Surface Temperature Measurements from a Stator Vane Doublet in a Turbine Engine Afterburner Flame Using an Ultra-Bright Cr-Doped GdAlO$_3$ Thermographic Phosphor

J.I. Eldridge, NASA Glenn Research Center
T.P. Jenkins, MetroLaser, Inc.
S.W. Allison, Emerging Measurements
D.E. Wolfe, Penn State University
R.P. Howard, Arnold Air Force Base
In a NASA career spanning over twenty years, Dr. Eldridge has worked towards developing spectroscopy-based health monitoring tools for both space and turbine engine applications. He has coauthored over 70 publications and has made over 50 conference presentations and invited tutorials/lectures. Dr. Eldridge is a senior scientist of the Optical Instrumentation and NDE Branch at NASA Glenn Research Center.
Background

- Recent laboratory discovery* of exceptional high temperature retention of ultra-bright luminescence by Cr-doped GdAlO$_3$ with orthorhombic perovskite crystal structure: Cr-doped gadolinium aluminum perovskite (Cr:GAP).
- Orders of magnitude stronger luminescence emission above 1000 °C than previous state-of-the-art rare-earth-doped thermographic phosphors.
- Demonstrated luminescence-decay-based temperature measurements to 1250 °C.
- Cr:GAP performance promising for turbine engine environment measurements.
 - High-intensity luminescence emission from thin Cr:GAP surface coatings will stand out in presence of strong radiative (flame) environment.
 - Broadband excitation and emission allows flexible choice of excitation and detection wavelengths.

*J. I. Eldridge & M.D. Chambers
Objectives

• Transition to engine environment implementation
 - Measurements of engine component surface in high-velocity, high-temperature radiative (flame) environment.

• Demonstrate temperature measurements from Cr:GAP coated Honeywell stator vane doublet in afterburner flame of UTSI J 85-GE-5 turbojet test stand.

• Challenges:
 - Coating complex component shape.
 - Optical probe design integrating non-intrusive excitation & collection with thermal protection.
 - “See” through flame environment.
 - Remote measurement control from a safe distance.
Basis for High Temperature Ultra-Bright Cr:GAP Luminescence

Cr$^{3+}$ 3d3 energy levels

4T_2 (short-lived but population stabilized by thermal equilibrium with 2E reservoir level)

2E (long-lived reservoir level)

4A_2

Spin-forbidden R-line emission (long decay) $^2E \rightarrow ^4A_2$

Spin-allowed broadband emission (short decay) $^4T_2 \rightarrow ^4A_2$

$\tau_{^4T_2} = \tau_{^2E} = \tau_{^2E}^R \frac{1 + 3e^{-\Delta E/kT}}{1 + \alpha e^{-\Delta E/kT} + \beta e^{-(\Delta E + \Delta E_q)/kT}}$

Strong crystal field increases ΔE.

For long τ at high $T \rightarrow$ increase ΔE, ΔE_q.

Orthorhombic Rare Earth Perovskites
RAIO$_3$ Meet Criteria
Tightly bonded AlO$_6$ Octahedra Exhibit Strong Crystal Field High ΔE

(No parity-forbidden $^4A_2 \rightarrow ^2T_1, ^2T_2$ absorption)

Among all RAIO$_3$ perovskites, GdAlO$_3$ has highest ΔE among candidates with orthorhombic structure.

Orthorhombic
(distorted octahedra, strong absorption)
Temperature Dependence of Luminescence Emission from Cr(0.2%):GAP Puck

![Graph showing the temperature dependence of luminescence emission from Cr(0.2%):GAP Puck. The graph displays intensity (arb. units) on the y-axis and wavelength (nm) on the x-axis. Different temperatures are indicated by colored lines, with a bandpass highlighted.](image-url)
Time-Resolved Luminescence Emission from Cr:GAP

Logarithmic Intensity Scale

- Nearly single exponential.
- Uniform decay rate over wavelength range.
- Adequate signal for decay time determination at wavelengths as short as 570 nm.
- Collect luminescence decay measurements with bandpass filter @ 593 nm, FWHM = 40 nm to minimize interference from thermal radiation background.
Demonstrating Temperature Sensitivity of Luminescence Decay Curves from Cr:GAP Puck

Bandpass filter: CL = 593 nm; FWHM = 40 nm

Fit to $I = I_1 e^{-t/\tau_1} + I_2 e^{-t/\tau_2}$
Demonstrating Temperature Measurement Capability
Calibration of Decay Time vs. Temperature for GAP:Cr Puck

Two distinct regions
200 °C < T < 750 °C: less temperature sensitive
T > 750 °C: more temperature sensitive

Fit to \[\tau = \tau_2^{\text{R}} \frac{1 + 3e^{-\Delta E/kT}}{1 + \alpha e^{-\Delta E/kT} + \beta e^{-(\Delta E q + \Delta E)/kT}} \]
AFRL VAATE Project
Gas Turbine Engine Sensor and Instrumentation Development
Stepping Stone Approach

NASA GRC High-Heat-Flux Laser Facility
• Proof-of-concept with easy optical access, no radiative background, no probe heating issues.
Demonstrated to 1360 ºC.

