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Abstract

Disturbance events strongly affect the composition, structure, and function of forest
ecosystems; however, existing U.S. land management inventories were not designed to
monitor disturbance. To begin addressing this gap, the North American Forest Dynamics
(NAFD) project has examined a geographic sample of 50 Landsat satellite image time series
to assess trends in forest disturbance across the conterminous United States for 1985-
2005. The geographic sample design used a probability-based scheme to encompass major
forest types and maximize geographic dispersion. For each sample location disturbance
was identified in the Landsat series using the Vegetation Change Tracker (VCT) algorithm.
The NAFD analysis indicates that, on average, 2.77 Mha/yr of forests were disturbed
annually, representing 1.09% /yr of US forestland. These satellite-based national
disturbance rates estimates tend to be lower than those derived from land management
inventories, reflecting both methodological and definitional differences. In particular the
VCT approach used with a biennial time step has limited sensitivity to low-intensity
disturbances. Unlike prior satellite studies, our biennial forest disturbance rates vary by
nearly a factor of two between high and low years. High western US disturbance rates were
associated with active fire years and insect activity, while variability in the east is more
strongly related to harvest rates in managed forests. We note that generating a geographic
sample based on representing forest type and variability may be problematic since the
spatial pattern of disturbance does not necessarily correlate with forest type. We also find
that the prevalence of diffuse, non-stand clearing disturbance in US forests makes the
application of a biennial geographic sample problematic. Future satellite-based studies of
disturbance at regional and national scales should focus on wall-to-wall analyses with

annual time step for improved accuracy.
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1.0 Introduction

Change is ubiquitous in forest ecosystems. Forests experience both seasonality as well
as long-term growth cycles that can vary in duration between 50 years and 500 or more
years (Waring & Running, 2007). These long-term changes are punctuated by mostly short-
term disturbances from fire, insects, disease, and harvest which strongly alter the state and
functioning of the forest (He & Mlandenoff, 1999). Both climate change and the increasing
global demand for wood and fiber products are likely to drive increases in forest
disturbance rates (Kurz et al., 2008; Nepstad et al., 2008). These changes in disturbance will
alter the water and carbon cycles of forest stands as well as impact the habitat and
biodiversity of these ecosystems (Lindenmayer et al.,, 2006; Gardner et al., 2009). With
respect to the carbon cycle, forest disturbance is now recognized as a major driver of non-

fossil-fuels-related terrestrial fluxes to the atmosphere (Running, 2008; Amiro et al,, 2010).

To effectively understand how forest disturbance impacts forest state and functioning,
disturbance rates need to be quantified at the spatial grain where human management and
natural disturbances occur; typically less than 10 ha (Miller, 1978; Cohen et al,, 2002;
Kuemmerle et al., 2007; Frolking et al., 2009). Further, disturbances need to be quantified
at a time step relevant to the various affected processes (e.g., annually or more frequently),
and at spatial (national to global) and temporal (e.g. historically back at least as far as the
1990s) extents relevant to establishment of baselines meaningful to forest policy initiatives

(Bottcher et al. 2008, Masek et al. 2008, Kennedy et al. 2012).



In the United States, the lack of consistent, high-temporal-resolution estimates of forest
disturbance remains an important gap in efforts to model and manage forest carbon at a
national scale (USCCSP, 2007; Birdsey et al., 2009). The US Forest Service Forest Inventory
and Analysis (FIA) Program relies on a network of plots to inventory and monitor forested
ecosystems at regional to national scales. Its current annual inventory system (McRoberts
et al. 2005) closely tracks individual tree mortality and cause of disturbance through
remeasurement of inventory plots on a regular cycle (approximately every 5 years in the
east, ten in the west). However, until remeasured data is available nationally, consistent
forest disturbance estimates cannot be constructed. In addition, FIA is not structured to
capture relatively rare disturbance events. Consequently, today’s reported US national
inventory-based estimates of disturbance area have drawn upon separate databases for the
extent of harvest (Smith et al,, 2009), fire (US EPA, 2011), and insect damage (USDA Forest
Service, 2010). In some cases these estimates may be inconsistent. For example, harvest
area is derived from a combination of inventory re-measurement data, where available, and
harvest activity reports from different National Forests. Insect mortality typically reflects
the gross area affected by insects as measured by aerial sketch maps over purposively
sampled regions of the country (Johnson and Wittwer 2008), although recent efforts have

begun to convert these maps into true mortality estimates (Meddens et al., 2012).

Satellite observations may provide a more consistent means for assessing disturbance.
Previous studies estimating national and global forest disturbance patterns have used
coarse-resolution (250m - 1km) satellite imagery (NOAA AVHRR and NASA EOS MODIS)
(Potter et al,, 2005; Mildrexler et al., 2009; Potapov et al.,, 2009). Although suitable for
detection of large-area disturbances such as fire and large-scale clearcuts, coarse-resolution
imagery is less capable of detecting forest management activities than finer-grained

observations from satellites such as Landsat (Skole and Tucker, 1993; Tucker and



Townshend, 2000; Bucha & Stibig, 2008; Wulder et al., 2008; Potapov et al,, 2009). Studies
that use imagery of finer spatial grain have either mapped at too coarse a temporal grain to
detect short-term changes in forest disturbance rate (Masek et al., 2008; Hansen et al,,
2010) or have focused only a single type of forest disturbance (e.g. fire mapping from the
Monitoring Trends in Burn Severity project (MTBS, Eidenshink et al., 2007). The need to
overcome limitations inherent in these previous or ongoing ground-based and satellite-
based disturbance analysis efforts has motivated the development of the North American
Forest Dynamics (NAFD) project (Goward et al., 2008), a core project of the North American

Carbon Program (Wofsy & Harris, 2002).

