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Abstract Future satellite missions dedicated to measuring
time-variable gravity will need to address the concern of tem-
poral aliasing errors; i.e., errors due to high-frequency mass
variations. These errors have been shown to be a limiting
error source for future missions with improved sensors. One
method of reducing them is to fly multiple satellite pairs, thus
increasing the sampling frequency of the mission. While one
could imagine a system architecture consisting of dozens of
satellite pairs, this paper explores the more economically fea-
sible option of optimizing the orbits of two pairs of satellites.
While the search space for this problem is infinite by nature,
steps have been made to reduce it via proper assumptions
regarding some parameters and a large number of numerical
simulations exploring appropriate ranges for other param-
eters. A search space originally consisting of 15 variables
is reduced to two variables with the utmost impact on mis-
sion performance: the repeat period of both pairs of satellites
(shown to be near-optimal when they are equal to each other),
as well as the inclination of one of the satellite pairs (the
other pair is assumed to be in a polar orbit). To arrive at this
conclusion, we assume circular orbits, repeat groundtracks
for both pairs of satellites, a 100-km inter-satellite separa-
tion distance, and a minimum allowable operational satellite
altitude of 290 km based on a projected 10-year mission
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lifetime. Given the scientific objectives of determining time-
variable hydrology, ice mass variations, and ocean bottom
pressure signals with higher spatial resolution, we find that
an optimal architecture consists of a polar pair of satellites
coupled with a pair inclined at 72◦, both in 13-day repeating
orbits. This architecture provides a 67% reduction in error
over one pair of satellites, in addition to reducing the longi-
tudinal striping to such a level that minimal post-processing
is required, permitting a substantial increase in the spatial
resolution of the gravity field products. It should be empha-
sized that given different sets of scientific objectives for the
mission, or a different minimum allowable satellite altitude,
different architectures might be selected.

Keywords Time variable gravity · GRACE · Temporal
aliasing errors · Constellations · Satellite geodesy

1 Introduction

The Gravity Recovery and Climate Experiment (GRACE)
satellite mission has demonstrated the ability to measure
mass variations on the Earth at monthly to sub-monthly res-
olution (Tapley et al. 2004a; Bruinsma et al. 2010). There is
tremendous potential in the science applications of this data
set, including quantifying variations in continental hydrol-
ogy, measuring ocean currents and ocean bottom pressure
variations, and sensing the loss and accumulation of ice in the
polar regions as well as glaciated regions around the globe.
Because GRACE senses these signals at large spatial scales
(∼ 400 km), mass variations in smaller drainage basins, for
example, cannot be quantified by GRACE. Thus, it is of pri-
mary interest for future missions to have increased spatial
resolution in the time-variable gravity field products. One
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potential benefit of this data set would be to aid in regional
water management practices.

In designing future missions, we have now reached a point
where the spatial resolution will no longer be limited by
sensor errors, but rather by temporal aliasing errors (Wiese
et al. 2011; Loomis 2009; Visser et al. 2010), assuming that
future missions will use a laser interferometer for the inter-
satellite ranging (Pierce et al. 2008; Bender et al. 2003), and
the spacecraft will fly drag-free at lower altitudes, similar to
the Gravity field and steady-state Ocean Circulation Explorer
(GOCE) (Drinkwater et al. 2007) mission. Temporal aliasing
errors are defined as errors due to temporal undersampling of
geophysical signals of interest (e.g., continental hydrology)
as well as mis-modeling unwanted high-frequency mass vari-
ations (e.g., atmosphere and ocean tides).

We aim to directly reduce the effect of temporal aliasing
errors by adding a second pair of satellites, thus increasing
the sampling frequency of the mission and improving the
spatial resolution of the derived gravity field products. In
theory, if enough pairs of satellites were placed in proper
orbits, one could sample the gravity field at a high enough
frequency such that temporal aliasing errors would be largely
eliminated. However, there could still be a problem of signal
separation given this scenario. Having a dozen, if not more,
satellite pairs to accomplish such a feat is cost-prohibitive at
this point. As such, this paper focuses on the more interesting
question of optimizing the orbits of two pairs of satellites.

One reason that the GRACE gravity field products have
limited spatial resolution is the fact that the polar orbiting
two-satellite collinear architecture has little East–West sen-
sitivity to the gravity field. This leads to a strong correlation
between coefficients of a fixed order and the same parity
of degree, manifesting as longitudinal stripes in the gravity
solutions. One common method used to remove the stripes
is to apply a decorrelation filter (Swenson and Wahr 2006)
to the data (known as ‘destriping’). The gravity fields are
also typically smoothed with a Gaussian filter (Wahr and
Molenaar 1998) to average through any remaining errors.
The resulting product is a map of global mass variations at
large spatial scales. While substantially reducing the level
of errors in the gravity solutions, these two processes have
the undesired effects of removing real geophysical signal as
well as reducing the spatial resolution of the solutions, par-
ticularly in regions with high signal to error ratios. Hence,
it would be advantageous if future missions did not have to
rely on these techniques.

While simulation studies have shown that alternate forma-
tions, such as cartwheels and pendulums, reduce the level of
striping in the gravity solutions (Elsaka 2010; Wiese et al.
2009), these types of formations are much more difficult
to implement from an engineering standpoint. Alternately,
Bender et al. (2008) suggested that having two pairs of col-
linear satellites, one pair in a polar orbit and one in a lower

inclined orbit, would improve the East–West sensitivity to
the gravity field variations, thus leading to a reduction in the
level of striping. This concept is explored in this paper.

2 Orbit design considerations

The goal of this paper is to optimize the orbits of two pairs of
collinear satellites for improving the spatial resolution of the
derived gravity field products for future missions over what
GRACE provides. The search space for such a problem is
extremely large, and is further complicated when considering
that the selected orbits will be a strong function of the sci-
ence goals of the mission. For instance, if the primary goal of
the mission is to determine continental hydrology (excluding
ice) at small spatial scales, then one might place the satellites
in orbits with dense coverage over these regions, but less cov-
erage over the polar regions. This would most likely result
in decreased sensitivity to determining ice mass variations in
Greenland and Antarctica. However, if the primary science
objective is to determine ice mass variations in Greenland,
then a different mission architecture would be selected. This
study assumes that the science goals of the mission are to
determine continental hydrology, ice mass variations, and
ocean bottom pressure signals over the entire globe, with
each area of science being weighted equally.

Considering strictly the satellite orbits, one can character-
ize the mission performance, P, given two pairs of collinear
satellites, via the following:

P = f (X1, X2,�ν1,�ν2, L). (1)

In Eq. 1, X1 and X2 are the state (position and velocity)
of the lead spacecraft of the first and second pair of satel-
lites, respectively, �ν1 and �ν2 are the separation distances
between the first and second pairs of satellites, respectively,
and L is the amount of time that data are collected to form a
single solution. It is most convenient to represent the state of
the spacecraft in terms of mean Keplerian orbital elements
as

X1 = f (a1, e1, i1,�1, ω1, ν1)

X2 = f (a2, e2, i2,�2, ω2, ν2)
(2)

Here, a is the semimajor axis, e is the eccentricity, i is
the inclination, � is the longitude of ascending node, ω is
the argument of perigee, and ν is the true anomaly. Coupling
Eqs. 1 and 2, one can see that the mission performance of
this type of architecture will be directly related to 15 param-
eters. Adding additional satellite pairs will increase the num-
ber of variables by seven for each pair of satellites added. It
is desirable to reduce the number of independent variables
and narrow down the search space by making appropriate
assumptions.
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First, the inter-satellite separation distances, defined as
�ν1 and �ν2, will likely be chosen based on the satellite-to-
satellite ranging instrument requirements. Future missions
are likely to use a laser interferometer, for which a 100-km
separation distance is chosen as a trade-off between instru-
ment performance as well as relative accuracy in determining
short wavelength and long wavelength features in the gravity
field (Wiese et al. 2009). Fixing this distance allows us to
eliminate two of the variables, �ν1 and �ν2, from the search
space.

