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Abstract 1 

Non-vascular plants (lichens and mosses) are significant components of tundra 2 

landscapes and may respond to climate change differently from vascular plants affecting 3 

ecosystem carbon balance.  Remote sensing provides critical tools for monitoring plant 4 

cover types, as optical signals provide a way to scale from plot measurements to regional 5 

estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. 6 

Gas exchange measurements were collected for pure patches of key vegetation functional 7 

types (lichens, mosses, and vascular plants) in sedge tundra at Barrow AK.  These 8 

functional types were found to have three significantly different values of light use 9 

efficiency (LUE) with values of 0.013±0.001, 0.0018±0.0002, and 0.0012±0.0001 mol C 10 

mol-1 absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant 11 

analysis of the spectra reflectance of these patches identified five spectral bands that 12 

separated each of these vegetation functional types as well as nongreen material (bare 13 

soil, standing water, and dead leaves). These results were tested along a 100 m transect 14 

where midsummer spectral reflectance and vegetation coverage were measured at one 15 

meter intervals.  16 

Along the transect, area-averaged canopy LUE estimated from coverage fractions 17 

of the three functional types varied widely, even over short distances. The patch-level 18 

statistical discriminant functions applied to in situ hyperspectral reflectance data collected 19 

along the transect successfully unmixed cover fractions of the vegetation functional 20 

types. The unmixing functions, developed from the transect data, were applied to 30 m 21 

spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine 22 

variability in distribution of the vegetation functional types for an area near Barrow, AK. 23 
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Spatial variability of LUE was derived from the observed functional type distributions. 1 

Across this landscape, a fivefold variation in tundra LUE was observed.  LUE calculated 2 

from the functional type cover fractions was also correlated to a spectral vegetation index 3 

developed to detect vegetation chlorophyll content.  The concurrence of these alternate 4 

methods suggest that hyperspectral remote sensing can distinguish functionally distinct 5 

vegetation types and can be used to develop regional estimates of photosyntehtic LUE in 6 

tundra landscapes. 7 
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Introduction 1 

High northern latitudes are undergoing dramatic changes in climate. Warming 2 

trends have been observed in northern regions and Global Circulation Model predictions 3 

indicate arctic and boreal regions are likely to warm by several degrees over the next 4 

century, a greater rate than other regions on the globe [1, 2]. In high latitudes seasonal 5 

shifts in surface properties involve freezing and thawing of water, so relatively small 6 

temperature changes around the freezing point can result in significant environmental 7 

shifts. Along with temperature changes, significant changes in precipitation and 8 

evapotranspiration are also predicted for these regions [1, 2].  9 

Tundra vegetation is expected to be particularly responsive to climate change. 10 

Increased warming during the growing season is likely to alter production by lengthening 11 

the growing season and increasing metabolic activity [3, 4, 5].  Changes in seasonal air 12 

temperature may increase soil temperatures and the active layer depth to permafrost. 13 

This, in turn, affects soil microbial activity, nutrient cycles and soil moisture [6, 7], which 14 

alter existing plant growth and competitive species interactions resulting in dramatic 15 

changes in vegetation composition.  Further, tundra ecosystems are often moisture 16 

limited, so climate induced changes in precipitation patterns and surface hydrology will 17 

also act to alter vegetation growth patterns [8, 9]. 18 

A unique characteristic of the tundra ecosystem is the relative dominance of non-19 

vascular plants in the landscape, such as mosses and lichens. In some cases, mosses 20 

dominate local habitats in the tundra because of their tolerance to extreme cold, 21 

dessication, water-logging, and low light [10]. Lichens can survive extreme climate 22 

conditions such as drought and persistent freezing as well [11, 12, 13]. Tundra warming 23 
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manipulation experiments have shown a decline in lichens with an increase in vascular 1 

plants suggesting changing proportions of tundra plant types as climate changes [14].   2 

Non-vascular plants can provide a significant fraction of tundra carbon uptake and 3 

should be explicitly included in descriptions of tundra carbon fluxes. Photosynthesis of 4 

tundra vascular plant canopies has been described with strong relationships found 5 

between leaf area or the fraction of absorbed photosynthetically active radiation and gross 6 

primary productivity [15, 16, 3]. However, the net primary productivity (NPP) of mosses 7 

have been shown to represent about 25-30% of total above-ground NPP in several tundra 8 

sites including; tussock tundra [9], coastal tundra [17] and tundra heath [18]. In other 9 

cases mosses were found to dominate tundra photosynthetic CO2 fluxes [19, 20]. 10 