The study reported here was derived from the first two phases of NAFD, which
employed a geographic sample of Landsat observations at a relatively high temporal
frequency (approximately annual time step) over a 20-year period to characterize the
dynamics of recent US forest disturbance history. A sampling approach was selected due to
the high cost of individual Landsat images (~$600) when this study was initiated (2005)
and the fact that an annual, wall-to-wall analysis would involve over 9000 such images
covering the 442 individual scenes over the conterminous US.. We selected a sample of 50
scenes and for each we assembled a time series of cloud-minimized, seasonally consistent
imagery. The time series of each pixel in a given image stack was analyzed using the

Vegetation Change Tracker (VCT) algorithm to detect disturbances (Huang et al., 2010a).

In this study, forest disturbance was defined as any event that caused either substantial
mortality or leaf-area reduction within a forest stand, including management activities such
as harvest and thinning. As described more fully in the methods section, the VCT approach

captures most rapid stand-clearing events (including clearcut harvests and fire), as well as

1 In this paper we use the term “scene” to refer to the nominal geographic area of a
particular Landsat Worldwide Reference System (WRS-2 path/row). The actual Landsat
acquisitions from specific dates for that area are termed “images” (see Strahler et al 1986).
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many non-stand-clearing events (partial harvest, thinning, storm damage, insect damage).
However, gradual declines in live biomass that occurred over several years (e.g. due to
drought or disease) were mostly not captured. The approach also did not distinguish
between disturbance (mortality followed by recovery) and permanent conversion of land
cover. Thus our definition of disturbance corresponds most closely to “gross forest cover
loss” (Hansen, 2010). Although knowing the causal agent of disturbance is extremely
important for understanding specific impacts on ecosystems, this study has not attempted
to assign an agent to each disturbed patch. Instead we focus on overall “turnover” of live

forest area across the county.

Our central objective was to estimate annual rates of forest disturbance across the
conterminous US. Accomplishing this required the development and application of novel
methods to: (i) select a probability-based sample of 50 scenes while satisfying diverse
analytical criteria; (ii) apply an automated change detection algorithm to identify forest
disturbance across a Landsat image time series for each scene, and (iii) assign estimates of

sampling errors associated with this disturbance mapping.

2.0 Methods

2.1. Sample Design

Our sample design followed the rules of probability-based sampling (Sarndal et al,,
1992), where each scene had a known, non-zero, positive probability of inclusion in the
sample, and the set of possible samples was finite and known. This approach allowed for
design-based estimation and for preferential inclusion of scenes with greater land or forest
area (Gallego, 2005), an important consideration given the effort and cost involved in the
analyses and the central goal of characterizing forest disturbance. This approach also

allowed for inclusion of other important characteristics: spatial dispersal of scenes to



minimize autocorrelation, assurance that all major forest types were included as forest
disturbance and recovery dynamics are largely type-specific, and the ability to leverage
work already completed at a handful of “targeted” scenes available from related projects

(e.g. Masek and Collatz 2006, Eidenshink et al., 2007).

Fundamental to our sampling design was the choice of sample unit (geographic area of a
single sample scene) and sample frame (the population of sample scenes covering the
conterminous US). Because adjacent WRS-2 Landsat frames overlap, the sample frame was
modified such that each scene was trimmed to include only the unique, non-overlapping
area it contained. This ensured that each sample scene was unique, and simplified the use
of population statistics. Hereafter, our reference to sample scenes implies the non-

overlapping portion of scenes produced by this process.

As a first step in assuring that scenes with greater forest were preferentially selected as
part of the sample, several scenes with extremely low forest cover were culled from the
sample frame. This was accomplished by ranking each sample by total forest area (based on
a US forest type map developed by Ruefenacht et al, 2008) from low to high, and eliminating
all ranked scenes for which the total forest area was below 2% of the cumulative forest area

across all scenes in the frame.

We divided the culled sampling frame into two strata: eastern and western. This
division reflects that fact that at a gross scale eastern and western US forests are
fundamentally different ecologically and in terms of how they are managed, both of which
could greatly affect disturbance and recovery dynamics. To accomplish this division all
Landsat scenes in WRS-2 Path 31 or greater were declared western and all scenes in Path
30 or less were declared eastern. All further steps were executed separately for each

stratum.



For each stratum, samples were drawn from randomly-ordered lists of scenes. Rather
than creating a single list, a set of v (=100,000) scene lists were created, each with a
different random ordering, and the final sample was chosen by randomly selecting one list
from the set of lists that met our preferential criteria: geographic scene dispersion,
maximizing total forest area, forest type diversity, and inclusion of targeted scenes where
we have important experience. This provides two important benefits. First, for any given set
of lists, every scene’s probability of inclusion () in the sample could be calculated directly
as its proportional occurrence in the first n scenes across all lists in the set. Second, because
the probability of inclusion was calculated directly, it was possible to further cull the set of
lists from the frame to remove those whose first n scenes, taken together, did not meet our

preferential selection as described above.

The final sample was chosen by randomly selecting one list per stratum from the final
culled list in each stratum. The sample size (n) for each stratum was 12 (eastern) and 11
(western), given that the sample design and list selection was executed during the first
phase of the project when only 23 scenes were under consideration. For each sample scene
nt was calculated as the number of times the sample appeared among the first n scenes in
the set of v lists, divided by v. During the second phase of the project, when we added the
next sequential 13 (eastern) and 14 (western) samples from the two ordered lists new
were calculated for each sample by increasing n to 25 for each stratum. The final set of 50
samples is listed along with their probabilities of inclusion in Table 1, and a map illustrating
the spatial distribution of the samples is shown in Figure 1. In addition, a comparison of
the forest type map used for sample selection with the forest types represented in our
samples demonstrates that the design was effective at capturing the diversity of US forest

types in the sample frame (Ruefenacht et al, 2008) (Figure 2).



2.2. Deriving the Scene-level Disturbance Products

The creation of scene-level NAFD disturbance products has been described in detail
previously (Huang et al, 2009; 2010a, 2010b, Thomas et al., 2011). Here we briefly
summarize the steps required to map disturbance within each Landsat sample scene and
then describe the quality of the products in terms of severity and types of disturbance

detected.

