Evolution to Space

Jacob Cohen, Ph.D.
Chief Scientist
NASA Ames Research Center
Disruptive Events Lead To New Opportunities
Standardization Speeds Up The Evolution Wheel

Inheritance, Variation and Selection

Image Copyright James Steidl, 2012; Used under license from Shutterstock.com
Standardization does not mean regulation.

Standardization: The process of developing and implementing technical standards. The goals of standardization can be to help with independence of single suppliers (commoditization), compatibility, interoperability, safety, repeatability, or quality. (en.wikipedia.org)

Regulation: A principle, rule, or law designed to control or govern conduct. (thefreedictionary.com)
Modularization = Predictability of Standardization + Flexibility of Subcomponent Customization
A method to maximize the science return from the ISS while reducing risk, schedule and ultimately cost per experimental unit.

Reference: WetLab 2, NanoLab and Cell Science hardware as proposed by J. Cohen
Nov. 3, 1957
Laika, first animal in space

July 21, 1969
Armstrong and Aldrin on the Moon

The March 22, 1952 issue of Collier’s Magazine

"Moon Landscape" by Petr Ginz (1942)

April 12, 1961
Gagarin first human in space
Microgravity and Moss Growth

On Earth

Gravitropic *Ceratodon purpureus* moss cells default to spiral growth in spaceflight microgravity.

Gene array. Each cell culture condition including microgravity (A) and terrestrial rotating wall vessel (B) is compared with a static nonadherent bag culture. Sheer stress proteins and heat shock proteins are shown in green, and transcription factors are in red. More than 1,600 (1,632) change more than the specific threshold of threefold up and down in the flight (microgravity) culture (A) and more than 900 genes (914) changed in the terrestrial RWV culture (B); only a few genes (5) changed in a terrestrial centrifuge culture (not shown).

(Hammond, 2000)
Formation of large prostate cancer organoids with the 3D rotating wall vessel bioreactor in space. Much larger prostate organoids were formed in space (30-50 cm across) as compared to the parallel ground study (3-5 cm) despite no difference in glucose utilization rate between ground and space studies.

(Wang, 2005)
Transient virulence increase of S. typhimurium in response to spaceflight in LB medium is not observed in M9 minimal medium or LB medium supplemented with M9 salts.

(Nickerson Lab; STS-115 and STS-123)
Examples of Human Responses to Space

- Intra-Cranial Pressure
- Neuroplasticity
- T-Lymphocyte Immunosuppression
- Reproductive System Changes
- Slow/Fast Fiber Change
- Bone Remodeling
- Spinal Learning
- Virulence
Mass Breakdown Requirements (Per Person-Day)

Daily Inputs - Nominal

<table>
<thead>
<tr>
<th>Item</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen</td>
<td>0.84</td>
</tr>
<tr>
<td>Food Solids</td>
<td>0.62</td>
</tr>
<tr>
<td>Water in Food</td>
<td>1.15</td>
</tr>
<tr>
<td>Food Prep Water</td>
<td>0.79</td>
</tr>
<tr>
<td>Drink</td>
<td>1.62</td>
</tr>
<tr>
<td>Hand/Face Wash Water</td>
<td>1.82</td>
</tr>
<tr>
<td>Shower Water</td>
<td>5.45</td>
</tr>
<tr>
<td>Clothes Wash Water</td>
<td>12.50</td>
</tr>
<tr>
<td>Dish Wash Water</td>
<td>5.45</td>
</tr>
<tr>
<td>Flush Water</td>
<td>0.50</td>
</tr>
<tr>
<td>TOTAL</td>
<td>30.74</td>
</tr>
</tbody>
</table>