There are further important physiological differences between vascular and non-11 

vascular plants that affect tundra water and energy balance. Mosses and lichens do not 12 

have roots, so cannot access soil moisture below the surface. Instead they depend on 13 

water from atmospheric humidity, ground water, or precipitation. They also do not 14 

possess stomata and therefore lose water readily to the atmosphere and many species are 15 

adapted to survive long periods of desiccation. [21]. They may also act as an insulating 16 

layer to heat transport between the soil and the atmosphere [22]. Thus, in areas where 17 

these non-vascular plants make up a significant portion of the vegetation cover the 18 

response of ecosystem carbon and energy balance to environmental changes is expected 19 

to differ from that of vascular plant-dominated vegetation and must be accounted for in 20 

tundra ecosystem modeling.  21 

The difficulties in working in remote tundra locations have always incurred large 22 

logistical costs, therefore observations of ecosystem change using remote sensing provide 23 
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an expedient and economical method of collecting repeatable and consistent 1 

measurements over large areas.  Importantly, most remote sensing theory of vegetation 2 

has been derived from studies focused on temperate crops and forests and thus the 3 

interpretation of conventional remote sensing tools is often ambiguous for northern 4 

landscapes.  There are several unique features of the tundra that affect the interpretation 5 

of remotely sensed data [23].  Non-vascular plants can represent significant fractions of 6 

the tundra landscape cover, and these non-vascular plants have different spectral 7 

characteristics as well as different physiological responses from vascular plants or from 8 

bare soils [24, 25, 26]. For example, remote sensing studies have been able to detect 9 

changes in lichen-dominated areas due to responses to both short-term temperature 10 

anomalies as well as long-term temperature trends [27, 28]. 11 

This study investigates the importance of non-vascular plants in the tundra 12 

landscape and examines their effects on tundra carbon uptake, using spectral reflectance 13 

to distinguish these different functional types.  We explore the concept of “optical types” 14 

[29] to scale from ground-based in situ measurements to landscapes using satellite 15 

observations to examine vegetation functional type patterns across the tundra.  16 

 17 

Materials and Methods 18 

Study Area 19 

The study examines an area mainly located north and west of the town of Barrow, 20 

AK, including most of the Barrow Environmental Observatory.  Specific study plots are 21 

located at 71° 19' 19.1" N 156° 36' 15.9" W, approximately seven kilometers east of 22 

Barrow. The area is classified as moist acidic coastal tundra [30]. Barrow has a mean 23 
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annual temperature of −12.0°C, with a minimum mean monthly temperature of −26.6°C 1 

in February and maximum mean monthly temperature of 4.7°C in July. More than half of 2 

the 106 mm of annual precipitation falls as rain during a 3-month period from July 3 

through September, with the ground being snow covered from September through May to 4 

mid-June [31]. 5 

The tundra community at Barrow, AK consists of an overstory dominated by 6 

vascular plants (mostly graminoids) and an underlying mat of mosses [32]. Vascular 7 

plants at Barrow include dwarf shrubs, forbs, and perennial herbs but the most dominant 8 

growth form is graminoid [30].  Common vascular species are: Carex aquatilis, Dupontia 9 

fischerii, Eriophorum angustifolium, E. scheuzerii, Luzula confusa, Petasites frigidus, 10 

Potentilla hyparctica, and Salix rotundifolia.  Mosses are a significant portion of the 11 

community and in some areas may account for more biomass than vascular plants [33]. 12 

Moss species include: Dicranum elongatum, D. undulatum, Drepanocladus revolvens, 13 

Polytrichum (juniperum), and Sphagnum spp.  Lichens are scattered throughout the drier 14 

areas but are not as abundant or productive as mosses and graminoids [34] and include 15 

the species: Alectoria nigricans, Cetraria cucullata, C. nivalis, and Dactylina arctica. 16 

 17 

Measurements 18 

 This project included: 1) the collection of in situ measurements of plots for the 19 

three vegetation functional types, including photosynthesis and spectral reflectance; 2) 20 

measurements of ground cover amount and spectral reflectance at every meter along a 21 

100 m transect; 3) development of relationships between spectral reflectance and both 22 
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photosynthesis and cover amount; 4) estimation of LUE across a tundra transect; and 5) 1 

application of these findings to the spectral information collected from Hyperion. 2 

 Vegetation measurements were designed to relate photosynthetic rate to spectral 3 

reflectance.  Tundra vegetation were grouped into three functional groups; vascular 4 

plants, mosses, and lichens, with at least four replicates per group measured on any one 5 

day.  Each replicate provided a different species from each group in an attempt to 6 

measure the variability within a group.  Field sampling for this study was conducted on 7 

July 20 and August 5, 2001, near the peak of the growing season in this area. 8 

Spectral reflectance measurements were collected at 51 plots, each about 15 cm in 9 

diameter, representing nearly pure areas of representative tundra species.  Photosynthetic 10 

gas exchange measurements were collected at 17 of the plots.  All of the study plots were 11 

in very close proximity (<15 m) to a 100 m linear transect that was also optically sampled 12 

at frequent intervals throughout the summer [35].  13 

CO2 gas exchange was measured at 17 plots where a 14.6 cm diameter collar of 14 

acrylic plastic was embedded in the ground.  When measurements were made, the plot 15 

was enclosed in a clear acrylic chamber constructed of 0.3175 cm thick acrylic tube glued 16 

to a 0.635 cm thick acrylic top and a closed gas exchange system was connected to the 17 

chamber (LI-6200, LiCOR, Lincoln, NE).  Each individual plot was measured under 18 

ambient environmental conditions for net photosynthesis and then the measurement was 19 

repeated with the chamber covered with a black cloth to block out light to provide an 20 

estimate of dark respiration.  Gross photosynthesis was calculated as the difference 21 

between the net photosynthesis, measured with the clear chamber, and dark respiration, 22 

measured with the chamber covered.  A quantum sensor mounted on the chamber top 23 
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measured incident photosynthetically active radiation (PAR).  The chamber had a PAR 1 

transmittance of 95% [36].   Photosynthetic light-response curves were developed using 2 

household window screen material as neutral density filters to control incident PAR, 3 

allowing photosynthesis measurements for each functional type to be rapidly collected 4 

under a range of light levels.   5 

Light use efficiency (LUE) was determined as the ratio of absorbed light and 6 

gross photosynthesis: 7 

  8 

ε =
G

fPAR Qi

       (1) 9 

 10 

where ε is LUE, G is gross photosynthesis with units of μmol CO2  m-2  s-1, Qi is incident 11 