At each of the 50 sample locations, a Landsat image time-series was constructed
consisting of one image during the growing season (leaf-on conditions) for (initially) a
target of every other year, between 1985 and 2005. Although biennial image acquisition
was the initial targeted frequency, we were able to augment most image stacks with higher
temporal frequency (i.e. mean intervals less than two years). To optimize detection of
change, images were chosen based on cloud cover and seasonality, with no attempt to
synchronize skipped years in different stacks. Leaf-on seasonality required acquisition
dates between June and September for most of the United States, although the range was

extended to include May and October in the southern states.

Each image stack was processed to maintain the highest radiometric and geometric
standards (Huang et al,, 2009). Imagery was obtained as standard L1T (orthorectified at-
sensor radiance) files from USGS EROS, and the latest version of the appropriate sensor
calibration parameter set was applied. Geometric registration was checked and (as
necessary) corrected by automated selection of image tie points and orthorectification
(Huang et al,, 2009). The images were then converted to surface reflectance using the
LEDAPS atmospheric correction package (Vermote et al., 1997; Masek et al., 2006) and

assembled into a time series stack clipped to a common geographic extent.



Finally, water, cloud, and cloud shadow were identified and masked in each image.
Water was mapped through a combination of decreasing reflectance with wavelength and
low NDVI value (Huang et al., 2010a). Clouds were mapped using a set of visible/top-of-
atmosphere temperature relationships (Huang et al., 2010b). Residual cloud contamination
not identified in this step was also isolated as single-year “outliers” in the VCT forest

disturbance analysis discussed below, and removed.

Forest disturbances were mapped from the Landsat time series stacks using the VCT
algorithm (Huang et al., 2010a). The algorithm used an automated approach to select forest
training samples in each Landsat image and then calculated the distance in spectral space
between each image pixel and the centroid of the forest training population (Huang et al,,
2008). Pixels close to the centroid of the forest population in the spectral space across the
entire time period of record were classified as persistent forest for the entire observing
period. Forest disturbance year for a given pixel was identified when that pixel’s spectral
properties exceeded an expected range of spectral deviation scores for at least two
subsequent sequential time steps. The algorithm generated maps with classes for

persistent non-forest, persistent forest, water, and the year of disturbance (Figure 3).

These maps were filtered in both the spatial and temporal domains. Filtering was
necessary to reduce false positive detections (“speckle”) caused by residual image
misregistration (Townshend et al., 2000; Knight & Lunetta, 2003). Disturbance pixel groups
that were adjacent in space and time (i.e. within one time-period of each other) were
identified. A majority filter was applied to achieve a minimum mapping (MMU) of 0.16 ha
(two pixels) for static persistent forest and non-forest classes and 0.32 ha (4 pixels) for
disturbance classes. Disturbance pixels in groups smaller than the MMU were converted to
a majority class using decision rules in conjunction with a mode filter in the local 3x3 pixel
neighborhood. Majority filtering typically reduced per-scene disturbed area by about 20%.

10



2.3. Per-scene Disturbance Product Quality

Two approaches were used to describe disturbance product quality. First, six scenes
representative of a range of forest and disturbance classes were selected to evaluate VCT
performance (Thomas etal.,, 2011). These locations included a variety of disturbance types,
including forest fire, harvest, thinning, land use conversion, and both storm and insect
damage. The maps derived from VCT were compared to estimates determined
independently using expert visual interpretation of Landsat and high-resolution satellite
imagery. Because no field-based datasets exist that match the temporal density and spatial
detail of the Landsat observation, a field-based validation was not undertaken (Cohen et al,,
2010). Rather, trained interpreters, using established photo-interpretation guidelines,
visually evaluated the Landsat TM imagery in tandem with high-resolution digital imagery
such as that available on the Google Digital Earth. The Google imagery was used to aid
determination of final land cover/use and to provide geographic context, while the
determination of forest change came from visual interpretation of the Landsat TM imagery.
The interpreters labeled change and no-change conditions using knowledge of both the land
spectral properties and the spatial context of the landscape. This process was conducted at
over random 600 points for each of the six validation scenes, with the points stratified by
disturbance class (ie. year of disturbance mapped). For each scene, accuracy metrics of the

VCT map were calculated by comparing that map with the visual interpretation results.

The results yielded overall per-scene accuracies of 77% to 86% and kappa values of
0.67 to 0.76 (Thomas et al.,, 2011). Considering only the forest change classes, omission and
commission errors varied widely due to small sample sizes for individual year classes.
Forest change users’ accuracies (100%-commission error%) averaged to 55-79% among
the six scenes, although these accuracies increased by ~9% if the VCT year of disturbance

was allowed to be within 1 year of the reference assignment. In general omission errors
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were higher than commission errors. As a result, disturbance rates calculated from VCT
map products were biased, underestimating total disturbance by an average of 24% across
all validation sites. Omission errors mainly reflected the limitations of biennial sampling for
capturing subtle disturbances (e.g. mechanical thinning), effects of seasonality within the
image time series, and limitations of the VCT algorithm for mapping gradual, multi-year

declines in forest health (i.e., stress) and change in the sparse forests of the western US.

The specific type of disturbance was a lesser control on accuracy compared to the
severity of disturbance, defined as the fraction of tree cover killed within the 0.32 ha MMU.
Both natural and anthropogenic stand clearing disturbances (principally clear-cut harvest,
severe fires, and major storm events) could be detected with high accuracy (75-85%
detection accuracy), while non-stand clearing disturbances (including thinning, understory
burns, and insect defoliation events) were only detected with 38% accuracy (Thomas et al.,
2011). It should be noted that this latter figure increased to 60% accuracy if the allowable

temporal window was relaxed to +/- 1 year.