Next, it can be assumed that the spacecraft should fly in
circular orbits to minimize any relative changes in distance
due to having eccentric orbits, as GRACE does. Fixing the
eccentricity to zero eliminates two additional parameters.

Given circular orbits, the argument of perigee, ω, becomes
ill-defined. Hence, we can now define the argument of lati-
tude, u, which is equal to the sum of the true anomaly and the
argument of perigee (u = ω + ν). The argument of latitude
defines the position of the satellite in its orbit about the Earth
with respect to �. While this is a parameter that could have
an effect on the gravity solution, it is impossible to deter-
mine what the optimal satellite position should be due to the
extremely complex nature of the problem. For example, it
would be optimal if, during a flooding event, the satellite
flew over the region of interest. However, it is impossible to
know when this event might occur in the future, making it
very difficult to optimize.

While optimizing u1 and u2 independently is not feasi-
ble, one could think of optimizing the relative difference in
the argument of latitude between the two pairs of satellites
in an effort to meet certain temporal groundtrack crossing
constraints (i.e., the second satellite pair will fly over a loca-
tion on the Earth a specified amount of time after the first
satellite pair flew over the same location). The same argu-
ment holds for the longitude of ascending node, �, in a spa-
tial sense. That is, in an absolute sense it is impossible to
determine what the optimal values for �1 and �2 should
be, since we cannot predict the time and location of mass
variations on the Earth years in advance. However, the rela-
tive difference between the ascending nodes of the two pairs
of spacecraft could be optimized to provide a required spa-
tial constraint on the combined groundtrack pattern of the
two satellite pairs. Thus, �1 and �2, along with u1 and u2

can be reduced to two new parameters: ��12, and �u12.
The first, ��12, provides a spatial constraint on the ground-
track pattern of the two satellite pairs while the second, �u12

provides a temporal constraint on the groundtrack pattern.
It is expected that �u12 can only be optimized if the peri-
ods of both satellites pairs are equal to each other, which
would require that a1 = a2. Otherwise, there will be a sec-
ular drift rate in the time that the two pairs of satellites
cross the same location on the Earth which cannot be
controlled.

Next, we can consider the inclination of the satellites. In
order to provide global coverage of the Earth, at least one of
the pairs of satellites must be in a near-polar orbit. Thus, this
can be set as a constraint. The inclination of the second pair
of satellites, however, is free to vary. The problem has now
been reduced from one with 15 parameters to one with only
six, and can be represented via the following:

P = f (a1, a2, i2,�u12,��12, L). (3)

Let us now discuss the semimajor axis of the two pairs of
satellites. GRACE was launched into an altitude of approx-
imately 490 km (Tapley et al. 2004b) in which the altitude
of the satellites continuously decays primarily due to atmo-
spheric drag forces. Currently, GRACE is at a nominal mea-
surement altitude of 460 km (Center for Space Research
2011). GOCE, alternatively, which is designed to measure
the static gravity field of the Earth to high spatial resolu-
tion, flies at a much lower altitude than GRACE, at approx-
imately 255 km. It employs a single-axis drag-free system
where non-conservative forces are measured in real time and
are compensated for using thrusters to maintain a nominal
altitude. GOCE was designed for a lifetime of 2 years and
is limited by the amount of propellant onboard to keep the
spacecraft at the nominal measurement altitude. This can be
contrasted with the GRACE mission, which is currently in its
ninth year of operations. It should be noted, however, that due
to the extended solar minimum at the end of the past decade,
GOCE is now expected to continue performing several years
beyond its mission lifetime (Fehringer et al. 2010).

It is envisioned that future GRACE-type missions will
also employ drag-free technology, allowing one to fly at a
lower altitude with increased sensitivity to short wavelength
features in the gravity field. With this in mind, one can set
a minimum bound on the altitude of the spacecraft which
depends on many factors, including, but not limited to the
design lifetime of the satellites, the amount of propellant
available, the type of thrusters used, the cross-sectional area
of the spacecraft, and the magnitude of the atmospheric den-
sity. Some work has been done to this end, by Marchetti
et al. (2008) and St. Rock et al. (2006), examining the per-
formance of drag-free control systems in low-Earth orbit,
and the mission lifetimes associated with various thrusters.
Figure 1 depicts the results from each respective paper, along
with the initial estimate for the GOCE mission, assuming the
same initial mass propellant fraction as the GRACE mission
(0.18). Note that the results from St. Rock et al. (2006) have
been scaled down by a factor of two to account for variable
specific impulse and control system use that was not consid-
ered in the analysis.

Given that GRACE is quickly approaching its tenth year of
operations, it seems both reasonable and desirable to design
future missions with a lifetime of at least 10 years. Fig-
ure 1 illustrates that a 290-km altitude allows the satellites
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Fig. 1 Mission lifetime as a function of altitude assuming an initial
mass propellant fraction of 0.18

to remain in orbit for 10 years; thus, this was selected as the
minimum altitude for this study. Note that this calculation is
very approximate, and a rigorous analysis of a control sys-
tem in the appropriate environment would need to be made to
refine the targeted altitude; however, it is valid as a first-order
approximation and sufficient for the purposes of this study.

The last parameter which needs to be discussed from Eq. 3
is L, the length of time that data are collected. The parameter
L will depend primarily on the targeted spatial and tempo-
ral resolution of the mission. In principle, the product of
the spatial resolution and temporal resolution of a mission
is constant; that is, given a fixed number of satellite pairs,
one cannot improve the spatial resolution without sacrificing
temporal resolution and vice-versa (Visser et al. 2010). Given
homogeneous groundtrack spacing, the spatial resolution of a
mission can be approximated by the Colombo–Nyquist rule,
which states the maximum resolvable degree of the gravity
field is equal to half of the number of orbital revolutions of
the satellites (Colombo 1984), guaranteeing gravity solutions
that are homogeneous in longitude (Visser et al. 2011). While
larger values of L theoretically lead to better spatial resolu-
tion, they also allow for greater accumulation of temporal
aliasing errors. Varying the L parameter should lend insight
into proper trade-offs between increasing the spatial resolu-
tion of the solutions and mitigating the effect of temporal
aliasing errors.