PAR with units of μmol photons m-2  s-1 (i.e. photosynthetic photon flux density, or 12 

PPFD) and fPAR is the fraction of the PAR absorbed by the vegetation (unitless).  13 

Absorbed PAR (APAR) is the product of fPAR and incident PAR.   14 

fPAR is not well defined and difficult to determine for vegetation with low growth 15 

forms such as lichens and mosses.  We assumed that no PAR was transmitted through 16 

moss and lichen mats, so for these vegetation types fPAR is 1-PAR albedo.  PAR albedo is 17 

estimated by integrating the measured spectral reflectance (see below) between 400 and 18 

700 nm.  For the vascular plant plots fPAR is determined using the linear relationship 19 

between Normalized Difference Vegetation Index (NDVI) and fPAR described in 20 

Huemmrich et al. [36]. 21 

 22 

Optical Sampling 23 
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The optical field sampling consisted of measurements of the small single species 1 

plots, as well as measurements collected at every meter along a 100 m transect to observe 2 

areas of mixed coverage [35, 37, 38]. Optical measurements were collected using two 3 

portable field spectrometers (UniSpec, PP Systems, Haverhill, MA).  These 4 

spectrometers measured reflectance between 310 and 1130 nm sampling at approximately 5 

3 nm intervals. 6 

For plot measurements, the spectrometer was fitted with a glass fiber optic cable 7 

connected to a stainless steel ferrule, which provided a 20° field of view.  Reflected 8 

irradiance measurements were collected with the end of the fiber optic cable held 9 

vertically between 30 and 40 cm above the surface to view an area of less than 15 cm 10 

diameter to match the area of gas exchange measurements.  Within seconds of collecting 11 

a surface measurement, a reference measurement was made of a calibration panel 12 

(Spectralon, Labsphere, Inc. North Sutton, NH).  The speed of this procedure allowed the 13 

acquisition of data even under cloudy conditions.  Three reflectance spectra were 14 

collected for each sampled plot, and were averaged to produce one spectrum per plot.  In 15 

addition to the vegetation plots, spectral measurements for nongreen materials including 16 

bare soil, open water, and areas of standing dead vascular plants, were collected soon 17 

after snowmelt and before the start of green-up. For the vegetation plots, ground-based 18 

spectral reflectance measurements were collected near the height of peak productivity 19 

period in early August (August 5 and 8, 2001) and reflectance for nongreen plots were 20 

collected throughout the summer (June 20 and 30, July 15, August 8 and 22, and 21 

September 3, 2001). 22 
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To characterize spectral reflectance patterns at multiple spatial scales, spectral 1 

measurements were made at 1 m intervals along a 100 m linear track system [35, 38].  2 

The track was supported less than a meter above the tundra surface by tripods with a tram 3 

cart riding on the track carrying a dual channel spectroradiometer (Unispec DC, PP 4 

Systems).  From the spectrometer were two fiber-optic cables mounted on a mast and 5 

boom attached to the cart, one attached to a diffuser head viewing upward, the other on 6 

the boom pointing vertically downward to view an area south of the track with a field-of-7 

view of approximately 1 m in diameter.  With each measurement of reflected radiance, a 8 

measurement of incident irradiance was also acquired at the same time for a 9 

determination of surface reflectance.  Due to the coincident measurements of both 10 

incoming and reflected radiation this system was able to correct for effects of varying 11 

cloud cover.  The tram system collected spectral measurements that were repeatable 12 

throughout the growing season while minimizing disturbance to the tundra surface [35, 13 

38]. In this study we used measurements from the peak of the growing season period 14 

collected on August 10, 2001. 15 

Processing the ground-measured spectral reflectance data included interpolating 16 

the spectral bands to 1 nm intervals. Due to instrument noise at the ends of the 17 

spectrometer range, the usable spectral range was between 400 and 1000 nm.  The 18 

processing used freely available software (Multispec v.4.0, 19 

http://specnet.info/specnet_toolkit.htm).  The spectral reflectance data were then 20 

convolved to match the approximately 11 nm band passes of the Hyperion instrument 21 

[39] in subsequent analyses. 22 
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Imaging spectrometer data were acquired on July 20, 2009 (day 201) by the 1 

Hyperion instrument on the Earth Observing-1. Hyperion provides data in 220 spectral 2 

bands from 0.4 to 2.5 μm at 30-meter resolution and a 7.5 km wide swath [39].  The 3 

satellite data were atmospherically corrected to surface reflectance using the Atmosphere 4 

