TOWARDS CALIBRATING THE VESTAN REGOLITH: CORRELATING THE PETROLOGY, CHEMISTRY AND SPECTROSCOPY OF HOWARDITES.
D. W. Mittlefehldt1, E. Ammannito2, T. Hiroi3, S. De Angelis2, T. Di Iorio2, C. M. Pieters3 and M. C. De Sanctis2. 1NASA/Johnson Space Center, Houston, TX, USA. E-mail: david.w.mittlefehldt@nasa.gov. 2Istituto di Astrofisica e Planetologia Spaziali, INAF, Rome, Italy. 3Brown University, Providence, RI, USA.

Introduction: The Dawn spacecraft carries a visible and infrared mapping spectrometer (VIR) \cite{1} that has acquired spectra for the wavelength range 0.25-5.0 µm at various spatial resolutions covering much of the vestan surface \cite{2}. Through comparison of VIR spectra with laboratory spectra of howardite, eucrite and diogenite meteorites, the distribution of more diogenite-rich and more eucrite-rich terranes on Vesta have been mapped \cite{3}, but these maps are qualitative in nature. The available laboratory spectra are not well-integrated with detailed sample petrology or composition limiting their utility for lithologic mapping. Importantly, howardites are now recognized to come in two subtypes, regolithic and fragmental \cite{4}. The former are breccias assembled in part from true regolith, while the latter have had much less exposure to the space environment. We are attempting to develop a more quantitative basis for mapping the distribution of lithologic types on Vesta through acquiring laboratory spectra on splits of howardites that have been petrologically and chemically characterized \cite{5}. Noble gas analyses have been done on some allowing identification of those howardites that have been exposed in the true regolith of Vesta \cite{6}.

Spectroscopy: Spectra were acquired on sample powders sieved to <75 µm at the spectroscopy laboratory of the Istituto di Astrofisica e Planetologia Spaziali, INAF, and the Keck/NASA Reflectance Experiment Laboratory (RELAB) of Brown University. At present, data-reduction for the new spectra is incomplete and they can only be discussed qualitatively. Band parameters for the ~1 and ~2 µm pyroxene absorption features (hereafter BI and BII) will be computed using the same data-reduction procedures as used for Dawn VIR spectra \cite{3}.

Comparisons: There is a general trend indicating that those howardites that were exposed in the true regolith, as indicated by trapped solar wind noble gases \cite{6}, show lower reflectance and shallower BI and BII compared to howardites with similar major element compositions, and thus similar eucrite:diogenite mixing ratios \cite{5}. Excluding PRA 04401 which has a very high content of carbonaceous chondrite clasts \cite{5}, PCA 02066 has the lowest reflectance and the shallowest BI and BII. This howardite is dominated by melt-matrix breccia clasts, has a high Ni content derived from impactors \cite{5}, but it does not contain trapped solar wind gases \cite{6}. Polymict eucrite QUE 97002 (eucrite:diogenite = 96:4 \cite{5}) has lower reflectance and shallower BI and BII than other polymict eucrites. It contains carbonaceous chondrite clasts at ~4 wt% level based on Ni content, but does not contain glassy or melt-matrix clasts \cite{5}.