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On spurious numerics in solving reactive equations

By D.V. Kotov, H.C. Yee, W. Wang, AND C.-W. Shu

1. Motivation and objectives

Consider 3D reactive Euler equations of the form

Ut + F (U)x + G(U)y + H(U)z = S(U), (1.1)

where U , F (U), G(U), H(U) and S(U) are vectors. Here, the source term S(U) is re-
stricted to be homogeneous in U ; that is, (x, y, z) and t do not appear explicitly in
S(U). If physical viscosities are present, viscous flux derivative should be added. If the
time scale of the ordinary differential equation (ODE) Ut = S(U) for the source term
is orders of magnitude smaller than the time scale of the homogeneous conservation law
Ut + F (U)x + G(U)y + H(U)z = 0, then the problem is said to be stiff due to the source
terms. In combustion or high speed chemical reacting flows the source term represents the
chemical reactions which may be much faster than the gas flow, leading to problems of
numerical stiffness. Insufficient spatial/temporal resolution may cause an incorrect prop-
agation speed of discontinuities and nonphysical states for standard numerical methods
that were developed for non-reacting flows. See Wang et al. (2012) for a comprehensive
overview of the last two decades of development. Schemes designed to improve the pre-
diction of propagation speed of discontinuities for systems of stiff reacting flows remain
a challenge for algorithm development (Wang et al. 2012). Wang et al. also proposed a
new high order finite difference method with subcell resolution for advection equations
with stiff source terms for a single reaction for (1.1) to overcome this difficulty. Research
for multi-species (or more species and multi-reactions) is forthcoming.

The objective of this study is to gain a deeper understanding of the behavior of high
order shock-capturing schemes for problems with stiff source terms and discontinuities
and on corresponding numerical prediction strategies. The studies by Yee et al. (2012)
and Wang et al. (2012) focus only on solving the reactive system by the fractional step
method using the Strang splitting (Strang 1968). It is a common practice by developers
in computational physics and engineering simulations to include a cut off safeguard if
densities are outside the permissible range. Here we compare the spurious behavior of the
same schemes by solving the fully coupled reactive system without the Strang splitting
vs. using the Strang splitting. Comparison between the two procedures and the effects
of a cut off safeguard is the focus the present study. The comparison of the performance
of these schemes is largely based on the degree to which each method captures the
correct location of the reaction front for coarse grids. Here “coarse grids” means standard
mesh density requirement for accurate simulation of typical non-reacting flows of similar
problem setup. It is remarked that, in order to resolve the sharp reaction front, local
refinement beyond standard mesh density is still needed.

For reacting flows there are different ways in formulating (1.1). The present study
considers the following two commonly used formulations. These are using all the species
variables vs. using the total density and Ns − 1 number of species variables (Ns is the
total number of species).
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2. Overview of Two Recently Developed High Order Shock-Capturing Schemes

Here we briefly describe recently developed high order methods with subcell resolution
(Wang et al. 2012) and their nonlinear filter counterparts (Yee & Sjögreen 2007, 2010).

2.1. High Order Finite Difference Methods with Subcell Resolution for Advection
Equations with Stiff Source Terms (Wang et al. 2012)

The general fractional step approach is based on Strang-splitting (Strang 1968) for the 3D
reactive Euler equations (1.1). The numerical solution at time level tn+1 is approximated
by

Un+1 = A
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The reaction operator R is over a time step ∆t and the convection operator A is over
∆t/2. Except the first and last time step, the two half-step reaction operations over
adjacent time steps can be combined to save cost. The convection operator A is defined
to approximate the solution of the homogeneous part of the problem on the time interval,
i.e.,

Ut + F (U)x + G(U)y + H(U)z = 0, tn ≤ t ≤ tn+1. (2.2)

The reaction operator R is defined to approximate the solution on a time step of the
reaction problem:

dU

dt
= S(U), tn ≤ t ≤ tn+1. (2.3)

Here, the convection operator consists of, e.g., WENO5 with Roe flux (Jiang & Shu
1996) and RK4 for time discretization. If there is no smearing of discontinuities in the
convection step, any ODE solver can be used as the reaction operator. However, all
the standard shock-capturing schemes will produce a few transition points in the shock
when solving the convection equation. These transition points are usually responsible
for causing incorrect numerical results in the stiff case. Thus, a direct application of
a standard ODE solver at these transition points will create incorrect shock speed. To
avoid this, the Harten’s subcell resolution technique Harten (1989) in the reaction step
is employed. The general idea is as follows. If a point is considered a transition point
of the shock, information from neighboring points that are deemed not transition points
will be used instead. In multidimensional case the subcell resolution procedure is applied
dimension by dimension. Here only two mixture components are considered, so that
UT = (ρ1, ρ2, ρu, ρv, ρw, E), ρ = ρ1 + ρ2 and the mass fraction z = ρ2/ρ is selected
for the shock indicator. The reaction operator is applied to the solution obtained after
applying the subcell resolution technique.