Removal algorithm (ATREM) [40, 41].  To match the spectral range of the ground-based 5 

spectral data only 55 of the continuous Hyperion bands between 437 and 993 nm were 6 

used.   7 

Discriminant analysis was used to separate the functional groups based on optical 8 

properties, determining the important spectral bands and simplifying the number of 9 

independent variables [42]. The plot data were divided into four groups: vascular plants, 10 

mosses, lichens, and nongreen materials (bare soil, dead vegetation, and standing water). 11 

Inputs to the discriminant analysis using Systat (Version 13, Systat Software, Inc., 12 

Chicago, IL) were plot reflectance spectra convolved to the Hyperion bands.  The 13 

analysis used a forward stepwise method (Wilks’ Lamda) to test for significant mean 14 

group differences, using a probability of F≤ 0.05 to include bands and F≥ 0.10 to remove 15 

the band.  16 

At each meter along the 100 m transect a visual estimate of species abundance 17 

was made over the period August 8-11, 2001 using a 1 m by 1 m quadrat. The species 18 

data were converted into percent area of each of the vegetation functional types and 19 

nongreen material types. We estimate errors in the estimation of coverage to be +/- 15% 20 

cover. Because of the three dimensional structure of the vegetation the sum of the 21 

coverage was more than 100%. For this analysis, the total measured cover values were 22 
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normalized so total cover equals 100% as is generally done in linear unmixing 1 

approaches.   2 

LUE was determined for areas with mixtures of different functional types as the 3 

weighted sum of the LUE from the pure plots, where the weight coefficients were the 4 

normalized fractional cover values.  This calculation assumes that the incident PAR is 5 

absorbed by the landscape components proportional to their normalized cover fraction 6 

and was applied to determine LUE for both the transect data and the Hyperion satellite 7 

imagery. 8 

Chlorophyll concentrations are a key physiological factor related to maximum 9 

photosynthetic rates. We estimated chlorophyll concentrations using Gitelson’s three-10 

band model: 11 

Ci =
1

ρλ1

−
1

ρλ 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ρλ 3        (2) 12 

where the spectral index Ci is proportional to the chlorophyll concentration, and ρλ is the 13 

reflectance for a given wavelength band, λ. Wavelengths chosen are maximally sensitive 14 

to absorption by chlorophyll and other pigments (λ1=549 nm), are influenced primarily 15 

by non-chlorophyll pigments (λ2=793 nm), and where reflectance is controlled by leaf 16 

scattering (λ3=793 nm) [43, 44, 45].  17 

The cover estimates of the functional types retrieved from the Hyperion imagery 18 

were used to derive landscape LUE patterns. The LUE per pixel was calculated as 19 

described above and compared with chlorophyll concentration estimates obtained using 20 

Equation 2. 21 

 22 

Results 23 
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The physiological measurements identify differences relating to photosynthetic 1 

carbon exchange among the three vegetation functional types. From the plot gas 2 

exchange data, LUE for each functional type was calculated as the slope of a linear 3 

regression between gross photosynthesis and APAR, forced through the origin (Figure 1, 4 

Table 1).  Lichens, mosses, and vascular plants all had different LUE values. Vascular 5 

plants had significantly higher net photosynthetic rates and LUE than the other two 6 

functional types. The vascular plant LUE from this study (0.0134 mol C mol-1 quanta) 7 

was close to that previously determined for a vascular plant overstory near Barrow 8 

(LUE=0.0126 mol C mol-1 quanta [36]) and within the 95% confidence interval of the 9 

slope from the regression in this study (i.e. the vascular plant LUE). This was noteworthy 10 

as the LUE in this study was based only on measurements collected during the middle of 11 

the growing season, while the Huemmrich et al. [36] LUE was derived from 12 

measurements collected throughout the growing season, suggesting the LUE for vascular 13 

plants was relatively stable over much of the season, as well as having similar LUE 14 

values for vascular plants in mixtures with mosses or growing alone. 15 

The LUE for mosses and lichens were much lower than for vascular plants. There 16 

was a significant difference, however, between these two functional types (Table 1) with 17 

mosses having a LUE almost 50% greater than lichens (a similar analysis for LUE of the 18 

moss data was presented in [36]). 19 

The in situ spectral reflectance measurements of the plots were divided up into 20 

four groups: vascular plants (n=22), mosses (n=11), lichens (n=18), and nongreen 21 

material (n=19) (Figure 2).  Generally, the vascular plant and moss spectra were similar, 22 

and display typical green plant spectral reflectance patterns, including more variation in 23 
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the near infrared than in visible wavelengths. In comparison, lichen spectra had much 1 

higher visible reflectance and were more variable in all wavelengths. Spectral patterns for 2 

the nongreen materials were clearly different for dead vegetation, bare soil, and water.  3 

Generally the spectral variability for the entire nongreen group increases as a function of 4 

wavelength. 5 

Discriminate analysis provided an objective tool to evaluate the ability of optical 6 

sampling to distinguish functional groups and to identify a subset of the spectral bands to 7 

do this separation. The stepwise method for discriminate analysis reduced the number of 8 

wavebands from 55 to five, yet retained separation of functional types.  The five chosen 9 

bands were located in key locations of typical green plant spectra (Figure 2); at the blue 10 

