GRB Discoveries with Swift

Neil Gehrels

NASA-GSFC
Swift GRB 070420

BAT prompt emission

3 instruments, each with:
- lightcurves
- images
- spectra

XRT afterglow
Long GRBs
<table>
<thead>
<tr>
<th>z</th>
<th>GRB</th>
<th>Optical/IR Brightness</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.29</td>
<td>050904</td>
<td>J = 18 @ 3 hrs</td>
</tr>
<tr>
<td>5.6</td>
<td>060927</td>
<td>I = 16 @ 2 min</td>
</tr>
<tr>
<td>5.3</td>
<td>050814</td>
<td>K = 18 @ 23 hrs</td>
</tr>
<tr>
<td>5.11</td>
<td>060522</td>
<td>R = 21 @ 1.5 hrs</td>
</tr>
</tbody>
</table>

Swift Long GRB Redshifts

<table>
<thead>
<tr>
<th>z</th>
<th>GRB</th>
<th>Optical/IR Brightness</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.29</td>
<td>050904</td>
<td>J = 18 @ 3 hrs</td>
</tr>
<tr>
<td>5.6</td>
<td>060927</td>
<td>I = 16 @ 2 min</td>
</tr>
<tr>
<td>5.3</td>
<td>050814</td>
<td>K = 18 @ 23 hrs</td>
</tr>
<tr>
<td>5.11</td>
<td>060522</td>
<td>R = 21 @ 1.5 hrs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>z</th>
<th>GRB</th>
<th>Optical/IR Brightness</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.29</td>
<td>050904</td>
<td>J = 18 @ 3 hrs</td>
</tr>
<tr>
<td>5.6</td>
<td>060927</td>
<td>I = 16 @ 2 min</td>
</tr>
<tr>
<td>5.3</td>
<td>050814</td>
<td>K = 18 @ 23 hrs</td>
</tr>
<tr>
<td>5.11</td>
<td>060522</td>
<td>R = 21 @ 1.5 hrs</td>
</tr>
</tbody>
</table>
GRB 050505

\(z = 4.275 \)

Damped Ly\(\alpha \)

\(N(\text{HI}) = 10^{22} \text{ cm}^{-2} \)

\(n \sim 10^2 \text{ cm}^{-3} \)

\(Z = 0.06 Z_\odot \)

\(M_{\text{progenitor}} < 25 M_\odot \)

Metallicity vs Redshift

Savaglio 2006
GRB 050904 $z=6.29$

Subaru Telescope
Kowai et al. 2006
GRB 060218: GRB + Supernova

Super-long GRB - ~35 minutes

BAT, XRT, UVOT during GRB

$z = 0.033$ \hspace{1em} d = 145 \text{ Mpc}$

SN 2006aj \hspace{1em} SN Ib/c

$E_{\text{iso}} = \text{few} \times 10^{49} \text{ erg} - \text{underluminous}$
Afterglows
Typical Swift X-ray Lightcurves

50% with bright early component

>30% with flares

Burrows et al. 2005
Achromatic Jet Break - GRB 060526

$z=3.21$

jet angle = 7°

Dai et al. 2007
Many GRBs do not show jet breaks

In other cases, optical and X-ray breaks are not coincident.

Complex shape of afterglow lightcurves makes jet breaks hard to find

Other new papers:

Curran et al. (astro-ph 0706.1188) - evidence for achromatic breaks in several Swift GRBs

Oates et al. (astro-ph 0706.0669) - GRB 050802 case with X-ray break clearly seen but no optical break
Short GRBs
Short GRB Time Structure

![Graph showing GRB 051221a](image)
Short GRB - Current Status

Swift short GRB observations
- 23 short bursts detected (+2 from HETE, +1 from INTEGRAL)
- 78% with X-ray afterglow detected by XRT (95% long GRBs)
- 28% with optical detection (58% long GRBs)
- ~50% with host IDs

~1/2 shorts accompanied by soft extended emission up to 100 sec

Redshift range from $z = 0.2$ to 1
- $<z>_{\text{short}} = 0.6$
- $<z>_{\text{long}} = 2.3$

GRB 070714B $z = 0.92$
(Graham et al. 2007)
3 Types of GRBs

Swift GRBs (mostly)

![Diagram showing 3 Types of GRBs]

- Short GRBs
- Long GRBs
- SN GRBs

Equations:

\[\log [E_{\text{iso}} \text{ (ergs)}] \]

\[\log [T_{90} / (1+z)] \]
Assuming all short GRBs are due to NS-NS mergers, merger rate is $\sim 300 \text{ Gpc}^{-3} \text{ yr}^{-1}$

[Consistent with NS-NS population synthesis modeling O'Shaughnessy, Kalogera, & Belczynski (2005)]

\Rightarrow Advanced LIGO detection rate of $\sim 30 \text{ yr}^{-1}$

Nakar et al.:
Possible much higher rates of $10^5 \text{ Gpc}^{-3} \text{ yr}^{-1}$.
\Rightarrow Detection with enhance LIGO

Swift will be in orbit until > 2020.