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Abstract² A theory called Adaptive Disturbance Tracking 

Control (ADTC) is introduced and used to track the Tip Speed 

Ratio (TSR) of 5 MW Horizontal Axis Wind Turbine (HAWT). 

Since ADTC theory requires wind speed information, a wind 

disturbance generator model is combined with lower order 

plant model to estimate the wind speed as well as partial states 

of the wind turbine. In this paper, we present a proof of 

stability and convergence of ADTC theory with lower order 

estimator and show that the state feedback can be adaptive.  

 

I. INTRODUCTION 

Large wind turbines are operated in three different 
regions called Region I, Region II and Region III, and the 
available wind speed determines the region of operation. 
Region I is the startup region and wind speed is not sufficient 
to produce the power. When wind speed becomes large 
enough to produce the power but not enough to produce the 
rated power, then it operates in Region II. In Region III, wind 
speed is normally larger than the rated wind speed and 
produces the rated power.  

The amount of power that can be captured using wind 
turbine is given by [1]: 
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Where, P is the power, A is the area of the rotor disc, CP is 

WKH�SRZHU�FRHIILFLHQW��!�LV�WKH�DLU�GHQVLW\��& and is the free-

stream wind velocity.  

The power coefficient CP is the function of tip-speed ratio 

����DQG�WKH�EODGH�SLWFK�DQJOH������7KH�7LS�6SHHG�5DWLR��765��

can be expressed as: 
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Figure 1 Plot of CP vs Tip ± Speed Ratio for different Blade 

Pitch Angle 
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The variation of power coefficient (Cp) with TSR for fixed 

sets of blade pitch angle is in figure 1[2]. From the figure, it 

can be seen that, for a certain blade pitch angle, there exist 

an optimum TSR for which Cp is maximum. In Region II, 

the wind speed is not sufficient to produce the rated power 

so the TSR must be maintained constant at its optimum 

value such that the power coefficient is maximum, which 

ultimately maximizes the power captured by wind turbine. 

  

From equation (2), the TSR is a function of the rotor speed 

and the wind speed. Since variation in the wind speed have 

effect on rotor speed, the rotor speed must be varied in same 

proportion to keep the TSR constant. 

 

The foundation of counteracting the persistence disturbance 

in a plant was developed by Johnson [3]. Balas refined this 

idea [4], and developed a new idea of Disturbance Tracking 

Control and used for Region II control of the wind turbine. 

The motivation behind the theory of Disturbance Tracking 

Control is to make the wind turbine track the wind speed, 

which ultimately tries to keep the TSR constant at some 

optimum value.  

 

The TSR WUDFNLQJ�HUURU��-��LV�LQWURGXFHG�DV�WKH�GHYLDWLRQ�RI�

WKH� DFWXDO� 765� ���� IURP� WKH� RSHUDWLQJ� RU� RSWLPXP� 765�
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where (Oop,coop) is the desired turbine operating point 
corresponding to the desired TSR (AOP)' We let the Output 
Tracking Error be 

f

ey == nT - Q * w 

with Q == nop 

wop 

(4) 

where (Q) is the tracking ratio. 
and think of (0), the turbine speed, as a measured output of 
the turbine and (co), the wind speed, as a disturbance on the 
turbine. Then DTC uses a feedback control law that 
produces: 

ey ==n-Q*OJ ~O 
t ..... oo (5) 

This (approximately) produces tracking of the desired TSR: 

&" == A - Aop ~ 0 [5]. 
t ..... oo 

II. ADAPTIVE DISTURBANCE TRACKING CONTROL WITH 

PARTIAL STATE ESTIMATION AND STATE FEEDBACK 

In this section we introduce further modification of the 
theory presented in [5] with addition of wind speed and 
partial states estimation, and partial state feedback. 