In an earlier study Wang et al. reported that, in general, a regular CFL = 0.1 using
the explicit Euler to solve the reaction operator step can be used in the subcell resolution
scheme to produce a stable solution. But the solution in the reaction zone is not resolved
enough both in space and time. In order to obtain more accurate results in the reaction
zone, one reaction step can be evolved via Nr sub steps, i.e.,
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which have been used in some numerical examples studied in Wang et al. (2012).
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2.2. Well-Balanced High Order Filter Schemes for Reacting Flows (Yee & Sjögreen
2007, 2010; Sjögreen & Yee 2004; Wang et al. 2011)

The high order nonlinear filter scheme of Yee & Sjögreen (2007, 2010); Sjögreen &
Yee (2004), if used in conjunction with a dissipative portion of a well-balanced shock-
capturing scheme as the nonlinear numerical flux, is a well-balanced scheme, i.e. they
are able to exactly preserve specific steady-state solutions of the governing equations
(Wang et al. 2011). The well-balanced high order nonlinear filter scheme for reacting
flows consists of three steps.

(1) Preprocessing Step: Before the application of a high order non-dissipative spatial
base scheme, in order to improve stability the pre-processing step performs splitting
of inviscid flux derivatives of the governing equation(s) via the Ducros et al. splitting
(Ducros et al. 2000)

(2) Base Scheme Step: A full time step is advanced using a high order non-dissipative
(or very low dissipation) spatially central scheme on the split form of the governing par-
tial differential equations (PDEs). Summation-by-parts (SBP) boundary operator Olsson
(1995); Sjögreen & Yee (2007) and matching order conservative high order free stream
metric evaluation for curvilinear grids (Vinokur & Yee 2002) are used. High order tempo-
ral discretization such as the third-order or fourth-order Runge-Kutta (RK3 or RK4) is
used. It is remarked that other temporal discretizations can be used for the base scheme
step. Numerical experiments only focused on RK4 using Roe’s approximate Riemann
solver.

(3) Post-Processing (Nonlinear Filter Step): After the application of a non-dissipative
high order spatial base scheme on the split form of the governing equation(s), to fur-
ther improve nonlinear stability from the non-dissipative spatial base scheme, the post-
processing step of Yee & Sjögreen (2007, 2010); Sjögreen & Yee (2004) nonlinearly filteres
the solution by a dissipative portion of a high order shock-capturing scheme with a local
flow sensor. The flow sensor provides locations and amounts of built-in shock-capturing
dissipation that can be further reduced or eliminated. The idea of these nonlinear filter
schemes for turbulence with shocks is that, instead of solely relying on very high order
high-resolution shock-capturing methods for accuracy, the filter schemes Yee et al. (1999,
2000); Sjögreen & Yee (2004); Yee & Sjögreen (2007); Yee & Sjögreen (2008) take advan-
tage of the effectiveness of the nonlinear dissipation contained in good shock-capturing
schemes as stabilizing mechanisms (a post-processing step) at locations where needed.
The nonlinear dissipative portion of a high-resolution shock-capturing scheme can be any
shock-capturing scheme. Unlike standard shock-capturing and/or hybrid shock-capturing
methods, the nonlinear filter method requires one Riemann solve per dimension per time
step, independent of time discretizations. The nonlinear filter method is more efficient
than its shock-capturing method counterparts employing the same order of the respective
methods. See Yee & Sjögreen (2010) for the recent improvements of the work Yee et al.
(1999, 2000); Sjögreen & Yee (2004); Yee & Sjögreen (2007) that are suitable for a wide
range of flow speed with minimal tuning of scheme parameters.

The nonlinear filter counterpart of the subcell resolution method (denoted by WENO5fi/SR
or WENO7fi/SR) employing, e.g., WENO5 or WENO7 as the dissipative portion of the
filter numerical flux (WENO5fi or WENO7fi) can be obtained by replacing the convec-
tion operator in 2.1 by the nonlinear filter scheme. Nonlinear filter schemes that include
the Ducros et al. splitting of the governing equation preprocessing step are denoted by
“split” such as “WENO5fi+split” and “WENO5fi/SR+split”. This Ducros et al. splitting
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is not to be confused with the Strang splitting procedure in solving the reactive system,
regardless if a preprocessing step is used.