(488 nm) and red (671 nm) chlorophyll absorption wells, near the inflection point of the 11 

red edge (712 nm), at the shoulder of the red edge (763 nm), and in the near infrared 12 

“plateau” (834 nm). Mulhern [46] identified the blue band as an important spectral region 13 

for separating lichens from soils. The discriminate analysis functions (Figure 3) correctly 14 

predicted 83% of group membership overall, with 86% correct for vascular plants, 91% 15 

for mosses, 95% for the nongreen materials, and 61% for lichens.  Lichen errors were 16 

mainly due to confusion with the nongreen materials (Figure 3).  17 

Even at the scale of one square meter, the cover estimates along the tram transect 18 

show that all square meter plots consisted of mixtures of multiple cover types (Figure 4).  19 

The observed cover estimates included little bare ground with maximum coverage of 20 

20%, while standing dead vegetation ranged from 0-70%, and water from 0-100%.  Moss 21 

coverage ranged from 0-100%, but when normalized to a 100% maximum total coverage 22 

maximum moss coverage was 40% +/- 7%, based on the propagation of an assumed 15% 23 
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error in the original observations. Lichen coverage ranged from 0-90% with 35% +/- 7% 1 

maximum normalized lichen coverage. Vascular plant coverage ranged between 40-2 

150%, with normalized coverage of 18-88% +/- 9%. Vascular plant coverage was highest 3 

in the locally low areas, particularly the areas with standing water, while moss coverage 4 

was highest in locally low areas without standing water and on the edges of the wet areas. 5 

Lichen coverage was highest in the locally high areas where bare soil patches also 6 

occurred. These spatial patterns indicate the role of microtopography on the distribution 7 

of the functional types. 8 

The transect coverage observations indicate how heterogeneous the tundra is, as 9 

areas over a few square centimeters in size generally consist of mixtures of multiple 10 

types. Therefore, to estimate LUE at that scale of a 30 m Hyperion pixel, the fractions of 11 

each functional type must be determined.  We used the optical measurements to scale 12 

from plot-level LUE to 30 m areas. Since the discriminant functions optimized separation 13 

of the different functional types with a small number of spectral bands, we used the 14 

distance to endmembers in the discriminate analysis function space to estimate cover 15 

fractions in mixed pixels.  Assuming that the range of in situ plot reflectances provide a 16 

reasonable description of the variability of plot type, the endmembers for the moss, 17 

lichen, and nongreen cover types were assigned values of the average of the plot 18 

reflectances. However, variability in the vascular plants reflectance is driven by 19 

differences in green leaf area index.  To account for that variability the vascular plant 20 

endmember was chosen to be the “greenest” plot spectra (i.e. spectra with the highest 21 

NDVI, which was also the greatest distance from the average of all the plot values in the 22 

discriminate analysis function space).  23 
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Endmember reflectance for each functional type and reflectances at each meter 1 

along the transect were transformed using the discriminate analysis functions. The 2 

distances in the discriminate analysis space between the coverage estimates for each 3 

square meter and the endmembers were calculated, these were related to the observed 4 

coverage to create transfer functions. The statistical associations between distance from 5 

endmembers and observed coverage were low due to large observation errors relative to 6 

the range of values, with R2 values of 0.39, 0.13, and 0.19 for vascular plants, mosses, 7 

and lichens respectively. Nevertheless, the cover fractions determined from the in situ 8 

reflectance were found to be in close agreement with sampled cover fractions (Figure 6), 9 

with root mean square error (RMSE) of 11% cover for vascular plants, 8% for moss, 9% 10 

for lichen, and an overall RMSE of 9% cover. 11 

LUE was calculated for each square meter block along the transect using the 12 

observed cover fraction and coverage estimated from the reflectance spectra (Figures 5 13 

and 7).  Along the transect LUE was quite variable, with maximum and minimum values 14 

occurring within 6 m of each other (Figure 7). Variability in LUE was affected by 15 

microtopography, with higher values of LUE tending to occur in locally low, wet areas. 16 

This variability over the 100 m distance produced a fourfold difference in LUE with 17 

values from 0.003 to 0.012 mol C mol-1 quanta for the in situ observations. The average 18 

errors for estimating LUE were similar for the two methods: 0.0014 mol C mol-1 quanta 19 

for the method using observed coverage and 0.0015 mol C mol-1 quanta for the LUE 20 

based on the remote sensing approach. The two different LUE calculations have a 21 

correlation of 0.62 with a RMSE of 0.0013 mol C mol-1 quanta.  22 
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The equations relating spectral reflectance and functional type coverage derived 1 

from the transect data were the applied to the Hyperion imagery to create a continuous 2 

fields description of the coverage of the functional types for the tundra around Barrow 3 

(Figure 8b).  Over this area the distribution of vascular plant coverage per pixel had a 4 

maximum value of 74% with a distribution peak of 32%, for mosses the maximum 5 

coverage was 31% with the distribution peak at 22%, and for lichens the maximum 6 

coverage was 22% with a peak of 10%.   7 

Without ground observations of vegetation type coverage, an examination of an 8 

area known to be free of vegetation was used to make an error estimate.  The old Naval 9 