In a second, subsequent analysis (unpublished data) we used the TimeSync Landsat
times series validation tool (Cohen et al. 2010) to better describe omission errors in terms
of disturbance severity and type. TimeSync is a software environment to support
visualization and interpretation of Landsat time series data. It includes simultaneous
display of multitemporal Landsat image subsets, per-pixel Landsat spectral time series, and
temporal snapshots of high-resolution imagery available in Google Earth. Interpreters can
use the TimeSync environment to assign land cover, land use, and change labels to per-pixel
trajectories, and then store this information in an online database. For this analysis we
examined 150 plots randomly located within each of nine of the 50 sample scenes. Three
severity classes were defined based on the percent of canopy removed or killed by

disturbance (<34%, 34-67%, and >67%). In the high and medium severity classes, 10% and
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23% omission rates were observed. In contrast, the omission rate for the low severity
disturbance class was 68%. However, while omissions error was linked to disturbance
intensity, they were not uniform across disturbance type, indicating an interaction between

severity and causal agent in terms of omission rates.

For the three dominant types, harvest, fire and stress, omission rates in the low severity
class were 76%, 38%, and 85%, respectively. This suggests that fire is the most likely and
stress the least likely type of disturbance detected by VCT, with clear-cut harvest much
more likely to be detected than selective harvest. For this analysis, we defined stress as any
observation of a spectral trend in the direction of disturbance that involved the loss of leaf
area (or death) of live woody vegetation and was supported by observations within Google
Earth. To be declared stress, the spectral trend had to be multi-year (typically 5 or more
years). We assumed that the large majority of such observations were associated with
insect and disease activity (largely in conifer forests), recognizing that some observations
were associated more directly with prolonged drought (e.g., in pinyon-juniper and
shrublands). We could not observe seasonal losses of foliage associated with insects that
would subsequently recover to full or near-full leaf area the following year (e.g., in eastern
deciduous forests). The TimeSync analysis supported the initial observation that omission
error was greater than commission error and that omission error was more strongly

associated with disturbance severity than type.

2.4 Estimation of Area Disturbance Rates and Uncertainty

To estimate disturbance rates, we first derived annual totals of disturbed area for each
of the 50 NAFD sample scenes by interpolating across missing years of data within the
scene. This was accomplished by allocating mapped disturbance from any multi-year
period evenly to each year within that period. For example, if the 1992 image were missing

from the time series, and 10,000 ha of disturbance were mapped during the 1991-1993
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period, 5000 ha of disturbance would be allocated each to 1992 and 1993. Gaps in the
image time series were asynchronous among samples, and more than half of the samples in
each stratum provided data for any given year. Total forest area was also calculated for
each scene by summing across three mapped classes: persistent forest, disturbed forest, and

forest recovering from a pre-time-series disturbance (Huang et al., 2010a).

From our samples, total disturbed area per year and total forest area were estimated for
the two strata using the generalized Horvitz-Thompson estimator for unequal-probability

designs (Horvitz & Thompson, 1952):

VU
A_Z% [1]

where A is the unbiased estimate of either forest area or disturbed area for a given year, y;is
the forest or disturbance area for the ith sample in that year, and 7; is the probability of
inclusion for the it sample. Proportional forest disturbance rate by stratum was calculated
by dividing this total by the estimated total forest area in the stratum. Estimation of
variance was achieved using the conservative collapsed stratum variance method (Cochran,

1977).

3.0 Results

3.1. Per-Scene Disturbance Rates

Raw, per-scene forest area and disturbance rates for each of the 50 samples showed
significant geographic variability (Figure 4). Disturbance rates in the southern United
States and Pacific Northwest were consistently high, both in terms of absolute area and
fraction of mapped forest cover affected. Samples from the Carolinas, the Gulf Coast, and

Northern Louisiana exhibited fractional disturbance rates in the range of 1.5 - 2.0%/yr.
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Absolute and fractional disturbance rates in the northeast were considerably lower (<
0.5%/yr). While the absolute area of disturbance in the Interior (mountain) West was low,
the forest cover base in these locations is limited and generally confined to mountain

environments, and corresponding fractional disturbance rates were quite variable.

3.2.Eastern versus Western US Disturbance

Having selected independent sample sets for the eastern and western United States,
disturbance rates and variances were estimated separately for each stratum (Figure 5). We
found similar average disturbance rates (1.10%/yr and 1.05%/yr, respectively) for eastern
and western forests, and significant interannual variability in disturbance rates within each
of the stratum. However, the annual rates of disturbance were asynchronous in the two
strata. Although both strata showed decreases in disturbance rate from the late 1980’s to
the early 1990’s, thereafter the trajectories within the two regions diverged, with

disturbance rates peaking in the east in the late 1990s and in the west in the early 2000s.

The national sampling approach does not support disaggregating the results to finer
geographic areas since the probability of inclusion for each sample scene was calculated
assuming two strata. Thus there is no way to produce a subregional area estimate other
than simple averaging (ie. assumed equal probability of inclusion). With that caveat, we can
calculate such “apparent” disturbance rates for smaller groups of scenes to interrogate
regional patterns. Disturbance rates were explored independently for groups of scenes
within the northern and southern subregions of the eastern stratum, and for groups of
scenes within the intermountain and coastal subregions of the western stratum (Figure 6).
These boundaries correspond to the US Forest Service FIA regions. In the western US,
disturbance rates in the intermountain west were generally lower than the coastal region,
with the difference becoming more pronounced in the late-1990s. In the eastern US, the

northern and southern subregions show markedly different temporal patterns. While the
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northern subregion indicates a stable, low rate of disturbance, disturbance rates in the
southeast are much higher and vary significantly on 5-10 year timescales. It should be
noted, however, that because the results for individual subregions do not come from the full
per-stratum sample, variances cannot be calculated for these rates. Thus while the

temporal patterns can be broadly interpreted, their statistical significance is uncertain.