There is one more point to be mentioned concerning L.
One drawback of GRACE is the lack of an altitude control
system. This leads to variability in the groundtrack pattern
of GRACE, and subsequent variability in the quality of the
monthly solutions. This was discussed in Klokočník et al.
(2008) and Wagner et al. (2006), showing the degradation
in gravity solutions from GRACE in the fall of 2004 when
the satellites passed through a 61/4 resonance orbit. Due to
the success of the GOCE mission implementing a drag-free
system and maintaining a constant orbital altitude, it seems
advantageous to consider only repeat groundtracks for future
missions. Imposing this constraint assures consistent quality

in the time-variable gravity solutions. It should be noted,
however, that maintaining repeat groundtracks with a pair of
satellites will be more demanding than for a single satellite,
like GOCE. Tolerances on the formation dynamics will be
set based on instrument performance criteria and how tightly
one needs to maintain the repeat groundtrack (presumably
this will be a function of the selected orbit and what other
repeat orbits exist close to the operational altitude). These
parameters will need to be given careful consideration should
such a mission be flown.

From Kaula (1966), even zonal coefficients in addition to
a nonlinear (J2)

2 contribute to the secular rate of the node, �̇.
However, all terms are second order when compared with the
contribution of J2; thus, we design the repeat groundtracks by
considering only this term. Given a desired eccentricity and
inclination, there are only certain values for the semimajor
axis which will satisfy the conditions for a repeating ground-
track. One can obtain the appropriate values for semimajor
axis, a, by solving the following equation (Vallado 2001):

C2a7/2 + C1a2 + C0 = 0, (4)

where

C2 = l

k
ωe

C1 = −√
μ (5)

C0 = α

4ε4

[
l

k
2 cos i + 1 − 5 cos2 i −

(
3 cos2 i − 1

)
ε

]
,

in which

α = 3
√

μJ2 R2
e

ε =
(

1 − e2
) 1

2
. (6)

In these sets of equations, μ is the gravitational constant
of the Earth, J2 is the negative of the unnormalized C20 coef-
ficient describing the oblateness of the Earth, Re is the radius
of the Earth, ωe is the rotation rate of the Earth, k is the desired
number of nodal days it takes for the satellites to repeat, and
l is the number of orbital revolutions the satellites perform in
k nodal days. It should be noted that k/ l must be irreducible,
and l is given by

l = k
(
ω̇ + Ṁ

)
(
ωe − �̇

) . (7)

In Eq. 7, ω̇ and Ṁ are the secular drift rates of the argu-
ment of perigee and mean anomaly, respectively, due to the
oblateness of the Earth.

Thus, selecting a particular value for L inadvertently
imposes an additional constraint on either a1 or a2: that the
value for a must put the satellite in a repeat orbit. It is not
imperative that both satellite pairs have a value of k equal to
that of L , but one pair must. It has been pointed out by Bender
et al. (2008) that perhaps the most effective way to design the
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Table 1 Constraints imposed on design criteria to reduce the search
space for an optimal architecture

Parameter Constraint

a1, a2 290 km minimum; repeat groundtrack

e1, e2 0 (circular orbits)

i1 90◦

�ν1,�ν2 100 km

L L = k2; k1 ≤ k2

architecture would be to have a lower inclined pair in a longer
repeat period (RP) coupled with a polar pair of satellites in
a shorter RP. This would lead to more homogeneous spac-
ing in the combined groundtrack pattern of the two pairs of
satellites, since, by nature, groundtracks are more dense over
the poles than the equator. In this scenario, the lower inclined
pair would be selected to have a value of k equal to L , while
the RP of the polar pair of satellites would be allowed to vary,
but would be constrained to be less than or equal to that of
the lower inclined pair. Thus, all such combinations should
be explored.

Finally, taking into consideration the above discussion,
Eq. 3 can be rewritten as

P = f (k1, k2, i2,�u12,��12). (8)

In Eq. 8, k1 is the RP of the polar pair of satellites and k2 is
the RP of the other pair of satellites for which the inclina-
tion can vary. Note that the additional constraints which are
imposed are that k2 = L and that k1 ≤ k2. One additional
caveat that should be mentioned is that k is expressed in units
of nodal days, while L is typically expressed in units of solar
days, since the data processing is usually set up to handle
daily batches of data. This means that typically a solution
will have slightly more data (a few hours) than what is taken
during the full repeat period of the satellites. Table 1 is a list
of all constraints that were imposed to arrive at Eq. 8.

Using the constraints listed in Table 1, Eq. 8 has been
reduced from one that initially was a function of 15 variables
to one that is now a function of only five variables. Further-
more, it is expected that the values selected for k1, k2, and
i2 will have the most influence on how well the mission per-
forms. �u12 and ��12 are expected to have much smaller
impacts.

It should further be stressed that this type of analysis is
considerably biased towards the minimum altitude chosen,
in this case, 290 km. To illustrate this, Fig. 2 shows the clos-
est altitude to 290 km (without going below it) for different
values of k1 for a polar pair of satellites.

Figure 2 illustrates how results could be biased towards the
minimum allowable altitude. For example, the closest 8-day
RP groundtrack to 290 km exists at an altitude of 291 km, ver-
sus 374 km for a 12-day RP. The lower altitude given by the
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Fig. 2 Necessary altitude to maintain specific repeat periods for a polar
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Fig. 3 Necessary altitude to maintain a 17-day repeat period at differ-
ent inclinations

8-day RP orbit could trump any benefit that collecting data
for 12 days versus 8 days might add.

The same analysis can be done if one fixes a value for
k2, but lets i2 vary. Figure 3 shows how the altitude neces-
sary to maintain a 17-day RP orbit changes as a function of
inclination.

Hypothetically speaking, if a 70◦ inclination were an opti-
mal value for i2 speaking strictly in terms of inclination, Fig. 3
suggests that this study might find that a 71◦ inclination is the
optimal value for i2 since this orbit is 16 km lower in altitude
than the orbit with a 70◦ inclination. This analysis shows how
the altitude, repeat period, and inclination are inherently cou-
pled together, and an optimal set of orbital parameters will
be a strong function of the mission constraints.

3 Methodology

Numerical simulations were used to explore the full search
space of parameters for the investigation. This was deemed
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necessary due to the variable spatio-temporal sampling char-
acteristics of different mission architectures along with the
unpredictable nature of geophysical signals and temporal ali-
asing errors. The primary parameters of interest in Eq. 8 are
k1, k2, and i2. The following are the ranges of values explored
for these parameters:

k1, k2 = [4, 23] days; k1 ≤ k2 (9)

i2 = [25◦, 90◦] (10)

Using a step size of 5◦ for i2, it is readily seen that 2,940
simulations were run to explore the entire search space of
the k1, k2, and i2 variables. After the initial results narrowed
down a more appropriate range of values for i2, a 1◦ step
size was used. While a more systematic method could have
been implemented to explore the search space and reduce
computation time, this would have led to greater uncertainty
in the validity of our analysis due to the variable spatio-
temporal characteristics of geophysical signals, temporal
aliasing errors, and the sampling behavior of the different
architectures.

3.1 Simulation procedure

The GEODYN software package (Pavlis et al. 2010) (an orbit
determination program) coupled with SOLVE (Ullman 1997)
(a linear systems solver), both from NASA Goddard Space
Flight Center, was used to perform the numerical simulations.
In an effort to create as realistic of a simulation environment
as possible, we model the dominant mass variations in the
Earth system, including the atmosphere, oceans (mass redis-
tribution due to atmospheric forcing), tides (ocean, atmo-
sphere, and solid Earth), continental hydrology, and ice
sheets. Table 2 shows the simulation design. Throughout
the paper, when we refer to recovering hydrology signals,
we actually mean recovering continental hydrology, while
recovering ice signals refers to recovering ice mass varia-
tions in Greenland and Antarctica.