3. Numerical Results

The well known stiff detonation test case consisting of the Arrhenius 1D Chapman-
Jouguet (C-J) detonation wave Helzel et al. (1999); Tosatto & Vigevano (2008) is con-
sidered. This is the same test case studied in Wang et al. (2012); Yee et al. (2011, 2012).
Consider a 1D inviscid reactive flow containing two species, burned and unburned gas.
Let ρb be the density of burned gas, ρu - the density of unburned gas, u - the mix-
ture velocity. The mass fraction of the unburnt gas is z = ρu/ρ, the mixture density is
ρ = ρb + ρu, p = (γ − 1)

[
E − 1

2ρu2 − q0ρz
]

and q0 is the chemical heat released. The

reaction rate K(T ) is modeled by an Arrhenius law K(T ) = K0 exp
(
−Tign

T

)
, where K0 is

the reaction rate constant and Tign is the ignition temperature. The initial values consist
of totally burnt gas on the left-hand side and totally unburnt gas on the right-hand side.
The dimensionless density, velocity, and pressure of the unburnt gas are given by ρu = 1,
uu = 0 and pu = 1. The initial state of the burnt gas is calculated from the C-J condition:

pb = −b + (b2 − c)1/2, (3.1)

ρb =
ρu[pb(γ + 1)− pu]

γpb
, (3.2)

SCJ = [ρuuu + (γpbρb)1/2]/ρu, (3.3)
ub = SCJ − (γpb/rhob)1/2, (3.4)

where

b = −pu − ρuq0(γ − 1), (3.5)
c = p2

u + 2(γ − 1)puρuq0/(γ + 1). (3.6)

The heat release q0 = 25 and the ratio of specific heats is set to γ = 1.4. The ignition
temperature Tign = 25 and K0 = 16, 418. The computation domain is [0, 30]. Initially,
the discontinuity is located at x = 10. At time t = 1.8, the detonation wave has moved
to x = 22.8. The reference solution is computed by the regular WENO5 scheme with
10, 000 uniform grid points and CFL=0.05.

The left subfigure of Fig. 1 shows the density comparison among the standard TVD,
WENO5 and WENO7 schemes using 50 uniform grid points and CFL = 0.05 for the
same stiffness K0 = 16, 418 used in Yee et al. (2011). The right subfigure of Fig. 1
shows the density comparison among the less dissipative WENO5/SR, WENO5fi and
WENO5fi+split schemes using the same 50 uniform grid points. All of the computations
employ Strang splitting and the cut off safeguard procedure by RK4. For this particular
problem and grid size, all standard TVD WENO5 and WENO7 exhibit wrong shock
speed of propagation with the lower order and more dissipative schemes exhibiting the
largest error. WENO5fi+split compares well with WENO5/SR for the computed pressure
solution. WENO5/SR and WENO5fi+split can capture the correct structure using fewer
grid points than those in Helzel et al. (1999) and Tosatto & Vigevano (2008). A careful
examination of the 50 coarse grid mass fraction solutions indicates that WENO5fi+split
is 0.7 grid point ahead of WENO5/SR at the discontinuity location when compared to the
reference solution. Since WENO5fi+split is less dissipative than WENO5, the restriction
of the shock-capturing dissipation using the wavelet flow sensor helps to improve the
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Figure 1. 1D C-J detonation problem, Arrhenius case for the original stiffness K0 at t = 1.8.
Left: Density comparison with the Reference solution (line 1) of three standard shock-capturing
methods: TVD (line 2), WENO5 (line 3) and WENO7 (line 4) using 50 uniform grid points with
CFL = 0.05. Right: Density comparison with the Reference solution (line 1) of standard high
order shock-capturing methods and low dissipative methods: WENO5 (line 2), WENO5/SR
(line 3), WENO5fi+split (line 4) and WENO5fi/SR+split (line 5). All of the computations use
RK4, Strang splitting and the cut off safeguard procedure.

wrong propagation speed of discontinuities without the subcell resolution procedure. For
the same Strang splitting and the cut off safeguard procedure and CFL value, as the
stiffness coefficient increases to 100K0 and 1000K0 the error in the prediction of the
shock location increases. The spurious behavior of the studied schemes as a function of
CFL for the same three stiffness coefficients and three grids 50, 150 and 300 indicates
complex spurious behavior. See Fig. 2 for the less dissipative schemes behavior. Note
that the error is measured in number of grid points, so that the absolute error for the
grid 300 is less than for other two grids. For more details and additional test cases, see
Yee et al. (2012). All of the results shown above are by RK4 temporal discretization.
Previous studies Yee et al. (2012) indicated that RK4 and RK3 exhibit a similar trend
but with slight variation in solution behavior for the 1D detonation problem.