The wind turbine is assumed to be modeled by a linear, 
time-invariant, finite-dimensional system: 

{
i=Ax+BU +rUD 

Y = Cx; x(O)p = Xo 
(6a) 

and the plant model with partial states of (6a) is expressed 
as: 

{
im = Amxm + Bmup + r mUD 

Ym = CmXm; Xm (0) = Xo 
(6b) 

where, the plant state, x, is an Np-dimensional vector, the 
control input vector, up , is M-dimensional, the sensor output 
vector, y , is P-dimensional. Xm is m-dimensional (m<n) 
lower order plant model state vector, Ym is the Pm 
dimensional model output vector. A, B, C, r are the state, 
input, output and disturbance matrix of plant with 

appropriate dimensions. Am, Bm, Cm, r m are the state, input, 

output and disturbance matrix of the lower order plant model 
with appropriate dimensions. The disturbance input vector, 
liD, is MD-dimensional and will be thought to come from the 
Disturbance Generator: 

{
UD = BZD 

(7) 
ZD = FzD; ZD (0) = Zo 

where, the disturbance state,zD , is ND-dimensional. 

All matrices in Eqs. (6)-(7) have the appropriate 
compatible dimensions. Such descriptions of persistent 
disturbances were first used in [5] to describe signals of 
known form but unknown amplitude. Equation (7) can be 
rewritten in a form that is not a dynamical system, which is 
sometimes easier to use: 

{

UD = 8zD 

ZD = LrpD 
(8) 

where, <jlD is a vector composed of the known basis 
functions for the solution of uD=8zD, i.e., <jlD are the basis 
functions which make up the known form of the disturbance, 
and L is a matrix of appropriate dimension. The method for 
tracking persistent disturbances used in this paper requires 
only the knowledge of the form of the disturbance, the 
amplitude of the disturbance does not need to be known, 
i.e.(L,8) are unknown. In this paper, we will be interested in 
rejecting step disturbances of unknown amplitude which can 
be represented in the form of Eq. (8) as <jlD=l , with (L,8) 
unknown. This has been a viable model for wind 
fluctuations in our previous work. 

Now combining equation (6b) and (7) we get a new 
augmented plant model [6]: 

In equation (9) we used the lower order plant model to 
estimate the partial state and use the partial state feedback. 

Using the augmented plant model in (9) , a state estimator 
can be designed as: 

[::]~[ ~ r~B][::HB; ]u+[ ;JyP -Ym) 

(10) 

The estimator equation (10) can also be broken down into 
wind disturbance estimator and state estimator as: 

Xm = Amxm + Bmu + r mBzD + Kx(Yp - Ym) 

2D = FZD + KD(yP - Ym) 
(11) 

U sing the wind disturbance state estimation, the estimated 
wind speed can be expressed as: 

(12) 

Our control objective will be to cause the output of the 
plant, YP' to asymptotically track some linear function of 



estimated disturbances of the form given by the disturbance 
estimator. We define the estimated output tracking error 
vector as: 

(13) 

To achieve the desired control objective, we want 

ey--~)O 
1-->00 

This aligns with the TSR tracking in Region II described 
by equation (5). 

Consider the plant given by Eq. (6a) with the disturbance 
generator given by Eq. (7) and respective disturbance and 
state estimator given by (10) and (11). Our control objective 
for this system will be accomplished by an Adaptive Control 
Law of the form: 

A 

Up = Ge ey + GDrpD + GxXm 
(14) 

where Ge and GD are adaptive gain matrices of the 
appropriate compatible dimensions, and Gx is the state 
feedback gain matrix. 

Now we specify the Adaptive Gain Laws, which will 
produce asymptotic tracking: 

{ 

• A AT 

Ge = -eyeYYe 
(15) 

• A T 
GD = -eyrpDYD 

where Ye' Y D are arbitrary, positive definite matrices. Our 

Adaptive Controller is specified by Eq. (14) with the above 
adaptive gain laws Eq. (15). 