Williams International Combustor Burner Rig
• Address probe/TP survivability & ability to “see” through flame.
Demonstrated to >1400 ºC.

AEDC J 85-GE-5
• Probe/translate through afterburner flame.
• Test integrated excitation/collection probe.
• Opportunity to test new Cr:GAP thermographic phosphor.

Honeywell TECH7000

Goal: Demonstrate thermographic phosphor based temperature measurements to 1300 ºC on TBC-coated HPT stator on Honeywell TECH7000 demonstrator engine.
Deposition of Cr:GAP by EB-PVD at Penn State proved to be challenging.
- Top of Cr:GAP ingot explodes under electron beam heating.
- Ingot fractures due to thermal shock.

Successful Resolution: Top section of ingot removed & then use extremely gentle electron beam heating.
Luminescence Decay Curves from 25 µm Thick EB-PVD Cr:GAP Coating

Fit to \(I = I_1 e^{-t/\tau_1} + I_2 e^{-t/\tau_2} \)

Superb signal-to-noise from thin 25 µm thick coating confirms retention of ultra-bright luminescence at high temperatures.
Demonstrating EB-PVD Cr:GAP Temperature Measurement Capability

Decay Time vs. Temperature for 25 µm Thick EB-PVD Cr:GAP Coating

Decay time (τ_2) vs. temperature dependence for thin EB-PVD Cr:GAP coating follows same calibration curve as Cr:GAP puck.
Cr:GAP-Coated Stator Vane Doublet
EB-PVD at Penn State

- 25 µm Cr:GAP
- 200 µm YSZ
- NiPtAl (Howmet)
- Vane

EB-PVD
Probe Design for Vane Measurements

Constraints for probe design
• Do not protrude into gas flow.
• Limited space: integrated excitation & collection.
• End of probe exposed to gas flow temperatures.
• Temperature-sensitive optical components require cooling.

Final probe design by Rob Flori, Honeywell.
Optical Probe Setup

Vane

Laser spot

Probe
Cooling Fixture for Mounting in Afterburner Flame at UTSI J 85 Test Stand
High-Velocity Exhaust Gas up to 1760 °C

J 85-GE-5 Turbojet Test Stand

Mounted vane doublet
J 85-GE-5 Engine Test at UTSI

Engine Aft View

Overhead View of Vane in Afterburner Flame

Afterburner Flame at Night
Initial J 85 Test Runs Reveal Unintended Probe Cooling Effect!*

PLA (power lever angle) # = throttle setting

Probe cooling air cools target area!
Highly perturbing temperature measurement!

*Directed probe cooling effect will be considerably smaller inside engine where combustion gas cross-flow will be much greater.
Reduce Probe Cooling Air Pressure to Minimize Unintended Probe Cooling Effect

PLA (power lever angle) # = throttle setting

Probe cooling air at high pressure

Probe cooling air at low pressure

Reduced pressure greatly reduces but does not completely eliminate probe cooling effect. Less measurement time before probe overheats.
Temperature Determination from Luminescence Decay Curves

J 85 Engine Tests at Different Afterburner Settings

Fit to bi-exponential:

\[I = I_1 e^{-t/\tau_1} + I_2 e^{-t/\tau_2} ; \tau_2 > \tau_1 \]

Determine \(T \) from \(\tau \) vs. \(T \) calibration

\[\tau_2 = \tau_{2E} R \frac{1 + 3e^{-\Delta E / kT}}{1 + a e^{-\Delta E / kT} + \beta e^{-(\Delta E_q + \Delta E) / kT}} \]
Temperature Determination Summary for Cr:GAP-Coated Vane During J 85 Engine Test Sequences

Higher temperatures not obtained due to unintended probe cooling effect.
Summary

• Successfully demonstrated temperature measurements from Cr:GAP coated Honeywell stator vane doublet in afterburner flame of UTSI J 85-GE-5 turbojet test stand.
 - Successful coating deposition onto complex stator doublet shape by EB-PVD.
 - Excellent emission intensity and temperature sensitivity from 25 µm thick surface coating.
 - Wide temperature range 549 ºC to 1027 ºC measured over range of afterburner conditions.
 - Engine-compatible probe design demonstrated
 - Integrated excitation and collection. ✓
 - Thermal protection of probe. ✓
 - Unintended cooling of measurement surface to be corrected in future. ❌

• Future Plans
 - Cr:GAP downselected as one of two thermographic phosphors for upcoming AFRL VAATE temperature measurements of high-pressure turbine stator in Honeywell TECH7000 demonstrator engine.
 - Cr:GAP downselected as one of three thermographic phosphors for upcoming NASA VIPR temperature measurements of rotating blade surfaces in Pratt & Whitney F117 engine.
 - 2D surface temperature mapping by gated imaging underway at NASA GRC.
Acknowledgments

- NASA ARMD Seedling Project for funding Cr:GAP development.
- AFRL VAATE Project for funding the J85 test & probe design.
- Honeywell for providing stator vane doublet.
- AEDC/UTSI Propulsion Research Facility Team for providing the J85 test opportunity & mounting structure.
- Allen Koller, GE, for providing independent pyrometer measurements.