3.1. Solving Fully Coupled Reactive Equations vs. Strang Splitting of the Reactive
Equations

Studies show that solving the fully coupled reactive equations in conjunction with the
safeguard procedure or without are very unstable for standard shock-capturing schemes
as well as for their high order filter counterparts. Using a very small CFL for K0, RK4,
and the same three grids and CFL range, a similar wrong propagation speed of discon-
tinuities is observed by standard shock-capturing schemes for all considered CFL (with
the exception of one grid point error for WENO7 using a 50 grid), see Yee et al. (2012)
for details. However, WENO5fi+split and WENO7fi+split are able to obtain the correct
shock speed using the same small CFL. For stiffness coefficients 100K0 and 1000K0 using
the same three grids, no stable solutions are obtained except in the case of 100K0 and
300 grid points using CFL= 6.316455696 × 10−3 (a wrong speed solution is obtained).
Figures 3 and 4 summarize the comparison among (a) Strang/Safeguard, Nr = 10, (b)
Strang/No-safeguard, Nr, (c) No-Strang/Safeguard and (d) No-Strang/No-safeguard for
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Figure 2. 1D C-J detonation problem, Arrhenius case at t = 1.8. Number of grid point away
from the reference shock solution (Err) as a function of the CFL number (128 discrete CFL
values with 6.316455696 × 10−3 equal increment) for low dissipative shock-capturing methods
using 50, 150, 300 uniform grid points (across) and for stiffness K0, 100K0, 1000K0 (top to bot-
tom): WENO5 (line 1), WENO5/SR (line 2), WENO5fi+split (line 3) and WENO5fi/SR+split
(line 4). All of the computations use Strang splitting and the cut off safeguard procedure by
RK4. Note the difference in Err plotting ranges.

K0 and 50, 150 and 300 grid points. Note that due to the wide range of the Err values
by the various schemes the subplots use different Err plotting ranges.

These two figures show that the same computation without the cut off safeguard
procedure using the Strang splitting is also very unstable (valid CFL range is very small).
For K0, and the same three grids and CFL range, a similar wrong propagation speed
of discontinuities is observed by WENO5 for small CFL. However, WENO5/SR and
WENO5fi+split are able to obtain the correct shock speed using the same small CFL.
WENO5fi/SR+split is not able to obtain the correct shock speed for even the smallest
considered CFL value (CFL= 6.316455696 × 10−3). One of the possible causes might
be due to the incompatibility of the combined Strang splitting using Nr = 10, and the
nonlinear filter procedure. For stiffness coefficients 100K0 and 1000K0 using the same
three grids, no stable solutions are obtained except in the case of 100K0 and 300 grid
points using CFL= 6.316455696×10−3 (a wrong speed solution is obtained). The solution
behavior when solving the fully coupled reactive equations is different from the one using
the Strang splitting without the cut off safeguard procedure (see the second, third and
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Figure 3. Strang splitting vs. No-Strang splitting by standard schemes for the 1D C-J detona-
tion problem, Arrhenius case at t = 1.8. Number of grid points away from the reference shock so-
lution (Err) as a function of the CFL number (128 discrete CFL values with 6.316455696×10−3

equal increments) using 50, 150, 300 uniform grid points (across) and for stiffness K0: TVD (line
1), WENO5 (line 2) and WENO7 (line 3) All of the computations use RK4. Note the difference
in Err plotting ranges.

fourth rows of 3 and 4). The third and fourth rows of 3 and 4 indicate that there is no
significant difference in solution behavior in using the cut off safeguard procedure or not
when solving the fully coupled reactive equations without Strang splitting. To further
examine the difference between the two procedures in solving the reactive equations, we
compare the fully coupled solution procedure with the Strang splitting procedure using a
10, 000 grid. Figure 5 indicates that for fine enough grid points, both procedures produce
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Figure 4. Strang splitting vs. No-Strang splitting by improved schemes for the 1D C-J detona-
tion problem, Arrhenius case at t = 1.8. Number of grid points away from the reference shock so-
lution (Err) as a function of the CFL number (128 discrete CFL values with 6.316455696×10−3

equal increments) using 50, 150, 300 uniform grid points (across) and for stiffness K0: WENO5
(line 1), WENO5/SR (line 2), ENO5fi (line 3), WENO5fi+split (line 4) and WENO5fi/SR+split
(line 5). All of the computations use RK4. Note the difference in Err plotting ranges.

the same result. In summary, the combination of Strang splitting and the use of safeguard
procedure resulted in very complex spurious behavior.