The static gravity field model used, EIGEN-GL04C,
includes data from the GRACE and LAGEOS missions along
with surface gravity data from altimetry over the oceans
and gravimetry over the continents (Förste et al. 2008). The

Table 2 Simulation and model definitions

Models Truth Nominal

Static gravity field EIGEN-GL04C EIGEN-GL04C

Ocean tide model FES2004 GOT00

Atmospheric model ECMWF NCEP

Ocean model OMCT MOG-2D

Hydrological model GLDAS None

Ice model ESA None

atmospheric models used are 3-h ECMWF surface pressure
fields (Klinker et al. 2000) and 6-h NCEP Reanalysis fields
(Kalnay et al. 1996) while the ocean models are the baroclin-
ic OMCT model which is used as a dealiasing product for
GRACE (Flechtner 2007), along with the barotropic MOG-
2D model, both of which are forced by ECMWF surface
pressure (Carrère and Lyard 2003). The tide models used are
of two generations. GOT00.2 uses almost 8 years of TOPEX
and Poseidon data, supplemented in shallow seas and in polar
seas (latitudes above 66◦) by ERS-1 and ERS-2 data and
uses FES94 as an apriori model (Ray 1999). FES2004 is a
hydrodynamic model that not only assimilates more recent
altimetry data, but also includes that from TOPEX (Lyard
et al. 2006). The 3-h GLDAS/Noah land-surface model is
used to describe continental hydrology (Rodell et al. 2004)
and the 6-h ESA ice model describes the ice sheet dynam-
ics in Greenland and Antarctica, and was provided by the
European Space Agency (ESA) (van Dam et al. 2008). All
simulations are arbitrarily run for January of 2003. The ice
model is defined from 1995 to 2006 with 1995 being the ref-
erence time; as such, the magnitude of the ice signal in 2003 is
significant. All models are represented to spherical harmonic
degree and order 100 in the simulations with the exception
of the NCEP and MOG-2D models, which are represented
to spherical harmonic degree and order 72. Note that solid
Earth and atmospheric tides are included in the simulation,
but errors are not considered.

Table 2 shows that this particular simulation is designed to
recover hydrology and ice mass variations in the presence of
model errors from ocean tides and atmospheric and oceanic
mass variations, defined as the differences between the two
sets of models. One can also calculate ocean bottom pressure
variations from the above simulation by treating the NCEP
and MOG-2D models as forward models and examining dif-
ferences with respect to the truth models over the oceans. All
models are interpolated linearly in time during the simulation
process.

The spacecraft are assumed to be equipped with a laser
interferometer as a replacement for the microwave ranging
instrument onboard the GRACE mission. The noise assumed
for the laser interferometer is 5 nm/

√
Hz (Young et al. 1999;

Mueller et al. 2005; Wiese et al. 2009). Additionally, the
spacecraft are assumed to fly drag-free, such that they main-
tain their nominal orbital altitudes. The noise on the drag-
free system is taken to be 0.01 nm/s2/

√
Hz, which is

similar to that of the GOCE mission. Spacecraft position
errors are added as white noise with a 1-cm RMS in the radial,
alongtrack, and crosstrack directions. Simulations show that
with these levels of error, temporal aliasing errors from mis-
modeling atmosphere and ocean signals dominate the error
budget by more than two orders of magnitude over the level
of error from the drag-free system and laser interferometer
(Wiese et al. 2011). Thus, any improvements that certain
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architectures offer over other architectures will be attributed
to reducing temporal aliasing errors.

The simulations are carried out in two steps. First, the
selected satellite orbits are integrated through both the truth
and nominal sets of force models independently. Noise on the
laser interferometer, drag-free system, and satellite positions
are added to the truth set of measurements. The residuals
between the inter-satellite range-rate measurements
coupled with the satellite position measurements are then
used to estimate a correction to the spacecraft state. This step
is performed to account for a change in energy of the sys-
tem due to a different set of force models. The second step
involves integrating the spacecraft orbits through the nom-
inal set of force models using the updated spacecraft state.
The range-rate residuals are then used exclusively to estimate
any additional corrections to the state of the spacecraft along
with corrections to the geopotential coefficients. Spacecraft
position measurements are not used in this step, as the space-
craft states are converted to baseline elements via Rowlands
et al. (2002), and nine out of the twelve parameters are con-
strained during the estimation process. Data are collected in
one-day batches and SOLVE is used to combine k2 days of
data together to arrive at the final multi-day solution.

The computation time associated with such a large matrix
of simulations is expensive, and increasing the degree of esti-
mation exponentially increases the processing time. As such,
a subset of simulations was carried out to both degree 60 and
degree 100 to ensure consistency between the two, in hopes
of being able to run the matrix of simulations to degree 60.
It was expected that the two would correlate; however, the
results were surprising, showing smaller correlations than
expected. This is discussed in detail in Sect. 4.1. As a result,
all simulations were run to degree and order 100.

3.2 Performance metrics

There are several ways one can quantify the performance of
a gravity recovery satellite mission, given by P in Eq. 8. As
discussed in Sect. 2, P depends substantially on what the sci-
entific goals of the mission are. For this study, we took the
liberty of defining the scientific goals of the mission to be
increasing the spatial resolution of the recovered hydrology,
ice, and ocean bottom pressure signals over what GRACE
provides. Each area of science is weighted equally; hence,
one hopes to minimize the error, E, given by

E = E(H) + E(I) + E(O)

3
(11)

In Eq. 11, E(H) represents the error in determining hydrol-
ogy, E(I) is the error in determining ice mass variations, and
E(O) is the error in determining ocean bottom pressure sig-
nals. There are many methods and tools which one can use
to analyze error and quantify E(H), E(I), and E(O) on both

global and regional scales. It was pointed out in Han and
Ditmar (2008) that global error metrics lack sophistication
as they disregard the different spatial distributions of signals
and errors, making it desirable to analyze errors on a regional
basis.

There are several types of localized analysis one can use,
including, but not limited to, localized averaging kernels
(Swenson and Wahr 2002) and a spatiospectral localization
technique (Han and Simons 2008; Han and Ditmar 2008;
Simons et al. 2006; Wieczorek and Simons 2005). While
these are effective techniques to analyze regional mass vari-
ations, a complete analysis of this kind requires one to select
multiple regions of varying size, signal strength, error charac-
teristics, etc., to properly analyze the results. Since this study
is already computationally expensive, it is desirable to use a
global metric to quantify E to narrow down the search space
and identify a select few mission architectures for further
analysis on a regional scale. This type of regional analysis
will be addressed in future work.

In a global sense, one of the most common ways to look at
error is using degree variances. While this is a valuable tool to
examine errors in the spectral domain globally, the end user
of the GRACE data is more interested in what is happening
in the spatial domain. Thus, it was determined that the metric
used for calculating E(H), E(I), and E(O) would be differ-
encing the truth signals and the recovered signals to obtain a
spatial plot of errors. The spatial plot of errors is represented
on a 1◦ × 1◦ grid, and an area-weighted RMS of the errors
for each signal is calculated and substituted into Eq. 11 for
E(H), E(I), and E(O). While this is not a perfect represen-
tation for the performance of a mission by itself, it does give
a very good indication of how changing k1, k2, and i2 affects
the ability of the satellites to recover the geophysical signals
that we are interested in.