3.3 National Disturbance Rates

Aggregating the results from the eastern and western strata gives an estimate of
national forest disturbance rates since 1985 (Figure 7). We find that an average of 2.77
Mha/yr +/- 0.36Mha (10) of US forestland was disturbed each year during the 1985-2005
period. This figure corresponds to a fractional disturbance rate of 1.09% forestland per
year. The net underestimation bias (see Section 2.3) suggests that the VCT algorithm
missed about 24% of actual disturbance that can be detected visually within the Landsat
imagery. Adjusting the NAFD results for this underestimation bias would increase the
national disturbance rate from 2.77 Mha/yr (1.09% forestland/yr) to 3.63 Mha/yr (1.42%

forestland/yr).

Unlike studies that report only average disturbance rate over multi-year periods our
results suggest that forest disturbance rate can change rapidly across large regions (Figure
7). The time series of national disturbance varies about the mean value, from a low 0.8% of
US forest area in 1992 to a high of 1.4% in 2000. In general, values during the early 1990s
were consistently lower than average, while values in the late 1990s were consistently
higher. The uncertainty bounds based only on sampling error are less than the magnitude
of the interannual variability, suggesting that these swings in disturbance rates at the
national scale are “real” and not simply artifacts of the sampling. However, some caution

must be taken given that only sampling errors are shown on Figures 5 and 7; inclusion of
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measurement errors would increase estimated error and reduce confidence in the

estimates of interannual variability.

3.4. US Forest Area

Total forest area for the conterminous US was also calculated from the NAFD results,
estimated as the sum of permanent (undisturbed) forest and all annual disturbance classes
within the VCT classification. The estimated total forest areas for the eastern and western
strata were 182 x 10¢ ha and 74 x 106 ha, respectively, for a total estimate of 255 x 10¢ ha.
The US Forest Service reported areas of 157 x 106 ha and 96 x 106 ha for eastern and
western forestland in 2007, respectively (Smith et al., 2009). Thus while the NAFD national
forest area corresponds closely to the US Forest Service national estimate of 253 x 106 ha

for forestland in the conterminous US, the per-stratum areas are somewhat different.

4. Discussion

4.1. National Disturbance Rates

The results presented here represent the first satellite-based estimates of yearly forest
disturbance for the conterminous United States. From our geographic sample, we have
estimated that, on average, 1.09% of US forestland was affected by disturbances each year
during the 1985-2005 epoch. It should be noted, however, that our sample was primarily
based on representing forest type, and the geographic distribution of disturbances does not
necessarily correspond to that of forest types. Therefore there is some additional

uncertainty in the national rates not captured by the estimate of sampling error.

Itis of interest to compare our results to data from US land management inventories, as

well as previous remote sensing studies (Table 2). As noted in the Introduction, there is no
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single database from the US forest inventory that tracks the area of forest disturbance.
However, there are independent reports for the area of harvest (including area affected by
partial harvest) (Smith et al., 2009), the area affected by forest fire (EPA, 2011), and the
forest area affected by insect mortality (USDA Forest Service, 2010). The age distribution of
US forests reported in the FIA can also be converted to an average stand-clearing
disturbance rate assuming that all forestland area younger than 20-years experienced a
stand-clearing disturbance event during the last 20 years. This calculation implicitly
excludes non stand-clearing events that would reduce stand biomass but not necessarily

alter the FIA age assignment.

Previous remote sensing estimates of US forest disturbance are given in Masek et al
(2008) based on a 10-year (1990-2000) wall-to-wall analysis of Landsat imagery, and
Hansen et al (2010) based on 500-m resolution MODIS imagery for the 2000-2005 time
period. Like the NAFD sample, these estimates represent gross forest cover loss; that is
they include both losses due to disturbance (but that will return to forest cover) as well as
losses due to permanent forest conversion (deforestation). However, the rate of
deforestation in the US is relatively low compared to the turnover due to harvest and other
forms of disturbance (Smith et al., 2009). Drummond and Loveland (2010) also used
Landsat data in 5-7-year epochs to estimate land cover transitions in the eastern US. They
found gross forest conversion (which includes harvest and permanent conversion) of 0.34
Mha/yr, although this cannot be directly related to the NAFD eastern stratum since the
Drummond and Loveland (2010) study area only included areas east of the Mississippi and

Ohio Rivers.

Comparing these studies suggests a general consistency among the satellite-based
disturbance estimates (Table 2). The NAFD national results are higher than either Masek et
al (2008) or Hansen et al (2010), presumably reflecting an improved ability to identify
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subtle disturbance signals when using finer spatial resolution data (compared to MODIS)
and shorter mapping intervals (compared to the decadal Landsat study). The NAFD rates
are also higher than those calculated from the FIA forestland age distribution, suggesting
that the NAFD results are identifying a significant amount of partial harvest (i.e., thinning)
that would not be severe enough to reset the FIA stand age. This is corroborated by the
TimeSync assessment that indicated most moderate and some low severity disturbances

were detected.

All of the satellite-based estimates are considerably lower than the rates obtained
by summing the inventory-based estimates of forest harvest, fire, and insect mortality. The
total area of disturbance obtained from the inventory reports is about 8.1 Mha/yr, with 4.3
Mha/yr attributable to harvest activity alone (Table 2). There are two likely explanations
for the discrepancy. First, the inventory data generally record the area affected by a type of
disturbance rather than the actual area of forest disturbed. For example, the insect
mortality estimate is based on the area enclosed by areal sketch map polygons, while only a
fraction of the stands within those polygons have succumbed (Johnson and Wittwer 2008).
Meddens et al (2012) assessed the actual tree mortality area within USFS Aerial Detection
Survey polygons for beetle outbreaks in the western US, and estimated up to 380,000 ha/yr
of actual tree mortality averaged for the 1997-2010 period. Similarly the area considered
affected by partial harvest (e.g. selective cutting or strip cuts) may be less than the actual
area cleared. In contrast the satellite-based results offer the potential for a more exact

estimate of disturbed crown area.