III. STABILITY AND CONVERGENCE ANALYSIS 

A. Problem Formulation 

Assume a linear, time invariant and finite dimensional plant 
of (6a) and disturbance generator of (7) 

We define the estimator as: 

Where, 

{
i = L21 y + L22 z + L23 U 

where z = Tw + e 
z (16) 

~ Jj 

=> y=[c o]w 
ey=[C -Qe]w 

'-y---' 
c 

Define the ideal trajectories as: 

{
; :;. ~l~' 
e = Cw = 0 y • 

with 

U. = S2 Z D + G: z.; z. = Tw. = T~ z D 

-::::?U. =(S2 +G:T~)ZD +G:z. 
'-y--' 

S2 

let 

~ w = w - w. = [ ~ ] 
~U =u-u. 

~Y =Y- y. 

~ey = ey - e; = ey 
~=z-z. = Tw-Tw. =T~w 

{
~W = A~w+Jj~u 

~ ~y=[c O]~w 

e =~e =C~w 
y y 

now assume: 

Zo =HozorHoT=[O 10 ] 

=::;. ZD = HDz = HDTw+ HDe 

:.ZD=ZD+HDe 

define 

(17) 

(18) 

(19) 

(20) 

(21) 



ey = y - Q()zo 

= y - Q()zo - Q()Hoe 
'-------y--I 

= e
y 

- Q()Hoe 

=(e -e*)-Q()Hoe 
y y 

= L\e
y 

- Q()Hoe 

~ ey =CL\w-Q()Hoe 

adaptive Control law is: 

u = G,ey + GDCfJD + G,z 

L\u =u-u* =u-S2 Z 0 

=U-(S2Z0 +G;z.) 

= u - S2LO((JO - G;z. 

= G' e + (G' - S L ) rp + G' Z - G' z 
e y D 2 D D l Z ~ 

'-v----' 
~O 

= G' (C t:.W - Q(}H e) + G' (T t:.w + e) + t:.Gry 
, D , 

Estimator error is expressed as: 

e = £-Tw 

=[~I Y +L22 Z +L23 U ]-T[Aw+Bu] 
[c o]w Tw+ e 

= (L2I [C 0]+L22T-TA)w+L22e +(L23 -TB)u 

Choose L23 == TB where T O) TA - L22 T = L21 [C 

(uniquely solvable when o-(A) (l 0-(L22 ) = rp) 

with ~2 chosen appropriately stable 

0] 

~ e=~2e 

Let T == [I; T2] then H D T 

(22) =[0 Io]~HoI;=O andHoT2=Io' 
Also, (27) 

L23 = TB = I; E and T 0) T A - L22 T 

_ [ ] {I;A-L22 I; =L2IC -L21 C 0 ~ 
TzF - L22 Tz + I;ro = 0 

B. Closed Loop Stability Analysis: 

We have, 

(23) [~eW] = [:4+B(G~C + G: T) B(G: -:': QBHD)l[~eW] + [!]h 

(24) 

(25) 

(26) 

(28) 
Where, 

A = < 
_ [:4 +BG'T 

c 0 

Lemma: 

(A, B, C) is ASPR <=>(A,B,C) is ASPR 

Proof: 

cil = CB = CB 

- - - -I -
pes) '" C(sf - A) B 

[
A + BG* T BG; _)-1 [B] =[c -Q(}Ho](sf- Z 

'-v-----' 0 L22 0 C '~ ____ ~ ____ ~ 
l jj 

- - - * - 1-
= C(sf - (A + BGJ)) B 

= [c -Q(}] (sf _ Z 

[

A + Bdy; 
'-,c---' 0 

c 

[ ] 
[

(sf - (A + BG*Y; )rl 

= C _Q() ( Z 

'--y------J 0 
c 

* - I 
= C(sf - (A + BGzY;)) B '" I; (s) 

Now use 

(A + EG;I; ,E, C) is ASPR <=> CE > 0 

and~(s) minimum phase. 

W;2 ] [B] 
(sf - Frl ) 0 

"---

Ii 

(29) 



But State Feedback does not change minimum phase of a 
transfer function, proof of this will be presented later; so 
P(s) minimum phase ~ ~ (s) minimum phase. 