Arctic Research Laboratory runway was chosen as for this test.  For runway pixels 10 

vascular plant coverage was as high as 9%, moss 14%, and lichen 13%, compared to 11 

expected values of zero percent coverage. These values were close to the RMSE of 12 

coverage from the tram analysis comparing the spectral unmixing with ground 13 

observations, suggesting the Hyperion unmixing captured the actual functional type 14 

distribution near this level of error. 15 

There are clearly observed spatial patterns in the cover fractions in this landscape.  16 

High vascular plant coverage occurred on the margins of drained lakes. Higher lichen 17 

coverage tended to be found in drier upland regions.  This pattern of lichen occurrence 18 

was also observed in the transect measurements (figure 4). Moss coverage was more 19 

widely distributed, although high moss coverage in the middle of the drained lakes may 20 

be erroneous due to confusion between mosses and mixtures of water and vascular plants.  21 

Field observations confirm that moss often occurs as a low, “background” layer beneath 22 

the vascular canopy of wet tundra in this region [36].   23 



Functional Types and Unmixing  3/18/13 

 18 

The Hyperion functional type coverage estimates were used to calculate landscape 1 

patterns of LUE (Figure 8c). For the vegetated parts of the scene, this Hyperion-based 2 

LUE ranged from 0.0021-0.0102 mol C mol-1 quanta, a fivefold difference between 3 

maximum and minimum LUE.  The distribution peak of LUE for this area and the overall 4 

average were both 0.0048 mol C mol-1 quanta.  5 

The Hyperion-based LUE was compared with the chlorophyll spectral index, Ci 6 

(Equation 2). Ci was well correlated with LUE over the study area (R2=0.69, SE=0.0006 7 

mol C mol-1 quanta) (Figure 9) suggesting vegetation chlorophyll concentration is a key 8 

determinant of LUE for this tundra ecosystem. This suggests that a more direct approach 9 

for deriving spatial patterns of LUE for tundra from imaging spectrometry would be 10 

based on a simple reflectance-based metric of chlorophyll concentration. 11 

 12 

Discussion and Conclusions 13 

This study uses the concept of optical types [29] to examine a key characteristic 14 

of ecosystem carbon exchange in the tundra. To have usable optical types one must be 15 

able to both identify significant functional differences in vegetation types and spectrally 16 

identify these different types. Our grouping of tundra vegetation (vascular plants, mosses, 17 

and lichens) meets these criteria. Among the different types, the plot measurements 18 

showed distinct differences in LUE, a key variable describing photosynthetic carbon 19 

uptake and discriminate analysis showed that the types could be separated based on their 20 

spectral reflectance. The ability to link LUE to reflectance characteristics provides an 21 

approach to scale from the ground measurements to distributions over a landscape. Using 22 

an unmixing approach we were able to create continuous fields of key tundra functional 23 
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types for this area, an improvement over simple classifications. Results from this study 1 

demonstrated how, even at a scale of a square meter, variable mixtures of functional 2 

types produced significantly different values for LUE. Unmixing using spectral 3 

reflectance provides a unique estimate of LUE for each pixel. Remote sensing provides a 4 

way to map large areas and make noninvasive repeat measurements to monitor ecosystem 5 

change.  Remote sensing is a particularly important tool for observing tundra due to the 6 

difficulties and expense involved in traveling to and working in this region, rendering 7 

direct field sampling over large areas impractical. 8 

The linear unmixing approach used to calculate pixel-level LUE simplifies the 9 

tundra canopy as it does not take into account the three dimensional structure of a 10 

vascular plant overstory. Vascular plants can grow through mats of mosses and lichens 11 

and shade them, decreasing their photosynthetic production [36]. However, vascular plant 12 

leaf area index for this region is generally low, with observed midseason values less than 13 

2 [36]. We believe the overall effect of this overstory on the moss and lichen understory 14 

production is relatively small in this region due to both the low leaf area combined with 15 

generally diffuse light conditions. 16 

This study provided a snap-shot of this landscape at a particular point in time. 17 

Seasonal growth of vascular plants will change their relative proportions throughout the 18 

growing season and this affects carbon uptake and LUE patterns [38]. Early in the 19 

growing season, as vascular plants begin to grow, tundra productivity will be dominated 20 

by moss and lichen photosynthesis, with the vascular plant component increasing as the 21 

season progresses [36]. Thus, the spatial patterns of coverage and LUE are expected to 22 

change through the growing season. 23 
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The correlation between LUE calculated from coverage estimates and the 1 

chlorophyll index (Ci), even though they use different algorithms and spectral bands, 2 

demonstrates how multiple approaches can yield similar results. This convergence is 3 

most likely due to plant physiological constraints indicating chlorophyll concentration is 4 

a controlling factor in vegetation photosynthetic efficiency, and may provide a more 5 

direct approach to deriving LUE. 6 

This study found significant variability in functional type cover fractions, leading 7 

to variability in estimated LUE, at local scales (meters) in the field data collected along 8 

the transect and at landscape scales (km) in the satellite imagery. The spatial variability 9 

shown in LUE estimates is not accounted for in existing carbon flux models. Spatial 10 

distributions of vegetation functional types were strongly related to surface 11 

microtopography, from which we infer surface hydrology to be a significant controlling 12 

factor. These results suggest that climate change affecting surface hydrology [47] will 13 

also affect spatial patterns of vegetation distribution and ecosystem carbon exchange. 14 

