accurately capture
the variation in the observed test data. In particular,
we note that the prediction intervals are thinner at
locations where the variation in y is smaller and vice
versa. This is in complete agreement with our intuition.
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Figure 2: Comparison of parametric 95% prediction
intervals based on linear regression and and bootstrap
based 95% prediction intervals based on artificial neural
networks on data generated via a quadratic model. (b)
is a zoomed version of (a). From the figures, it is clear
that the parametric prediction interval is inaccurate due
to mis-specification of the model. On the other hand,
the non-parametric bootstrap based prediction interval
is able to accurately determine the correct prediction
interval.



Desired and observed coverage
Desired .20 .10 .05 .02 .01 .005

Observed .198 .112 .042 .019 .012 .006

Table 1: Desired and observed coverage of the proposed
prediction intervals. There is excellent agreement be-
tween the two sets of values.
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Figure 3: Prediction intervals for non-linear model. The
estimated prediction intervals accurately capture the
variation in the observed test data.

5 Application to anomaly detection

Prediction intervals can be used to determine anomalies
in the test data in the following manner. Given the
training data R(r), a test point (x0, y0), and a desired
false alarm rate α, we construct the prediction interval
Iα,r(x0) using Algorithm 1. We then declare (x0, y0) to
be an anomaly at false alarm rate α if y0 /∈ Iα,r(x0)
and nominal otherwise. This Conditional Anomaly
Detection (CAD) scheme for testing a set of anomalies
S(s) = (xi, yi), i = 1, .., s is formally described in
Algorithm 2.

Algorithm 2 Conditional Anomaly Detection

1: procedure DetectAnomaly(R(r), S(s), α)
2: Initialize anomaly set A = φ
3: for each test sample (xi, yi) in test set S(s) do

4: Build prediction interval: Iα,r(xi):
5: Iα,r(xi) = PredictInterval(R(r), α, xi)
6: if (yi /∈ Iα,r(xi)) then

7: A→ A ∪ (xi, yi)
8: end if

9: end for

10: Return A
11: end procedure

5.1 Comparison to existing methods The pro-
posed CAD algorithm differs from popular anomaly de-
tection algorithms (1-SVM [20], k-NN based methods:
iOrca, GEM, BP-kNNG, and density based methods:
LOF and iForest) in the following respect. Traditional
anomaly detection methods check for anomalies by test-
ing for the following null and alternate hypothesis [12]:

H0 : (x0, y0) ∼ f(x, y) versus H1 : (x0, y0) 6∼ f(x, y).

If the data of interest is only the y variable, the anomaly
detection algorithms could be used to test between the
hypothesis:

H0 : y0 ∼ f(y) versus H1 : y0 6∼ f(y).

In contrast, the proposed anomaly detection
method is checking for anomalies by testing between:

H0 : y0 ∼ f(y|x0) versus H1 : y0 6∼ f(y|x0).

In other words, the traditional algorithms test for
anomalies wrt the joint distribution f(x, y) or the
marginal distribution f(y) of y , whereas the proposed
algorithm tests for anomalies wrt the conditional distri-
bution f(y|x).

5.2 Aviation fuel study The environmental impact
of aviation is enormous given the fact that in the US
alone there are nearly 6 million flights per year of
commercial aircraft. Detecting aircraft in a fleet which
consume excess fuel is therefore extremely important.
The proposed CAD algorithm can be used to determine,
on a on a second by second basis, the nominal fuel
consumption interval as a function of the measured
state - velocity, acceleration etc - of the aircraft. The
prediction intervals can then be used to determine
if the instantaneous fuel consumption of the flight is
anomalous.

This fuel study differs from the current state-of-the-
art used by airline companies, which involves simply
comparing the actual fuel consumption against averages
for a given flight or aircraft. Such computations do
not sufficiently control for the context of the flight
and therefore may not reveal more subtle performance
issues.

5.2.1 Data set The data set used in our study
is known as Flight Operational Quality Assurance
(FOQA), which is used for numerous purposes includ-
ing improving safety and efficiency of the operations of
commercial and business transport aircraft. In addition
to the actual fuel consumption, FOQA data includes pa-
rameters such as velocity, acceleration, pitch rate, pay-
load etc. This data is measured and monitored on every



aircraft on a second-by-second basis. The full list of pa-
rameters can be found in Table 1 [25].

In this study, we use FOQA data from an airline
company corresponding to the one year period between
May 2010 - April 2011. This data set has FOQA
information of about 60,000 flights, corresponding to
330 distinct aircraft. The first 6 months of this data
is used for training, and the next 6 months are used as
the test data set S(s). The full description of these data
sets can be found in [25].

5.2.2 Application of CAD The FOQA parameters
(suitably normalized) are treated as inputs, and the
observed fuel consumption rate values are treated as
outputs. This training data is fed as input to CAD,
and is used to check for anomalies in the later half
of the year. The results obtained for each time point
are aggregated on a per-aircraft basis. The results
corresponding to the sorted top k = 5 aircraft wrt %
anomaly time are shown in table 2. From the table, it is
clear that only two aircraft are detected to be consuming
excess fuel. Furthermore, these anomalies aircraft were
not detected when using a traditional anomaly detection
method like iOrca.

Aircraft∗ # of flights % anomaly time

147 68 32.43%
641 111 14.51%
111 104 0.85%
976 45 0.37%
342 33 0.37%
... ... ...