So CB > 0 andP(s) minimum phase will guarantee that 

3G: 3 (;4+ BG: C, B, C) is SPR . Consequently, we have the 

following: 

Theorem 
1) CB> 0 andP(s) minimum phase 

2) rpD bounded 

=> Adaptive Control 

{

u = GJ~y + GDrpD + Gzz 

2 = L21 y + L22 Z + L23U 

with gain adaption laws 

{

G =-e eTy.y >0 
e y y e' e 

• 'T 
GD =-eyrpDYD;YD >0 

Gz =-eyzTyz;Yz >0 

produces 

~w= [~]-I<--oo~) 0 

e ) 0 

ey = C~w-Q(}HDe-I<--oo~) 0 

ey = C~w 1<-00) 0 

with bounded adaptive gains 

This does allow adaptive G z . 

C. Solvability of the Matching Conditions 

Ideal Trajectories: 

{~' = ~w, + Bu, 

ey = Cw, = 0 

with 

U, ==S2ZD +G;TS1ZD =(S2 + G;TS;)ZD 
'-,-' 

S2 

~ {~~ = AS; + BS2 = (A + BG:T)S; + BS2 

CS1 =0 

~{SlF=(A+BG:)Sl +BS2 +r(} 
CS1 =Q(} 

(30) 

(31) 

These Matrix Matching Equations can be uniquely solved 

for (SI' S 2 ) when CB is nonsingular (which it is when 

CB>O). 
New Adaptive Controller: 

{

u = Geey +GzZ+GDrpD 

2=L2l ey +L22Z+L23U 

with 

{G
. , 'T 0 
e = -eyey Ye ; Ye > 

• 'T 
~D =-eyrpDYD;YD >0 

G = -e ZT Y ; Y > 0 z y z z 

Use 

ey == y-Q(}HDz => 2 
=L21 ey +L22Z+L23U 

=L21 y+(L22 -L21 Q(}HD)z+L23 u 
'-,,-' 

(33) 
Then 

In 

e = 2 - Tw = [L2l Y + L22 Z + L23U] - T[Aw+ Bu] 
[C O]w Tw+e 

= (L2l [C 0] + L22T - TA)w+ L22 e = (L23 - TB)u 

Choose L23 == TB where T 3 TA - L22T = L21 [C 0] 

(uniquely solvable when (Y(A) n (Y(L22 ) = rp) 

with I22 chosen appropriately stable 

=> e = L22 e 

Also 

~u ==u-u, =U-S2ZD 

=U-(S2ZD +G;z,) 

= u - S2LDrpD - G;z, 

=G;ey +(G; -S2LD)rpD +G;z-G;z, 
'-v-' 

~O 

= G; (C~w-Q(}HDe) + G; (T ~w+ e) +h 

= (G;C + G:T)~w+ (G: -Q(}HD)e+ h 

(32) 

(32) 

(34) 

(35) 

so we can use adaptive control law (32) with gain adaption 
laws (33). 



D. Proof that State Feedback does not Change the 
Minimum Phase of Transfer Function 

Assume a square transfer function (M=P). 
The transmission zeros of (A,B ,C) are 

[
A-AJ B] 

A. 3 rank C 0 <N+M 

[
A-A.] B] [A-A.] rank = rank( 

C 0 C 

[
A+BG-A.] B] 

= rank 
C 0 

=> transmission zeros of (A + BG, B, C) 

are the same as those of (A, B, C) # 

Non sin gular 

(36) 

IV. IMPLEMENTATION OF ADTC THEORY WITH PARTIAL 
STATE ESTIMATION AND STATE FEEDBACK 

A. Simulation Setup 

We implemented the ADTC with partial state feedback to 
the NREL's 5 MW offshore wind turbine model [7]. This is 
three bladed horizontal axis upwind wind turbine with 63 
meter of rotor radius and 5 MW of rated power. The cut-in, 
rated and cut-out wind speed are 3 mis, 11.4 mls and 25 mls 
respectively. Also, cut-in and rated rotor speeds are 6.9 mls 
and 12.1 mls respectively. It has rated Tip Speed of 80 mls 
with a Tip Speed Ratio of7.55. 