However, some of the discrepancy also likely reflects limitations of the current
NAFD methodology. The methods described here are sensitive to most severe and moderate
disturbances, but commonly miss events that kill a small fraction of trees within the stand

or disturbances that emerge gradually (such as drought or insect mortality). In addition,
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the accuracy of the VCT change detection was hampered by occasional inconsistencies in
the acquisition date of images within the time series. Using the bias-adjusted figure derived
from Thomas et al. (2011) of 3.63 Mha/yr (1.42% forestland/yr) brings the satellite-based
disturbance estimates closer to the inventory figure. Finally, there remains the possibility
that the NAFD sampling approach introduced some bias into the results compared to

geographically comprehensive estimates from forest inventories.

4.2. Interannual Variability

The NAFD results also suggest significant interannual changes in disturbance rates.
However, our national estimates integrate across the many factors (forest policy and
management, fire ignition, local economic conditions, land ownership) that determine forest
disturbance rates when viewed at the local or regional scales. We do know that a primary
causal factor in disturbance rates is forest management, specifically harvest. The quantity
of timber harvested is a function of societal, economic and political processes (Prestemon
2001). Harvest rates are heavily influenced by volatile wood product markets which feed
into and are fed by overall economic activity as measured by GDP (Daniels et al,

2005;Luppold and Miller, 2005

In the western stratum the NAFD results show an early decrease and then significant
increases, peaking in 2000. These dynamics likely relate to decreased western harvests in
the early 1990’s, increased forest fires, particularly in the interior west in the late 1990’s
(Daniels, 2005; mtbs.gov), and increased insect activity (Meddens et al,, 2012) (Figure 8a).
The changes in fire dynamics follow the widely recognized pattern of drier and warmer
conditions, more frequent fires, and more intense insect outbreaks over the last two
decades in the western US and Canada (Williams et al. 2010; Westerling et al., 2006; Kurz et

al, 2008).
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In the eastern US, forest harvest appears to the dominant mechanism for disturbance,
particularly is the southeastern US suggesting that these rates may be related to US
economic activity as reflected in the Gross Domestic Product (GPD) which strongly reflects
changes in housing starts (Figure 8b) (Napton et al, 2010). Recessions of 1990 to 1991 and
2000 to 2001 caused drops in the rate of increase of GDP that were mirrored by drops in
eastern forest disturbance, and the period of highest disturbance rate (1997 to 2000) was

also a period of large year over year increase in GDP.

Some caution must be exercised in interpreting these trends however. A detailed
analysis of the per-scene results indicates that much of the interannual variability in the
eastern stratum was driven by accelerated harvest between 1996 and 2000 in two sample
scenes in Oklahoma (WRS-2 p26r36) and eastern Texas (WRS-2 p26r37) (Schleeweis,
2012). The sudden increase in harvest rates was noted at the time by the Assistant State
Forester for Oklahoma (K. Atkinson, pers. comm), and was attributed to a combination of
regional timber prices, local increases in demand and capacity due to the opening of new

chip and stud mills, and real estate exchanges by timber companies.

While the scene-level Landsat VCT products successfully captured this local acceleration
in disturbance, such isolated (in space and time) jumps in disturbance rate were not built
into the original sampling framework. The two of the four drivers of the sampling scheme
were the capture of a range of forest types (forest diversity) and the maximization of
sample geographic dispersion. Essentially, the existence of isolated “pockets” of rapid
disturbance, which could not have been predicted a priori and thus could not be
incorporated into the sampling framework, raises questions as to the efficacy of using a
limited geographic sample to fully capture variability in disturbance rates. Similar points
have been made regarding tropical deforestation, which also exhibits a geographic

“clumping” that is difficult to predict a priori (Tucker and Townshend, 2000).
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4.3. Sample size and sampling error

The analysis of the 50-scene NAFD sample was conducted in two phases: a first phase
using 23 scenes, and a subsequent phase with an additional 27 scenes. This gives us an
opportunity to examine the effect of increased sample size on stratum-level estimates. Mean
disturbance rate and variances were calculated separately for the samples from the first
phase and the entire 50-scene set. Adding more scenes to the sample should improve the
precision of the disturbance estimates, and the new rates should typically lie within two

standard deviations of the estimates from the smaller set.

Comparing the Phase 1 and combined Phase 1 and 2 results (Figure 9) for the eastern
stratum, the overall temporal pattern is similar, and the individual rates from the full set
actually lie within the 1o of the smaller set. However, in the western stratum, estimates of
rates during particular eras (mid-1980’s, 2000-2002) are separated by at least two
standard deviations. While it is reasonable to assume that the full set of 50 scenes provides
a more precise estimate than the smaller Phase 1 sample, this again illustrates the difficulty

in using a limited geographic sample to capture regional disturbance rates.

5.0. Conclusions

The NAFD project has used a geographic sample of Landsat scenes to quantify forest
disturbance rates across the conterminous United States for the 1985-2005 epoch. We
found that an average of 2.77 Mha/yr (1.09% forestland/yr) was disturbed each year
during this epoch. Adjusting this figure for the net measurement error (bias) would
increase it to 3.63 Mha/yr (1.42% forestland/yr). Both of these figures are lower than the
combined area affected by harvest, fire, and insect damage reported from land management

inventories, although the figure is higher than the disturbance rate of forestland expected
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from the FIA age distribution. Much of the discrepancy is associated with low severity

disturbances in which a small fraction of the canopy cover is killed.

Disturbance rates in the western US appear to have increased substantially
beginning in the late 1990s and closely track increased fire frequency in the intermountain
west during this period. Rates in the eastern US more closely tracked variability in
economic activity (GDP), presumably reflecting fluctuations in harvest. The temporal
variability in eastern disturbance was greater than expected, although it is unclear whether

these variations reflect national patterns or local “pockets” of increased disturbance.