Figure 4 illustrates how E is calculated, showing the truth
signals (left), recovered signals (middle), and the recovered
signals after being destriped via Swenson and Wahr (2006)
and smoothed with a 300-km Gaussian averaging radius
(right), for recovering both hydrology and ice mass variations
(top), as well as ocean bottom pressure signals (bottom). This
simulation is for a single pair of polar orbiting satellites in
a 13-day RP at 299 km. The figures have been truncated at
degree 60 and are expressed in cm of equivalent water height
(EWH). Note that in this case, the truth signal for hydrology
and ice is defined as the 13-day average of GLDAS + ESA,
while the truth ocean signal is defined as the 13-day aver-
age of ECMWF + OMCT. Any non-zero mean between the
atmosphere and ocean models over the time span of interest
is compensated for in the post-processing when estimating
hydrology and ice signals.

When calculating E, one uses a spatial plot of the errors
which is obtained by differencing the truth signals, given by
the left set of figures, with the recovered signals, given by the
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Fig. 4 Truth signals (left), recovered signals (middle), and recovered
signals after PP (right) for recovering hydrology and ice mass variations
(top row) and ocean bottom pressure signals (bottom row) given a polar

pair of satellites at 299 km in a 13-day repeating groundtrack. Units are
in cm of equivalent water height

Table 3 Signal and error associated with Fig. 4

Signal (cm) Error (cm)

No PP PP

Hydrology 4.67 13.97 2.47

Ice 2.12 7.54 2.06

Ocean 2.46 11.04 1.71

Average S = 3.08 E = 10.85 E = 2.08

Units are expressed in cm of EWH

middle and right sets of figures. Furthermore, one can calcu-
late the power in the truth signals, S, for hydrology (S(H)), ice
mass variations (S(I)), and ocean bottom pressure (S(O)) in
the same manner that the error is calculated in Eq. 11. Table 3
illustrates the signal and error associated with Fig. 4 in cm
of EWH for the recovered signals with no post-processing
(PP) and the recovered signals after PP. In this case, it is seen
that the error exceeds that of the signal with no PP applied,
but after destriping and smoothing the solutions the level of
error is reduced to be lower than the signal.

Note that throughout the paper, E is obtained by taking
the solutions to degree 100 and truncating them at degree 60
to make the spatial maps. The reason for doing this is that it
was found that if the results are truncated at degree 60, des-

triping at lower latitudes is generally not required, resulting
in a gravity solution with better spatial resolution.

4 Results

This section shows the most important results from the
numerical simulations in an effort to optimize k1, k2, and i2.
Additionally, Sect. 4.5 discusses groundtrack patterns
obtained by tuning ��12 and �u12. This section begins
with a discussion on the impact of performing simulations to
degree 60 versus degree 100.

4.1 Degree of estimation

It was found that the calculated error, E, varies substantially
for certain cases depending on if the simulations are run to
degree and order 60 or 100. To explain this, an example case
is shown. When simulations are carried out to degree and
order 60, one of the better performing mission architectures
consists of a polar pair of satellites in an 8-day RP at an
altitude of 291 km coupled with a lower inclined pair (72◦)
in a 13-day RP at an altitude of 290 km. The error, E, from
Eq. 11, is calculated to be 4.64 cm EWH for this case. Con-
versely, when the simulations are extended to degree and
order 100, but truncated at degree 60 for a fair comparison,
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Fig. 5 Logarithm of the error
in the coefficients for a
simulation carried out to degree
60 (left) and a simulation carried
out to degree 100 (right)
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Fig. 6 Correlations with the C(51,51) coefficient for an 8-day RP polar
orbit

the error is calculated to be 10.38 cm EWH. This contradicts
the expected results that the error obtained from these two
cases should be more or less commensurate with each other.
To explain this result, Fig. 5 presents the logarithm of the
actual error in the coefficients as a function of degree and
order.

Figure 5 shows that when the solution is extended to
degree 100, large bands of error show up at two and three
times the resonant order that do not exist in the degree 60
solutions. To study why this is the case, the covariance matrix
can be analyzed. Figure 6 illustrates how the C(51,51) coef-
ficient is correlated with other coefficients and was obtained
by examining the covariance matrix of a gravity solution
involving only the 8-day polar RP orbit over the 13 days
of the mission simulation. Note that the correlations with
all coefficients are not shown in the figure, as the correla-
tions outside of the window shown are effectively zero, as
expected.

Given a spherical harmonic coefficient of a certain order,
coefficients of the same order produce orbital element per-
turbations of identical frequency (Kaula 1966), shown by

Table 4 Dominant perturbations for m = 51 and m = 76 for a polar
pair of satellites in an 8-day RP at 291 km

Period (h) �a (cm) �ω + M (◦)

m = 51
n = 51, 53, 55, . . . 7.09 3.87 0.86E-5

p = 24, 25, 26, . . .

q = 0

m = 76
n = 77, 79, 81, . . . 7.09 0.78 0.67E-6

p = 36, 37, 38, . . .

q = 0

the correlations at order 51 in Fig. 6. In this peculiar case,
however, the period of a near resonant perturbation at order
m = 51 is identical to the period of a near-resonant pertur-
bation at m = 76, which also manifests itself in Fig. 6 via
the correlations at m = 76. Table 4 displays the magnitude
of the largest perturbation in semimajor axis and the along-
track direction (ω + M) for both m = 51 and m = 76 along
with the period of the perturbation and was calculated via
Rosborough and Tapley (1987).

The p and q variables in Table 4 are taken from Kau-
la’s standard solution for the gravitational potential in terms
of Keplerian orbital elements (Kaula 1966) while n is the
degree. The similarity of the perturbation frequencies leads
to the filter being unable to separate them, and these bands
of coefficients become poorly determined, as is reflected in
Fig. 5. This error then manifests itself in the spatial plot of
the recovered signals, leading to a large value of E. Note that
similar unexpected correlations exist for orders other than
the one shown here for this particular case. The above results
demonstrates the importance of performing simulation stud-
ies to high degree and order.

4.2 Selecting an inclination

It is expected that the selected value for i2 will have a large
influence on the mission performance. Figure 7 shows the for-
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Fig. 7 Covariance analysis for a 17-day RP polar pair coupled with a 17-day RP pair of satellites at various inclinations. The logarithm of the
standard deviation of the coefficients is shown

mal errors for a 17-day RP polar pair of satellites coupled with
a 17-day RP pair of satellites at various inclinations. The log-
arithm of the formal error of each spherical harmonic coef-
ficient is shown. Note that the difference in altitude between
the satellite pairs at different inclinations will have slight
influences on the formal errors. However, if one examines
Fig. 3 which shows the altitude for the various inclinations
of a satellite in a 17-day RP, it is seen that the difference
in altitude between each of these cases is 15 km at a maxi-
mum. Thus, this effect should be minimal on the covariance
analysis.