Particularly in a scenario of modified surface hydrology, we can expect that climate 15 

change will affect relative coverage due to differing responses of each of the functional 16 

types to climate change, and that these changes in cover will be associated with altered 17 

carbon and energy balance.  18 

Since hydrology is an important factor determining the vegetation functional type 19 

coverage, shortwave infrared bands may provide additional information on vegetation 20 

water content, improving the retrieval of functional type coverage [48]. This approach 21 

was not tested in this study as the field measurements observed only visible and near 22 

infrared spectral bands. Recent observations combining NIR and blue bands to detect 23 
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standing water in coastal tundra [49] may also prove useful at detecting hydrological 1 

changes linked to cover type and LUE.   2 

The results of this study are indicative only of this part of the Alaskan coastal 3 

tundra and further field studies are required in other parts of the tundra biome to test and 4 

extend the results and to evaluate the ability to generalize the results. For example, shrubs 5 

are an important component of the tundra biome and shrub coverage has been shown to 6 

be increasing in the tundra [50].  Shrubs did not represent a significant cover type in our 7 

study area, however, so were not explicitly included in this study. Future work is required 8 

to examine shrub optical and physiological characteristics to see if they comprise an 9 

optically distinct functional type. 10 

The use of multiple narrow spectral bands for the umixing points to an application 11 

for the future NASA Hyperspectral Infrared Imager (HyspIRI) mission for mapping 12 

tundra vegetation distribution according to physiological function, hydrology, and 13 

microtopography over the entire biome. The concept of optical types (optically 14 

distinguishable functional types) may prove to be useful for this kind of functional 15 

mapping. Similarly, simple metrics of surface water cover (e.g. [49]) or pigment 16 

distribution (e.g. [45]) may provide insight into the proximal causes of functional change 17 

in tundra ecosystems.   18 

The close linking of optical properties and carbon flux measurements in this study 19 

has provided insights into the functioning of the tundra ecosystem by identifying fine-20 

scale patterns of LUE that may be related to hydrology and microtopography. This study 21 

also illustrates new “scaleable” functional mapping techniques that can be extended 22 

through the use of satellite remote sensing to larger regions.  This approach lends itself to 23 
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future studies considering how species composition relates to changing ecosystem 1 

function and provides a framework for studying ecosystem change through remote 2 

sensing that considers shifts in hydrology, species composition, and their effects on 3 

carbon balance. 4 

 5 
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Tables 1 

 2 

 
Vascular 
Plants Moss Lichen 

LUE 0.01337 0.00184 0.00124 
St. Err. of 

Slope 0.00101 0.00022 0.00011 
Num. Obs. 29 25 28 

R2 0.74 0.56 0.74 
P <0.01 <0.01 <0.01 

Table 1. Light Use Efficiency based on regressions between net photosynthesis and 3 

APAR from plot data.  LUE is in units of mol C mol-1 absorbed quanta. 4 

 5 

 Vascular 
Plants 

Moss Lichen 

R2 0.39 0.13 0.19

P <0.01 <0.01 <0.01
Est. Obs. Error 9.5 7.1 7.0

SE of Regression 10.8 8.4 9.0

Table 2. Description of relationships in spectral space between the statistical distance to 6 

endmembers and coverage estimate observations, acquired along the tram transect.  The 7 

errors are expressed in percent coverage.  For all cases the number of observations is 100. 8 

9 
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Figures 1 

 2 

Figure 1.  Absorbed PAR and gross photosynthesis for the three vegetation functional 3 

types from plot data collected July 20 and August 5, 2001.  Light use efficiency for each 4 

functional type was calculated from these data as the slope forced through the origin. See 5 

Table 1 for description of regressions. 6 

 7 
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 1 

Figure 2.  Endmember spectral reflectance for each cover type, vertical lines indicate 2 

wavelengths used in the discriminant analysis. 3 

 4 
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 1 

Figure 3.  The distribution of data from plots using the first two functions derived from 2 

discriminate analysis for the three vegetation functional types and nongreen materials.  3 

The larger gray circles indicate values used as endmembers in the unmixing analysis.  For 4 

the endmember points the symbol within the circle indicates the vegetation functional 5 

type of that endmember. 6 

 7 
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 1 

Figure 4.  Observed functional type coverage at 1 m intervals along the transect, visually 2 

estimated over the period August 8-11, 2001.  Because the vegetation is 3-dimentional, 3 

total cover fractions were over 100%.  In the data analysis the total cover fractions were 4 

normalized to equal 100%. 5 

 6 

 7 

Figure 5. LUE along the 100 m transect shown with the black line was estimated from the 8 

functional type coverage (shown in Figure 4) and light use efficiency (shown in Figure 9 

1), along with LUE estimated using coverage derived from spectral unmixing shown with 10 
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the gray line. Microtopography is shown as dashed line. Error in Observed LUE estimate 1 

is 0.00136 mol C mol-1 quanta, RMSE in LUE derived from observations compared to 2 