Daily Outputs - Nominal

<table>
<thead>
<tr>
<th>Item</th>
<th>kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Dioxide</td>
<td>1.00</td>
</tr>
<tr>
<td>Respiration and Perspiration Water</td>
<td>2.28</td>
</tr>
<tr>
<td>Urine</td>
<td>1.50</td>
</tr>
<tr>
<td>Feces Water</td>
<td>0.09</td>
</tr>
<tr>
<td>Sweat Solids</td>
<td>0.02</td>
</tr>
<tr>
<td>Urine Solids</td>
<td>0.06</td>
</tr>
<tr>
<td>Feces Solids</td>
<td>0.03</td>
</tr>
<tr>
<td>Hygiene Water</td>
<td>6.68</td>
</tr>
<tr>
<td>Clothes Wash Water</td>
<td>11.90</td>
</tr>
<tr>
<td>Clothes Wash</td>
<td>0.60</td>
</tr>
<tr>
<td>Latent Water</td>
<td>0.60</td>
</tr>
<tr>
<td>Other Latent Water</td>
<td>0.65</td>
</tr>
<tr>
<td>Dish Wash Water</td>
<td>5.43</td>
</tr>
<tr>
<td>Flush Water</td>
<td>0.50</td>
</tr>
<tr>
<td>TOTAL</td>
<td>30.74</td>
</tr>
</tbody>
</table>

11.3 Metric Tons Per Person-Year
Biology is the right tool for exploration

- Low mass
- Self replicating
- Fast growing
- Adaptable
- Flexible host
- A manufacturing technology
The Potential of Synthetic Biology in Space
Bioelectrochemical systems utilize microorganisms that are capable of generating electricity during the catalysis of substrates (microbial fuel cell - MFC) and/or utilizing electrical energy as the metabolic energy source for growth (reverse MFC).

Take it a step further: How about a synthetic biology ion engine?
The key to long term success in life is imagination, persistence, and compassion.

From the Past
From the Future
The Drive of Now
Working Together Humanity Will Conquer
The Exploration of the Time and Space Frontier

Thank You
NASA Ames Research Center
Ames Today

- Science
 - Space, Earth, Biological Sciences
 - Astrobiology, Lunar Science
- Exploration Systems
 - Exploration Technology Development
 - Thermal Protection Systems
 - Supercomputing
- Projects and Missions
- Aeronautics & Aviation
 - NextGen Airspace Systems
 - Fundamental Aeronautics
 - Aviation Safety
 - Green Aviation
- Affordable Small Satellites
- Innovation, Education, & Entrepreneurial Collaborations
 - NASA Research Park

- 2480 employees*
- ≈900M + annual revenue (including reimbursable)
* in addition, 900 students, summer 2012
Current Active Facilities, 2009

- National Full Scale Aerodynamic Complex, 80x120 Wind Tunnel
- Vertical Motion Simulator
- Small Spacecraft Development Facility
- Unitary Plan Wind Tunnel
- SOFIA
- Machine Shops
- Small Satellite Lab
- Pleiades - Columbia Super Computer
- Ballistic Range
- Arc Jets
- Airfield and Hangars

Image copyright Dariusz Jezewski
Virtual Institutes at Ames

Astrobiology Institute

NASA Lunar Science Institute

NASA Aeronautics Research Institute

Scientific Study of life

Advance the field of lunar science

Creating new tools and technologies for reducing air traffic congestion and environmental impacts, improving safety, and designing aircraft
NASA Research Park

Innovative Collaboration in Science, Engineering & Education

90+ Partners Today

University Associates
Google-North East Section
University of California/UARC-Bldg. 555
M2MI Corporation-Bldg. 19
Carnegie Mellon University-Bldg. 23
San Jose State University
-Metropolitan Technology Center in Bldg. 583C
Foothill-De Anza Community College
United Negro College Fund Special Programs Corporation-Bldg. 19
Space Technology Center
-San Jose State, Stanford, Santa Clara Univ., Utah State Univ./Micro Satellite Classes
Kentucky Science & Technology Corporation-Bldg. 19
Bloom Energy-Bldg. 543 (Fuel Cell Research)
Industry Partners-Bldg. 566 & 19
UAV Center-Bldg. 18
International Space University
WHY WE DO WHAT WE DO—PART ONE
FOUR THINGS NASA DOES
Number One: Improve Life on Earth