The work presented in this study points the way toward a consistent monitoring
framework for US forest dynamics based on interannual satellite observations. Disturbance
rates need to be quantified at the spatial resolution where human management and natural
disturbances occur and at a time step relevant to driving processes. Although available
forest inventories provide invaluable information on US forest dynamics, they have not
been designed to provide a consistent geospatial view of disturbance. As a result, it is not
clear from those data how long-term changes in land management and natural disturbance
rates ultimately affect ecosystem structure and functioning across the nation. In principle,

satellite observations can help meet this need.

The NAFD results described here relied on a limited geographic sampling, and the
divergence in results between the initial set of 23 samples and the full set of 50 highlights
the difficulty in using such a sampling approach to constrain disturbance dynamics. Our
detailed analysis of the regional and local variations in the observed disturbance rates has
revealed that the geography of processes that drive disturbance and specific local
disturbance events have a strong influence over variations in area-averaged disturbance

rates from year to year (Schleweiss 2012). As a result we have turned toward wall-to-wall,
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annual mapping in the current phase of the NAFD project to circumvent these limitations.
The advent of free Landsat data distribution, coupled with increased computing power, has
led to the use of “every clear pixel” in mapping land dynamics (Wulder et al.,, 2012; Zhu et
al,, 2012). Availability of such comprehensive information will precipitate more advanced
ecosystem process models that can ingest the richness of these data, and lead to a much
improved ability to monitor and forecast ecosystem responses to climate change and
human management. Coupled with repeat-measurement inventory data, when those
become available over the next several years, we will likely soon have a powerful system for

spatially explicit monitoring of forest cover in the conterminous US.
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Table Captions

Table 1. Ordered list of the sample scenes chosen in each stratum (eastern, western) with

probability of inclusion.

Table 2. Comparisons of estimated US disturbance rate from this study with previous

satellite and inventory-based studies
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Table 1. Ordered list of the sample scenes chosen in each stratum

(eastern, western) with probability of inclusion.

Eastern stratum Western stratum

WRS-2 Probability of WRS-2 Probability of

Order path/row  inclusion (n) path/row  inclusion (n)
1 21/37 0.138 37/34 0.117
2 27/38 0.130 35/34 0.234
3 22/28 0.154 34/37 0.183
4 18/35 0.146 37/32 0.157
5 25/29 0.118 47/28 0.183
6 17/31 0.142 36/37 0.213
7 19/39 0.126 41/32 0.213
8 16/36 0.177 43/33 0.198
9 26/36 0.157 41/29 0.162
10 12/31 0.122 35/32 0.112
11 21/39 0.134 45/29 0.173
12 12/27 0.146 44/26 0.137
13 26/34 0.142 42/35 0.137
14 24/37 0.114 42/28 0.208
15 21/30 0.197 44/29 0.168
16 23/35 0.130 46/32 0.188
17 26/37 0.114 46/31 0.223
18 14/31 0.142 42/29 0.157
19 16/35 0.142 46/30 0.178
20 16/41 0.169 47/27 0.157
21 23/28 0.165 48/27 0.168
22 20/33 0.154 40/37 0.152
23 15/31 0.122 34/34 0.193
24 27/27 0.087 33/30 0.183
25 19/36 0.122 45/30 0.152

34



Table 2. Comparisons of estimated US disturbance rate from this study with previous

satellite and inventory-based studies

Category Source Period of  Extent Method/source Type Forest area
record disturbed
(Mha/yr)
Remote Masek et 1990-2000  Conterminous Wall-to-wall Observed, 1.97
Sensing al. (2008) [ON] mapping with stand-
two dates of replacing
Landsat disturbances
imagery
Hansen et 2000-2005 US (incl. AK  Sample-based Observed 2.5
al. (2010) and HI) mapping using  disturbance
two dates of
Landsat
imagery and
MODIS
This study  1985-2005  Conterminous Sample-based Observed 277 (+/-
uUsS mapping with disturbance  0.76)
dense time
series
Adjusted 3.63
disturbance'
FIA Age 1988-2008  Conterminous  Annualized Stand- 2.2
UsS area of forests replacing
<20 years in disturbance
age
Inventory Smithetal. 2001-2005 Conterminous Remeasured Clearcut and 4.34
(2009) UsS inventory plots  Partial
in east, harvest
National Forest
activity reports
in west
US EPA 1990-2005  Conterminous Forest fire 1.01
(2010) [ON]
USDA Late- US (incl. AK, Aerial Area 2.74
Forest 2000’s HI) Detection affected by
Service Survey (ADS) insect
(2010) disturbance
Meddens et 1997-2010  Western US ADS calibrated  Beetle 0.38
al. (2012) to area of mortality
mortality

! Adjusted disturbance includes lower-intensity forest disturbance and is based on application of the
bias omission factor as described in Section 4.1.
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Figure Captions

Fig. 1. NAFD sample scenes (unique, non-overlapping scene areas) overlaid on the US

Forest type map (Ruefenacht et al., 2008).

Fig. 2: Fraction of forest types captured by the NAFD sample for the (a) eastern and (b)
western strata (grey bars) compared to the actual area of each type from the map of

Ruefenacht et al. (2008) (black bars).

Fig. 3. Example of Vegetation Change Tracker (VCT) algorithm output for Landsat WRS-2
path 43 row 33 (Sierra Nevada, California). The VCT uses per-pixel annual Landsat time
series to generate maps with classes for permanent forest, non-forest, and disturbance
occuring in each year. Disturbed patches are color-coded by year of disturbance. Lake
Tahoe is depicted as the blue area in the north-center of the full scene. The zoomed image

shows small patches of harvest as well as the large burn scar of the 1992 Cleveland fire.

Fig. 4: Per-scene results of the NAFD disturbance analysis. The overall length of the bar
shows total NAFD derived forest land area for the WRS-2 sample location (x-axis). The black
portion of the bar is equal to the area of forest mapped as disturbed during 1985-2005.
Note that samples along coastlines show low forest area due to the large proportion of

water that falls within the samples footprint.