Table 2: List of aircraft (∗ = anonymized) and the %
anomaly time as determined by CAD. Only two aircraft
in the fleet of 330 aircraft were found to be anomalous.

5.2.3 Results On further investigation, it was found
that the longitudinal acceleration sensors were faulty
in both aircraft. In both cases, the sensor measure-
ments were lower than the true acceleration of the air-
craft. This resulted in prediction intervals which were
shifted down, and subsequently resulted in the true fuel
consumption falling outside the prediction intervals and
leading to these aircraft being classified as anomalous.
This has since been officially confirmed by the airline
company, and the faulty FOQA sensors in these aircraft
have since been replaced.

6 Conclusions

In this paper, a procedure for determining prediction
intervals in non-parametric regression models for a fu-

ture observation is specified. The procedure is based on
bootstrap techniques and does not require any under-
lying assumptions about the data or noise model. The
validity of the bootstrap based prediction intervals is
shown in theory to hold asymptotically. Subsequently,
the validity of the intervals is proved via monte-carlo
experiments.

Next, an anomaly detection algorithm based on pre-
diction intervals is proposed. The anomaly detection
algorithm differs from popular anomaly detection algo-
rithms in that it discovers anomalies wrt conditional
probability distributions. The anomaly detection algo-
rithm is applied to discover aircraft in fleet which con-
sume excess fuel.



A General results

Consider a probability space (Ω,B,P). Let Xk : Ω →
R, k = 1, 2, .. be a sequence of random variables
with corresponding distribution functions Fk(.). Also,
assume that this sequence converges in distribution to a
random variable X : Ω → R with distribution function
F (.). In particular, let

d∞(Fk, F ) = O(k−β),

for some β > 0.
Identically define a sequence of random variables

Yk : Ω → R, k = 1, 2, .. with distribution functions
Gk(.) and a weak convergence limit to random variable
Y with distribution G. Similarly, let

d∞(Gk, G) = O(k−γ),

for some γ > 0.
Construct sequences of random variables corre-

sponding to Fk(.), F (.) as follows. Let X̄k =
{Xk1,Xk2, ..} where the elements of X̄k are drawn iid
from Fk(.). Define X̄ = {X1,X2, ..} in an identical man-
ner with elements drawn from F (.). Also let X̄k(r) =
{Xk1,Xk2, ..,Xkr} and X̄(r) = {X1,X2, ..,Xr} be sub-
sets of size r. LetX = {x1, x2, ...} be any fixed sequence
of real numbers, and let X(r) = {x1, .., xr} denote a
subset of size r.

Finally, define a sequence of functions hi : R
i →

R, i = 1, 2, ... Assume that this sequence of function
have a limit in the following sense: for any ǫ > 0 and
any sequence X , there exists r0(ǫ) ∈ N such that for all
r ≥ r0,

|hr+1(X(r + 1)) − hr(X(r))| < ǫ.

Define the limit of this sequence by h : R
∞ → R =

limr→∞ hr(X(r)). Also, define the sets Hi(α) = {X(i) :
hi(X(i)) ≤ α} for some α ∈ R. Now, we will prove the
lemma:

Lemma A.1. For any r ∈ N, hr(X̄k) converges weakly

to hr(X̄). Furthermore, the error rate

sup
α

|Pr{hr(X̄k) ≤ α} − Pr{hr(X̄) ≤ α}| = O(k−β).

Proof. By the Cramer-Wold device [3] and the fact
that the distributions Fk(.) converge to F (.), it clearly
follows that X̄k(r) converges weakly to X̄(r) for all
r ∈ R. By the continuous mapping theorem, this in
turn implies that hr(X̄k) converges weakly to hr(X̄).

To prove the next part of the statement, consider:

Pr{hr(X̄k) ≤ α} = Pr{X̄k(r) ∈ Hr(α)}
(since d∞(Fk, F ) = O(k−β))

= Pr{X̄(r) ∈ Hr(α)} + O(k−β)

= Pr{hr(X̄(r)) ≤ α} + O(k−β).

Observing that this is true for any α ∈ R concludes the
proof.

Lemma A.2. The sequence of random variables Xk +
Yk converge weakly to X + Y. Furthermore, if Xk,Yk

are independent for every k, the distribution Hk(.) of

Xk +Yk converges to the distribution H(.) of X+Y at

the rate:

d∞(Hk, H) = O(k−min{β,γ}).

Proof. By the Cramer-Wold device [3], it is trivial to see
that the joint pairs (Xk,Yk) converge weakly to (X,Y).
The result follows by invoking the continuous mapping
theorem [3].

Pr{Xk + Yk ≤ α} =

∫

α1

Fk(α− α1)dGk(α1)

=

∫

α1

F (α− α1)dG(α1)

+O(k−β) + O(k−γ)

=

∫

α1

F (α− α1)dG(α1)

+O(k−min β,γ)

= Pr{X + Y ≤ α}
+O(k−min{β,γ}).

Lemma A.3. Denote the sample mean of X̄(r) by µr

and the mean of F (.) by µ. For any γ < 1/2, denote

the event

Eγ = I{|µr − µ| ≥ log log r/rγ}.

Then,

Pr{Eγ} ≤ exp(−r(1/2−γ)).

Proof. The statement follows by direct application of
the Chernoff bound.
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