Figure 7 shows that for 55◦ ≤ i2 ≤ 65◦, higher degree
and order tesseral harmonics are perhaps the best determined.
Sectorial and near-sectorial coefficients tend to have larger
errors as i2 increases. Studying the covariance matrices alone
might lead one to conclude that an inclination of approxi-
mately 60◦ is near-optimal in the sense that the overall errors
of the coefficients is lowest and the covariance matrix is fairly
isotropic (no order dependence). However, geographically
speaking, if the second pair of satellites flies at an inclination
of 60◦, it is seen that it provides no coverage over Green-
land and does not cover a substantial amount of landmass in

the northern hemisphere, including Alaska, northern Canada,
northern Russia, and the Scandinavian countries. Should the
second pair of satellites provide coverage over these regions,
it could improve the determination of mass variations in these
areas even though this is not reflected in the covariance anal-
ysis.

Therefore, it is useful to compare the error metric, E, as
discussed in Sect. 3.2, between different inclinations. Fig-
ure 8 shows E for a pair of satellites at different inclinations
in a 17-day RP coupled with a polar pair of satellites in dif-
ferent repeat periods (15, 16, and 17 days).

Figure 8 shows that irrespective of whether the lower
inclined pair of satellites is coupled with a 15-, 16-, or 17-
day RP polar pair of satellites, the general trend in the error
as a function of inclination is the same. Typically, the error
reaches a minimum between 70◦ and 75◦. This is not sur-
prising since a pair of satellites at this inclination gets fairly
good coverage over the Earth while still maintaining a sig-
nificant East-West component in the observable. The results
from two polar pairs of satellites were not placed on this fig-
ure as the errors were so high they would distort the scale.
This attests to the strength of the East–West information in
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Fig. 8 Error as a function of inclination for a lower inclined pair in a
17-day RP coupled with a polar pair in 15, 16, and 17-day repeat periods
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Fig. 9 Error as a function of the repeat period of a polar pair of satel-
lites being coupled with lower inclined pair in a 17-day RP

the observable. While Fig. 8 shows an extremely small sub-
set of the results that have been analyzed, the general trend
of having the best performance for values of i2 between 70◦
and 75◦ was consistent across all cases examined.

4.3 Coupling of repeat periods

Bender et al. (2008) suggested that having a polar orbiting
pair in a shorter RP than a lower inclined pair would pro-
vide more homogeneity in the groundtrack coverage over the
Earth, and thus, result in better solutions. The polar pair of
satellites with a shorter RP could reduce the level of temporal
aliasing errors in the polar regions as well.

Figure 9 illustrates the error as a function of different
repeat periods for the polar pair of satellites coupled with
a lower inclined pair of satellites (70◦, 71◦, 75◦, 80◦) in a

17-day RP. Note that the range of inclinations examined in
this figure is consistent with the range of inclinations that
minimized the error as seen in Fig. 8.

Figure 9 shows that generally the error decreases when the
lower inclined pair of satellites is coupled with a polar pair of
satellites in longer repeat periods. Note that this trend exists
outside of the differences in altitude between the polar pairs
of satellites. In fact, plotting the error as a function of alti-
tude of the polar pair rather than the repeat period of the polar
pair does not show significant trends. It can then be assumed
that the error is a stronger function of the repeat period of
the polar pair of satellites than the altitude. Thus, one can
assume that coupling two satellite pairs with the same repeat
period will provide near-optimal results. One could argue
that a global minimum may not be achieved by setting the
repeat periods of the two pairs equal to each other, based on
the fact that in Fig. 9 it appears that slightly smaller errors
exist when the polar pair is either in a 13-day RP or a 16-day
RP versus the 17-day RP that we have recommended. While
this is true, the differences in performance between the cases
is extremely small. In an effort to reduce the search space
for this type of mission, we feel that invoking a k1 = k2

constraint leads to near-optimal results while reducing the
amount of computation time necessary to study all possible
combinations of k1 and k2. Additional simulation results for
repeat periods other than 17 days validate this statement (not
shown).

4.4 Selecting a repeat period

After selecting a range of near-optimal inclinations for the
second pair of satellites as well as enforcing the constraint
that k1 = k2 = L , the search space for an optimal value
of L is substantially reduced. Table 5 shows the ten cases
for which results will be displayed. Each of these cases has
a lower inclined pair with an inclination around 70◦– 75◦,
selected to provide the closest altitude to 290 km. Note that
the case number corresponds to the RP of the satellite pairs
for convenience. It is evident that there are several repeat
periods that are not shown. If a particular repeat period is not
shown, for example, 12 days, this is because the altitude of
one of the satellite pairs was too high for the results to be
competitive with those listed. Generally speaking, due to the
constraint that k/ l must be irreducible, repeat periods that
are prime numbers have a larger range of altitudes to choose
from.

Figure 10 shows the error for the cases listed in Table 5
corresponding to the polar pair of satellites with an altitude
of Type I. The blue bars are the solutions obtained using
the processing methodology outlined in Sect. 3.1 (referred
to as ‘regular’ processing). Comparing these solutions, it is
seen that having a repeat period in the range of 11 to 14 days
provides the lowest error, with a global minimum provided by
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Table 5 Mission architectures
examined to optimize the
selection of a repeat period

Case Lower inclined pair Polar pair

Repeat period Inclination Altitude Repeat period Altitude Altitude
(days) (◦) ( km) (days) ( km) Type I ( km) Type II

9 9 74 291 9 318 318

11 11 70 300 11 306 332

13 13 72 290 13 299 320

14 14 75 290 14 316 316

15 15 70 298 15 293 331

17 17 71 290 17 305 322

19 19 76 291 19 300 315

21 21 71 291 21 309 322

22 22 73 291 22 294 319

23 23 75 291 23 292 317
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Fig. 10 Error for the cases listed in Table 5 comparing regular pro-
cessing and estimating daily 18 × 18 gravity fields

L = 13 days. This range of values for L strikes an optimal
balance between having enough data to form a good solu-
tion, but a short enough time frame where the accumulation
of temporal aliasing errors is mitigated.

The red bars in Fig. 10 are obtained by invoking an alter-
nate processing methodology where daily 18 × 18 gravity
fields are estimated in an effort to reduce the level of tem-
poral aliasing errors. In this process, we simultaneously esti-
mate degrees 2–18 each day along with degrees 19–100 over
multiple days (the length of the simulation) during the inver-
sion process. A multi-day estimate for the lower degree coef-
ficients is then gained by simply averaging through the daily
estimates. This process has been shown to reduce temporal
aliasing errors from high-frequency mass variations at large
spatial scales and generally results in gravity solutions with
improved spatial resolution. It is described fully in Wiese
et al. (2011). It is seen that estimating the daily gravity fields

reduces the error substantially for all cases considered. It is
also interesting to note that with this processing methodology
invoked, the longer repeat periods provide the lowest errors.
This makes sense, as for the case with no temporal aliasing
errors the total amount of error should decrease as the square
root of the number of observations. However, the reduction
in errors that a 23-day RP provides over the 13-day RP case is
small when one considers that 10 days of temporal resolution
are sacrificed.

4.5 Groundtrack patterns

The three primary variables in Eq. 8 have been optimized.
The last two variables, ��12, and �u12 are not expected to
have as large of an influence on the solution, as they only
change the space-time sampling characteristics of the orbit.
One thing that can be examined, however, is if certain ground-
track patterns between the two satellite pairs can be devel-
oped which will lower the errors.