LUE from spectra is 0.00266 mol C mol-1 quanta. 3 

 4 

 5 

Figure 6. Comparison between observed vegetation functional type coverage normalized 6 

to 100% for vascular plants, mosses, and lichens along the transect and cover fractions 7 

estimated from spectral reflectance.  Line is 1 to 1 line.  The absolute error in visual 8 

estimates is approximately 9%.  The RMSE of spectral retrievals is 9% absolute.  9 

 10 
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 1 

Figure 7. LUE (mol C mol-1 quanta) along the transect estimated based on observed 2 

normalized cover fractions and cover fractions obtained from spectral unmixing.  Line is 3 

1 to 1 line. Errors in LUE based on observed cover fractions are due to errors in LUE for 4 

the pure functional types and an assumed 15% error of observed raw coverage amounts.  5 

Errors in LUE based on spectrally derived cover fractions are due to errors in LUE for 6 

pure functional types and the RMSE of the spectral retrieval of cover fractions. 7 

 8 



Functional Types and Unmixing  3/18/13 

 38 

 1 

Figure 8. Three versions of the EO-1 Hyperion image acquired on July 20, 2009 are 2 

shown. 3 

Left:  3-band (RGB=834, 671, and 549 nm) composite image of surface reflectance. The 4 

grid of light blue lines on the lower left side of the image is the city of Barrow.  The 5 

straight blue line along the shore near the top of the image is the old airport runway, used 6 

in the error evaluation.  The oblong features scattered around the region are drained 7 

thermokarst lakes and the dark red ones are now marshes. 8 

Middle: Three band RGB continuous fields of estimated coverage of vegetation 9 

functional types derived from spectral unmixing and scaled between 0 and 50% coverage. 10 

R = Vascular Plant Cover, G = Moss Cover, B = Lichen Cover  11 

Right image: Map of LUE spatial patterns (mol C mol-1 quanta x1000) based on coverage 12 

estimates. 13 

 14 
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 1 

Figure 9. Scatter plot of chlorophyll index (x-axis) versus LUE (mol C mol-1 quanta 2 

x1000) based on normalized cover fractions (y-axis).  Both variables were retrieved from 3 

the Hyperion image. 4 

5 
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function for assessing ecosystem processes and dynamics, conducting spectral reflectance 7 
and fluorescence analyses and using satellite, airborne, field and laboratory 8 
measurements. At GSFC she contributes to the research of spectral bio-indicators of 9 
vegetation function, and participates in the Mission Science team for the Earth Observing 10 
1 (EO-1). Dr. Campbell is a member of American Society for the Advancement of 11 
Science (AAAS), Geoscience & Remote Sensing Society (IEEE GRSS), International 12 
Association for Landscape Ecology (IALE), Society of American Foresters (SAF), and 13 
has previously served as the Technical Secretariat for the WGCV/CEOS. 14 
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David R. Landis is a Senior Programmer with the Biospheric Sciences 17 
Laboratory (Code 618) at NASA/GSFC, Greenbelt, MD. He is currently 18 
working on the Earth Exploring One (EO-1) satellite. Mr. Landis has 19 
over 25 years of experience as a contract staff programmer-analyst at 20 
GSFC. He has experience working for MODIS, Landsat, and EO-1. His 21 
information technology experience is extensive, having worked on data 22 
systems and data publication tasks for five large climatology projects 23 

(FIFE, BOREAS, BOREAS Follow-on, SAFARI 2000, ISLSCP-2). He has considerable 24 
programming skill and Web designer experience. He also has significant science 25 
background, and has worked with scientists in many disciplines. He received the B.S. 26 
degree in Computer Programming from Elizabethtown College. 27 
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Elizabeth M. Middleton received a B.S. degree  in Zoology from 31 
the University of Maryland in 1967, the M.S. degree in Ecology 33 
from the University of Maryland in 1976, and the Ph.D. degree 35 
in Botany from the University of Maryland in 1993.  37 

Dr.Middleton is a Senior Scientist with the Laboratory for 39 
Biospheric Sciences (new Code 618) at NASA/GSFC, Greenbelt, 41 
MD.  She is currently the Mission Scientist for the Earth Exploring 43 
One (EO-1) satellite and the GSFC lead for the NASA HyspIRI 45 
satellite concept development.  Dr. Middleton recently received in 47 
2011 a Career Achievement Award from the Hydrospheric and 49 

Biospheric Sciences Laboratory at GSFC.  She also received NASA Group Achievement 50 
Awards in 1983, 1994, 1995 and 2003, respectively, in addition to numerous Performance 51 
Awards.  She has previously served, and is currently serving, as the Outside Observer on 52 
the Mission Advisory Group (2007-2009, 2011+) for a European Space Agency’s Phase 53 
A satellite mission concept-- the FLuorescence Explorer (FLEX).  In addition, she was a 54 
member of NASA/GSFC Carbon Cycle Science Working Group (2000-2007) and t h e  55 
NASA representative to the US Federal Geographic Data Committee’s Vegetation 56 
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Subcommittee for many years.  Dr. Middleton leads a research team that studies 1 
vegetation spectral bio-indicators of plant stress and photosynthetic function, including 2 
plant fluorescence. She is Associate Editor of J. Appl. Remote Sensing. 3 
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