Depending upon which Degree Of Freedom (DOF) we 
need, it has eleven switches which can be switched on and off 
to add the complexity in the operation. When all DOF's are 
switched on the wind turbine model consists 31 states. The 
detailed description of this wind turbine can be found in [7]. 

To design the wind speed and partial state estimation of 
wind turbine, the turbine is linearized at constant wind speed 
of 8 mls with blade pitch held at 0 degree. During the 
linearization Drive Train and Generator DOF switch were 
turned on which gave four states with two states due to the 
Generator DOF and two states due to Drive Train DOF. The 
first state (generator azimuth position) was removed to get 
the three state model of wind turbine since the linearized 
model becomes unobservable when included all four states. 
This three state model is then augmented with wind 
disturbance model given by equation (7) and state estimator 
was designed using equation (9). 

B. Simulation Results 

The ADTC with state estimator and state feedback 
designed is then implemented and simulated in NREL's 
5MW onshore wind turbine in MA TLAB/Simulink platform. 
We also simulated existing fixed gain PID controller [7] to 
compare the performance of ADTC. 

The value of adaptive gains used were yD=15000 and 
ye=O.OOOl. We obtained these values of adaptive gain by trial 
and error. 
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Figure 2. Actual vs estimated wind speed 

Comparison of estimated wind speed with actual step 
wind profile is in figure 3. The wind speed estimator 
combined with the partial state estimator has estimated the 
wind speed to a great extent. 
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Figure 3. Tip Speed Ratio comparison 

The TSR is compared between proposed ADTC and the 
existing fixed gain controller in figure 4. In this simulation, 
the desired TSR is 7.55. The ADTC has better and consistent 
TSR tracking compared to the existing fixed gain controller. 
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fixed gain controller

adaptive controller

The components of estimated output tracking error given 
by equation (12) are shown in figure 5. In this simulation the 
value of tracking ratio (Q) used was 1.12. It can be seen that 
the adaptive controller with partial state feedback has done 
excellent job  in disturbance tracking.  

 

 

 

 

 

 

 

 

 

 

 
                

Figure 5. Estimated tracking error 

The Estimated Tracking Error given by equation (12) is 
shown in figure 6. The error is almost zero in steady state.  

 

 

 

 

 

 

 

 

 

 

 
                     Figure 6. Generator speed comparison 

The generator speed profile for the adaptive controller and 

the existing fixed controller is in figure 7. In lower wind 

speed region there is discrepancy between the generator 

speed, this is because the existing fixed gain controller the 

generator torque is directly the function of generator speed, 

JLYHQ�E\�.�
2
, where K is some constant, which depends on 

WKH� GHVLUHG� 765�� DQG� �� LV� WKH� JHQHUDWRU� VSHHG�� %XW�� LQ�

adaptive disturbance tracking control, there is no direct 

relation between generator speed and torque, instead 

generator torque is manipulated in such a way that the 

generator speed track some percentage of wind speed. 

The generator torque command input produced by both the 

adaptive controller and the fixed controller is shown in figure 

8. The adaptive controller has aggressive torque compared to 

the fixed gain controller. The reason behind this 

aggressiveness is tendency of adaptive controller to track the 

step wind speed. This aggressive behavior can be reduced to 

a great extent by using a low pass filter after estimated wind 

speed. This makes the wind speed smooth rather than step 

resulting the adaptive controller to follow the smooth wind 

speed. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Generator Torque comparison 

V. CONCLUSION 

The theory of ADTC with partial state estimator and state 

feedback is proposed to track the TSR in Region II operation 

of large HAWTs, and its stability is also analyzed. The 

estimator/controller is designed based on proposed theory 

and simulated in 5 MW onshore wind turbine. The main 

advantage of this theory is simplicity in design and omission 

of requirement of detailed model of the wind turbine. Also, 

parameters of wind turbines are poorly known which 

prevents design of controller using well established linear 

control theory but adaptive controller performs better in such 

situation.   
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