In this work, it was noticed that for the case of having two
polar pairs of satellites in the same RP and at the same alti-
tude, the best solutions are obtained when ��12 is set such
that

��12 = δ + ε, (12)

where

δ = π

⎛
⎝1 + ωe

√
a3

μ

⎞
⎠ , (13)

and

ε = 2π

l

(
1

2
−

(
lδ

2π
−

⌊
lδ

2π

⌋))
. (14)
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In Eq. 12, δ shifts the relative node between the two satellite
pairs exactly 180◦ from each other plus the distance it takes
for the Earth to rotate during one-half of a satellite revolu-
tion. The ε term is added as a correction factor such that the
groundtracks of the second pair of satellites will fill in the
gaps at the equator from the groundtracks of the first pair of
satellites, resulting in more dense coverage. This architecture
guarantees that the mutual crossing location of both satellite
pairs will be at a constant low latitude (∼7◦), rather than at
the equator. This configuration appears to have substantial
benefits in the case of two polar pairs of satellites, reduc-
ing the errors at the resonant orders considerably. The same
magnitude of improvement is not provided when applying it
to the case of a polar pair coupled with a lower inclined pair,
however. The reason for this is twofold: (1) the periods of
the two satellite pairs are different, and (2) the inclinations
of the two pairs are different, meaning that the drift rate of
the node (�̇), given in Eq. 15 (neglecting higher order terms),
is different between the two cases:

�̇ = −3
√

μJ2 R2
e cos i

2(1 − e2)2a
7
2

. (15)

These two differences mean that there are no consistent
crossings between the two satellite pairs in either space or
time. However, there are still minor improvements seen when
invoking Eq. 12 to the cases in Table 5. Figure 11 shows the
reduction in the level of error that this shift provides. Since
��12 will not be constant for the duration of the mission due
to �̇ for the lower inclined pair, the reduction in the level of
errors seen in Fig. 11 represents the natural variability in the
quality of the solutions due to the precession of ��12.

One can now begin to think of developing a spatial ground-
track pattern for the case of having a polar pair coupled with
a lower inclined pair that is consistent, as is the case when
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Fig. 11 Error for the cases listed in Table 5 comparing the effect of
shifting the longitude of ascending node

there are two polar pairs. Note that we are only interested
in developing a spatial pattern (��12), and not a temporal
one (�u12), since the difference in periods between the two
satellites pairs causes a secular drift rate in this parameter
(�u̇12) which cannot be controlled. One can, however, raise
the altitude of the polar pair of satellites such that its period
increases enough to compensate for the nodal drift rate of
the lower inclined pair, thus ensuring consistent crossings at
the equator in the spatial domain by solving the following
equation:

�̇liTli = ωe(Tpp − Tli) (16)

with

T = Ṁ + ω̇. (17)

In Eq. 16 and 17, li stands for “lower inclined” and pp
stands for “polar pair”. The period of the satellites is given
by T. The constraint given in Eq. 16 guarantees that both
pairs of satellites complete the same number of orbital rev-
olutions in the same number of nodal days (l1 = l2) and
ensures that the groundtracks of the satellites will cross each
other at constant lines of latitude. Unlike the case of two
polar pairs, however, the crossings will not have consistency
in the time domain due to the discrepancy in periods between
the two satellite pairs. Figure 12 shows the groundtrack of
two pairs of satellites over South America. The groundtrack
displayed in blue is from the polar pair of satellites while the
groundtrack displayed in red is from the lower inclined pair
of satellites. It can be seen how the two pairs always cross at
the same latitude.

The modified architectures necessary to obtain the com-
plementary groundtrack patterns described above are given
by the cases involving a polar pair of satellites with an alti-
tude of Type II in Table 5. Note that the altitude of the polar
pair for each case, with the exception of Case 9 and Case 14,
has been raised by approximately 20–30 km with respect to

Fig. 12 Complementary groundtrack pattern shown over South Amer-
ica, arrived at by invoking Eq. 16
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Fig. 13 A comparison of the error between the Type I and Type II
architectures in Table 5

Type I. Cases 9 and 14 are the same between Type I and Type
II by the fact that the polar pair selected was already at the
appropriate altitude necessary for a complementary ground-
track pattern. Figure 13 compares the error from the Type I
architectures in Table 5, with the lowest altitude polar pair
possible, with those of Type II in Table 5, with a complemen-
tary groundtrack pattern but a slightly higher altitude for the
polar pair of satellites.

Figure 13 shows a minor degradation in performance for
five of the cases considered and a minor improvement in
performance for three of the cases considered. Cases 9 and
14 have the same performance since they involve the same
orbits. It is difficult to draw conclusions from these results.
Possible benefits from flying the satellites with a complemen-
tary groundtrack pattern include the fact that the polar pair
of satellites is at a higher altitude which means increased
longevity due to lower atmospheric drag forces. Also, the
crossings at lines of constant latitude could prove beneficial
in future applications that are not yet realized, e.g., using
the crossing points as constraint points for determining the
geopotential at particular locations. For a gravity mapping
mission, analagous to an altimeter mapping mission such as
TOPEX or Envisat, there is an argument for having a geome-
try between the two satellite pairs in terms of the groundtracks
that permits a consistent synoptic mapping of the time-vari-
able gravity variations.

4.6 Expected performance

While performing an in-depth analysis of the expected scien-
tific benefits that an optimized architecture consisting of two
satellite pairs would provide over an architecture consisting
of a single pair of satellites is out of the scope of this paper, a
global comparison can be made using the error metrics dis-

cussed in this paper. For this comparison, we select Case 13
of Type II in Table 5 consisting of a polar pair of satellites
coupled with a lower inclined pair of satellites at 72◦, both in
13-day RP orbits and possessing a complementary ground-
track pattern as discussed in Sect. 4.5. We compare this case
with one polar pair of satellites in a 13-day RP at 299 km
altitude, the performance of which is shown in Sect. 3.2.
Furthermore, for the case of two satellite pairs, we co-esti-
mate daily 18 × 18 gravity fields to further reduce temporal
aliasing errors. As was discussed in Wiese et al. (2011), one
benefit of having a polar pair coupled with a lower inclined
pair of satellites is that temporal aliasing errors can be further
reduced by co-estimating daily 18 × 18 gravity fields. Con-
versely, for the case of a single pair of satellites, it has been
shown that while co-estimating 10 × 10 gravity fields every
2 days reduces temporal aliasing errors, the benefits provided
by making the 2-day estimates are virtually abolished after
destriping and smoothing the gravity fields. Figure 14 shows
the truth signals (left), recovered signals (middle), and recov-
ered signals after PP (right) for recovering hydrology and ice
mass variations (top) and ocean bottom pressure signals (bot-
tom) using two satellite pairs. The plots are represented out
to degree 60 and are expressed in cm of EWH.