A similar study comparing the tow ways in formulating 1.1 using all the Ns species
variables vs. using the total density and Ns − 1 number of species variables exhibit the
similar behavior with a very slight variation in the Err values (Figures not shown).
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Figure 5. 1D C-J detonation problem, Arrhenius case at t = 1.8. Comparison of solving fully
coupled reactive equations with safeguard (line 1) and without safeguard (line 2) vs. Strang
splitting using Nr = 2 with safeguard (line 3) and without safeguard (line 4) of the reactive
equations by WENO5 and RK4 using 10, 000 uniform grid points and for stiffness K0. All of
the computations use RK4.

3.2. Effect of the Nr parameter in Strang Splitting of the Reactive Equations
Figure 6 summarizes the comparison among the different values of Nr = 1, 5, 10, 100
for case (a) (Strang/Safeguard) using K0 and 50, 150 and 300 grid points. The results
indicate that a sufficient number of sub-reaction steps improves the overall accuracy and
yields a reduction in spurious numerics. Further increase of Nr does not show a significant
improvement.

3.3. Positivity-Preserving High Order Methods
The newly developed positivity preserving flux limiters for general high-order schemes of
Hu et al. (2012) keep the original scheme unchanged and detects critical numerical fluxes
may lead to negative density and pressure, and then imposes a cut-off flux limitation to
satisfy a positivity preserving condition. The Hu et al. (2012) methods appears to be a
better strategy than the simple safeguard procedure considered above.

Figure 7 indicates that by using the Hu et al. (2012) positivity-preserving scheme in
conjunction with the Strang splitting without the safeguard procedure can avoid wrong
shock speed with a slightly larger CFL than in case of using standard WENO counter-
parts. Here the computations use RK3. On the other hand for the same computations
using Zhang & Shu (2012) positive WENO scheme indicate less improvement (Figures
not shown). One method to further improve the spurious behavior is to use variable time
step control. Preliminary studies indicate a significant reduction of spurious behavior in
some cases when checking the positivity after each RK stage and refining the timestep
by a factor of 2 in case of failing the positivity criteria.

4. Summary

The obtained results illustrate spurious behavior of numerical solution for the prob-
lems with source terms and discontinuities. For the considered test case the principal
observations are as follows:
• The subcell resolution schemes Wang et al. (2012) and the filter schemes Yee &
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Figure 6. Nr = 1, 5, 10, 100 study using Strang splitting by improved schemes for the 1D
C-J detonation problem, Arrhenius case at t = 1.8. Number of grid points away from the
reference shock solution (Err) as a function of the CFL number (128 discrete CFL values with
6.316455696 × 10−3 equal increments) using 50, 150, 300 uniform grid points (across) and for
stiffness K0: WENO5 (line 1), WENO5/SR (line 2), WENO5fi (line 3), WENO5fi+split (line 4)
and WENO5fi/SR+split (line 5). All of the computations use RK4.

Sjögreen (2007, 2010); Sjögreen & Yee (2004) in certain cases can significantly improve
the results in terms of reducing spurious numerics.
• The introduction of the adhoc safeguard procedure to the numerical scheme in combi-

nation with Strang splitting can extend the valid CFL range and obtain complex spurious
behavior.
• Using fully coupled reactive equations with or without the safeguard procedures is

constrained by a similar CFL range as using Strang splitting without the safeguards.



On spurious numerics in solving reactive equations 11

Figure 7. Strang splitting no safeguard by Hu et al. positivity-preserving schemes (top) and
regular schemes using Lax-Friedrichs flux (bottom) for the 1D C-J detonation problem, Arrhe-
nius case at t = 1.8. Number of grid points away from the reference shock solution (Err) as
a function of the CFL number (128 discrete CFL values with 6.316455696 × 10−3 equal incre-
ments) using 50, 150, 300 uniform grid points (across) and for stiffness K0: WENO5 (line 1),
WENO5/SR (line 2), WENO5fi (line 3), WENO5fi+split (line 4) and WENO5fi/SR+split (line
5). All of the computations use RK3, Strang splitting with Nr = 10.

• In the case of using Strang splitting, the increase of the subiterations number Nr

for the reactive operator step up to a certain level can improve the results, but further
increase of Nr does not make a significant improvement.
• Using the positivity preserving schemes Hu et al. (2012) instead of cutting off pro-

cedure can slightly extend the valid CFL range.
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