- Aeronautics
 - Next Gen
 - Environmentally Responsible Aviation
 - New Initiatives
 - Autonomy, Electric Aviation
- Earth Climate studies
 - Site-specific Climate prediction
Number Two: Conduct Earth and Space Science

- Astrophysics
 - Origin/Distribution of Life in the Universe
- Planetary science
 - Moon
 - Mars
 - Asteroids
- Earth Science
 - Venture class
- Heliospheric Physics
 - IRIS
Number Three: Human Space Exploration

- Fundamental Biology
- Entry, Descent & Landing
- Human Factors
Number Four: Cross Cutting Initiatives

- High end computing (quantum)
- Synthetic Biology
- Innovative Partnerships
 - DoD
 - Industry
 - International / Academic
Ames Contributions to Aeronautics

Flight Research
Cooper-Harper Rating Scale
Wind Tunnel Testing
Flight Simulation
Swept Wings
Conical Camber
Computational Fluid Dynamics
Short-Haul Aircraft
Takeoff Research
Air Traffic Management
Ames Contributions to Air Traffic Management

- Dr. Heinz Erzberger
- Traffic Management Advisor Build 1
- Arrival Metering
- Final Approach Spacing
- Future Automated ATC
- Flight Management Systems
- Simulations
- Intelligent Software
- Human Factors
- Optimal Guidance
- Scheduling Algorithms
- Benefits Analysis

Research Spectrum
Ames Contributions to Mercury and Gemini

Blunt Body Re-entry
Free Flight Ablation Test
Arc Jet Facility

Re-entry Aerodynamics
Tektites and Trajectory Studies
Dean Chapman

Re-entry Airflow and Stability Pattern Studies
Hypervelocity Free-Flight Facility

Shadowgraph
Project Mercury Re-entry Capsule

Shadowgraph
Project Gemini Re-entry Capsule

Spacecraft Testing and Evaluation
Unitary Plan Wind Tunnel
Ames Contributions to Apollo

Technology Research
- Free Flight Ablation Test, Blunt Body Re-entry Studies
- Steerable Parachute
- Navigation Simulator
- Launch Escape System Unitary Plan WT
- Guidance System

Moon Sample Analysis
- Dr. Cyril Ponnamperuma Analyzing Moon Sample
- Life Sciences Glove Boxes, Lunar Receiving Facility

H. Julian Allen
Ames Director During Apollo Program

Lunar Surface Magnetometer
Ames Contributions to the Space Shuttle

Supporting Research
- Orbiters/Boeing 747 Ferry Configuration 14-foot WT
- Exhaust Plume Interactions 9 x 7 WT
- Shuttle Abort Maneuver 14-foot WT
- TPS Materials Development
- Stagnation Point Tests

Low-Speed Descent Aerodynamics
- 36 Percent Scale Model 40 x 80 WT
- Vertical Motion Simulator
- Simulation on Hyperwall
- Shadowgraph of Bow Shock Wave at Mach 7

Flight Simulation
- CFD Simulation Results for the Shuttle Stack During Ascent

Aerodynamics
- Ames-Dryden Flight Research Center

Ascent Aerodynamics & Aerothermodynamics
- Shut Down in Flight

Thermal Protection System
- Columbia Supercomputer,
 Wind Tunnels,
 Debris Transport,
 Ascent Aerodynamics,
 Thermal Protection Experts,
 Thermal Analysis,
 Structural Analysis,
 Database management, and
 Virtual Motion Simulator

Return to Flight
- Standby Support During Missions

Shuttle Landing Site (38 Landings between 1981-1994)
Ames Contributions to Astrobiology

Investigation into:

- Context for habitable environments and life
- Origins of life and its impact on the planetary environment
- Future of life in changing environments

*Excerpted from 2003-2004 NASA ARC team report

Dr. Harold P. Klein
Dr. Cyril Ponnamparuma
Dr. Baruch Blumberg
Dr. David Morrison
G. Scott Hubbard

Kepler
Spitzer Space Telescope
Airborne Science Platforms
Robots and Other Instruments
Orbiters and Probes

Earth, the Moon, Mars, and other planets
Stars
Meteors & Comets
Asteroids
Ames Contributions to Lunar Exploration

Apollo 1969
Safe human landing on the Moon and return to Earth
- Guidance System
- Lunar Surface Magnetometer
- Blunt Body Re-entry
- Moon Sample Analysis (Lunar Receiving Facility)
- Launch Escape System

Lunar Prospector 1998
Spectroscopic survey of entire lunar surface
- Mission and Operations
- Managed Payload, Instruments, and Spacecraft Design and Development

LCROSS 2008
Confirm presence or absence of water or ice in a polar lunar crater
- Mission and Operations
- Managed Payload, Instruments, and Spacecraft Design and Development

Constellation
Human exploration of the Moon, Mars, and beyond
Orion CEV
- Thermal Protection System
- Aero/Aero-thermal Database
- Flight Software and Guidance, Navigation and Control

Mission Operations
- Flight Control Software
- Training Applications
- Planning and Development Tasks

Ares I
- Integrated Systems Health Mgmt.
- Launch Abort System Software and Instrumentation
- Aero/Aerothermal Models and Analysis and Risk Assessments

Technology and Science Support
- Lunar Crater Observation
- Exploration Life Support
- Radiation Dosimetry and Medical Sensor Technology
- Space Human Factors
- ISS Exploration Experiments
- Piloted Spacecraft Handling
- Reentry

Palmer Dyal
Apollo Lunar Surface Magnetometer

NASA Lunar Science Institute
March 2008
Contributions to Mars Exploration

Dr. Harold P. Klein

Early Tests for Mars/Venus Entry in Carbon Dioxide and Nitrogen Mixtures (Early 1960s)

Biological Investigation (Viking)

Mission Support Software (MER)

Landing Site Selection (MER)

Human-Centered Computing and Fatigue Countermeasures (MER)

Shadowgraphs showing the shock wave shape

Thermal Protection Systems (MER and MSL)

Science Operations (MER)

Parachute Wind Tunnel Tests (MER and MSL)
Ames Contributions to MSL

Mars Science Laboratory Entry, Descent, and Landing Instrument (MEDLI)
Sophisticated plugs with multiple temperature sensors that measure atmospheric conditions and performance of the heat shield

PICA Heat Shield

Mars Science Laboratory InterfaCE (MSLICE)
Software tool to plan the science activities of the Mars rover and maximize scientific research

Parachute test

CheMin
Ames Contributions to Small Spacecraft

Pioneer 6-9
1965-1968
- Studied the solar wind from a solar orbit.

Pioneer 10 & 11
1972-1973
- First man-made objects to safely pass the asteroid belt, provide detailed investigation of Jupiter and Saturn, and, leave our solar system.

Pioneer Venus
May 1978
- Completed radar mapping of 93% of the planet's surface. The four probes and bus gathered data about the Venusian atmosphere.

Lunar Prospector
1998
- Carried out a spectroscopic survey of entire lunar surface.

SOAREX
2004-
- Conduct suborbital aerodynamic reentry experiments.

GeneSat
2006
- Miniature satellite provided life support to E.Coli bacteria in orbit.

NanoSail-D/PreSat
2008
- Demonstrate and validate performance of the platform.

PharmaSat
2008
- Miniature satellite will carry yeast spores.

LCROSS
2008
- Confirm presence or absence of water or ice in a polar lunar crater.

LADEE
2011
- Assess the atmosphere and surface dust of Earth’s moon.