Fig. 5: Disturbance rates and uncertainty estimates calculated separately for the eastern
(dark grey) and western (light grey) strata. Error bars represent sampling error (+/- 10)

and western points are offset by 0.2 years for clarity.
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Fig. 6. Disturbance rates (% forest change per year) calculated for (a) the south and north
subregions of the eastern stratum and (b) the intermountain and coastal subregions of the
western stratum. The thickness of each shaded area gives the disturbance for that

subregion, such that the upper surface gives the total disturbed area for each stratum.

Fig. 7. NAFD national disturbance rates obtained by combining results for the eastern and

western strata, calculated by year (% of conterminuous forest area disturbed per year).

Error bars represent sampling error (+/- 10).

Figure 8. Temporal patterns of forest disturbance rates compared to factors
expected to influence those rates for the western (a) and eastern (b) U.S. Wood
production and GDP rates refer to year-to-year changes in 2-year running average
national estimates (Howard, 2007). Fires are areal estimates of forest fire
disturbance alone for the western U.S.obtained from the Monitoring Trends in
Burn Severity (MTBS) project (mtbs.gov). Insects represent the upper bound

of beetle-associated mortality area (Meddens et al., 2012).

Fig. 9. Comparison of Phase I (23 scenes, top) and Phase II (50 scenes, bottom) estimated

disturbance rates (percent forest cover per year) and sampling error for the eastern (left)

and western (right) strata.
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E NAFD samples

FIA forest group type
Non-forest - Other western softwoods
Alder/maple group - Pinyon/Juniper group
California mixed conifer Ponderosa pine group
[ ] Douglas-fir group - Redwood group
- Fir/spruce/mountain hemlock Tanoak/laurel group
- Hemlock/sitka spruce group - Western larch group
- Lodgepole pine group Western oak group
- Other western hardwoods Western white pine group

100°0'0"W

Aspen/birch group Oak/gum/Cypress group
- Elm/ash/cottonwood group - Spruce/Fir group
- Loblolly/Shortleaf pine group - Tropical hardwoods
- Longleaf/Slash pine group - White/red/jack pine group
Oak/Hickory group - Maple/beech/birch group
Oak/Pine group

Fig. 1. NAFD sample scenes (unique , non-overlapping scene areas) overlaid on the US

Forest type map (Ruefenacht et al,, 2008).
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Fig. 2: Fraction of forest types captured by the NAFD sample for the (a) eastern and (b)
western strata (grey bars) compared to the actual area of each type from the map of

Ruefenacht et al. (2008) (black bars).
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Non-forest
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Fig. 3. Example of Vegetation Change Tracker (VCT) algorithm output for Landsat WRS-2
path 43 row 33 (Sierra Nevada, California). The VCT uses per-pixel annual Landsat time
series to generate maps with classes for permanent forest, non-forest, and disturbance
occuring in each year. Disturbed patches are color-coded by year of disturbance. Lake
Tahoe is depicted as the blue area in the north-center of the full scene. The zoomed image

shows small patches of harvest as well as the large burn scar of the 1992 Cleveland fire.

40



8TILyd
6cisyd
LTigyd
LoaLyd
0giopd
ogisyd
67irpd
9zippd
Tea9pd
1¢i9td
ceicpd
seagyd
L€
6ci1pd
6cityd
gagyd
ogiged
zeapd
veiLed
zeiLed
Le19gd
reaged
zeaced
Lewped
yerped
geizgd
9¢19zd
Lg19zd
Lewed
yergzd
6¢11ed
Lexred
6¢161d
ceagrd
9¢t61d
I1t191d
9¢191d
sgigrd
LeiLed
6cised
gciged
gziged
ogired
¢eaped
seaged
1e1L1d
Loagrd
1egid
1eig1d
1eap1d

© VH SUoliIN

Western Stratum

Eastern Stratum

Fig. 4: Per-scene results of the NAFD disturbance analysis. The overall length of the bar
shows total NAFD derived forest land area for the WRS-2 sample location (x-axis). The black

portion of the bar is equal to the area of forest mapped as disturbed during 1985-2005.

Note that samples along coastlines show low forest area due to the large proportion of

water that falls within the samples footprint.

41



18 1 — E. Stratum
W. Stratum
1.6 T
1.4
\

T

% Forest Area Disturbed
=
¥
|——_
; A
/=|_|
.
— -
'—
—_
—_—
—_—
'—
S

0.4
0.2
0
D9 0 D P O DN P NN oD PO ODD D>
QL A AP L SN S S N N L S I S L I R R SR gl
SRS AN N RS N RN RS S R N R S S S S S
Year

Fig. 5: Disturbance rates and uncertainty estimates calculated separately for the eastern
(dark grey) and western (light grey) strata. Error bars represent sampling error (+/- 10)

and western points are offset by 0.2 years for clarity.
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Fig. 6. Disturbance rates (% forest change per year) calculated for (a) the south and north
subregions of the eastern stratum and (b) the intermountain and coastal subregions of the
western stratum. The thickness of each shaded area gives the disturbance for that

subregion, such that the upper surface gives the total disturbed area for each stratum.
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Fig. 7. NAFD national disturbance rates obtained by combining results for the eastern and
western strata, calculated by year (% of conterminuous forest area disturbed per year).

Error bars represent sampling error (+/- 10).
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Figure 8. Temporal patterns of forest disturbance rates compared to factors
expected to influence those rates for the western (a) and eastern (b) U.S. Wood
production and GDP rates refer to year-to-year changes in 2-year running average

national estimates (Howard, 2007). Fires are areal estimates of forest fire

disturbance alone for the western U.S.obtained from the Monitoring Trends in

Burn Severity (MTBS) project (mtbs.gov). Insects represent the upper bound

of beetle-associated mortality area (Meddens et al., 2012).
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Fig. 9. Comparison of Phase I (23 scenes, top) and Phase II (50 scenes, bottom) estimated
disturbance rates (percent forest cover per year) and sampling error for the eastern (left)

and western (right) strata.
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