The PP techniques applied to these solutions are different
than those applied to the single satellite pair solutions. As
shown in Fig. 14, the addition of the lower inclined pair sub-
stantially reduces the level of striping in the solutions. There
are certain bands of coefficients which remain correlated,
however. The large errors in the high-latitude regions seen in
Fig. 14 are a direct consequence of correlations in coefficients
of a fixed order and same parity of degree in the range n ≥ 40
and 3 ≤ m ≤ 14. Note that these errors occur predomi-
nantly in geographical areas with latitudes higher than 72◦,
as no East–West information is present here. We found that
by applying the destriping algorithm presented in Swenson
and Wahr (2006) to only the selected range of spherical har-
monic coefficients which have the correlated errors, we are
able to remove correlated errors at high-latitude regions while
leaving signals at low latitudes relatively untouched. This
modified destriping algorithm has been applied to the recov-
ered hydrology and ice signals in Fig. 14 to represent the
PP solutions. The PP ocean bottom pressure signals have
been destriped with this modified algorithm in addition to
being smoothed with a 200-km averaging radius. Since the
ocean bottom pressure signals are smaller in magnitude than
hydrology and ice signals, the signal to error ratio is substan-
tially smaller and errors manifesting as longitudinal stripes
are more apparent and hence the need to smooth the solutions.

Table 6 compares the error from one pair and two pairs
for the different data reduction methodologies (whether we
estimate low resolution gravity fields at a high frequency or
not) along with the different PP techniques. It is seen that
when no daily (or 2-day) estimates are made, and no PP is
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Fig. 14 Truth signals (left), recovered signals (middle), and recovered
signals after PP (right) for recovering hydrology and ice mass variations
(top row) and ocean bottom pressure signals (bottom row) for Case 13

of Type II in Table 5 after daily 18 × 18 gravity fields are co-estimated.
Units are in cm of equivalent water height

Table 6 Signal and error
comparing one pair and two
pairs with various data reduction
methodologies and
post-processing techniques

Units are expressed in cm of
EWH

Hydrology Ice Ocean Average

Signal 4.67 2.12 2.46 S = 3.08

Two pairs error (cm)

No PP 2.55 5.15 3.16 E = 3.62

PP 2.44 3.18 1.44 E = 2.35

Est.18 × 18 1.91 3.31 2.41 E = 2.54

Est.18 × 18, PP 1.87 1.97 1.32 E = 1.72

One pair error (cm)

No PP 13.97 7.54 11.04 E = 10.85

PP 2.47 2.06 1.71 E = 2.08

Est.10 × 10 7.80 4.50 6.15 E = 6.15

Est.10 × 10, PP 2.33 2.24 1.50 E = 2.02

performed, the global error, E is decreased by approximately
67% with the addition of the second pair of satellites. The
minimal benefits of making 2-day 10 × 10 gravity field esti-
mates after PP the solutions for one pair of satellites are
also seen. Table 6 illustrates that one pair of satellites actu-
ally has lower errors than two pairs of satellites if only PP
is performed. The reason for this is because the PP tech-
niques applied between the two cases are different; if the
two-pair solutions are destriped and smoothed with a 300-

km averaging radius, the error metric is actually calculated
to be E = 1.99 cm. The solutions with two satellite pairs
are post–processed (PP) differently in order to preserve the
information at small spatial scales that would otherwise be
smoothed over. The best solutions for both cases are obtained
when daily (or 2-day) estimates are made and the solutions
have been PP. For this case, it is seen that two pairs of sat-
ellites offer a more modest reduction in the errors, reducing
the global error by approximately 15%. Having only a 15%
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reduction in error can be attributed to the performance metric
used, which does a poor job of characterizing the distortions
in the recovered signals from PP. For example, by destriping
and smoothing (300 km radius) the truth hydrology, ice, and
ocean signals, we calculate that this PP results in an error of
E = 1.69 cm. Alternately, applying the modified PP tech-
niques for two satellite pairs to the truth signals results in an
error of E = 0.53 cm, allowing for a more accurate represen-
tation of the truth signal in the recovery. A visual comparison
of Fig. 14 and Fig. 4 reveals that the solution from two pairs
of satellites retains significantly more geophysical signals at
small spatial scales than the post-processed one-pair solu-
tions. Note that visually, after PP, the one-pair solutions are
nearly identical whether we estimate 2-day 10 × 10 grav-
ity fields or not, with both cases smoothing through signals
at small spatial scales. As such, it is anticipated that on a
regional level, one will see much greater benefits with two
pairs of satellites over one pair of satellites. Future work will
include an in-depth analysis to quantify the performance of
adding a second pair of satellites at regional levels for the
various scientific areas of research.

5 Conclusions

Anticipating that future missions dedicated to recovering
time variable gravity will use laser interferometry for inter-
satellite ranging, and drag-free technology for altitude con-
trol, previous studies have shown that temporal aliasing errors
will dominate the error budget of the mission. One plausible
way to mitigate these errors is to add an additional pair of
satellites, increasing the sampling frequency of the mission,
ultimately leading to a product with greater spatial resolu-
tion. Additionally, if the second pair of satellites is at a lower
inclination, the East–West sensitivity of the observable is
improved, decreasing the longitudinal striping in the solu-
tions. The goal of this paper was to optimize the orbits of
two satellites pairs to provide increased spatial resolution in
determining hydrology, ice mass variations, and ocean bot-
tom pressure signals globally.

While the search space for such a problem is, by nature,
infinite, numerical simulations to degree and order 100 were
implemented in an effort to reduce it. A search space origi-
nally consisting of 15 variables was reduced to two variables
with primary impact on mission performance: the inclina-
tion of one of the satellite pairs (the other pair is assumed
to be polar), and the repeat periods of both pairs of satellites
(shown to be near-optimal when they are equal to each other).
In this study we considered only circular orbits in repeating
groundtracks, a minimum allowable altitude of 290 km based
on a projected 10-year mission lifetime, and assumed a 100-
km inter-satellite separation distance between each pair of
satellites. It was found that an optimal value for the inclina-

tion of the second pair of satellites is between 70◦ and 75◦,
while an appropriate range for the repeat periods of both
satellite pairs is between 11 and 14 days. The absolute low-
est errors are given when both satellite pairs are in a 13-day
repeat period, one being polar at an altitude of 299 km, and
the other inclined at 72◦ at an altitude of 290 km. It should
be noted that the results of this study are influenced by the
targeted altitude for the mission as well as the scientific goals
of the mission.

The notion of optimizing the relative change in node and
the argument of latitude between the two pairs was discussed
in relation to creating complementary groundtrack patterns.
It was shown that by raising the altitude of the polar pair,
the nodal drift rate of the lower inclined pair can be compen-
sated for such that a groundtrack pattern with crossings at
constant lines of latitude is created. While numerical simula-
tion results imposing this constraint were not conclusive as to
whether this definitively results in improved mission perfor-
mance, there is an argument for having a geometry that per-
mits consistent global mapping of the gravity field. Finally,
the importance of extending simulations to high degree and
order was shown.

Results showed that with an optimized architecture con-
sisting of two satellite pairs, global errors are reduced by
67% (no post-processing) with the addition of the second
pair of satellites over one pair of satellites. After each set of
solutions has been destriped and smoothed with appropriate
methods, and daily (or 2-day) gravity fields are estimated, it
was seen that two pairs of satellites offered a more modest
reduction in error of 15% over one pair of satellites. Visually,
however, it was seen that the two-pair solution retains sig-
nificant geophysical signals at small spatial scales which are
smoothed and damped in the one-pair solutions. Future work
will involve an in-depth examination of the expected scien-
tific benefits of an optimized two-pair architecture, extending
the analysis to local regions as well as longer time spans.
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