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Abstract 
The performance of high-speed helical gear trains is of 

particular importance for tiltrotor aircraft drive systems. These 
drive systems are used to provide speed reduction/torque 
multiplication from the gas turbine output shaft and provide the 
necessary offset between these parallel shafts in the aircraft. 
Four different design configurations have been tested in the 
NASA Glenn Research Center, High Speed Helical Gear Train 
Test Facility. The design configurations included the current 
aircraft design, current design with isotropic superfinished gear 
surfaces, double helical design (inward and outward pumping), 
increased pitch (finer teeth), and an increased helix angle. All 
designs were tested at multiple input shaft speeds (up to 15,000 
rpm) and applied power (up to 5,000 hp). Also two lubrication, 
system-related, variables were tested: oil inlet temperature (160 
to 250 °F) and lubricating jet pressure (60 to 80 psig). 
Experimental data recorded from these tests included power loss 
of the helical system under study, the temperature increase of 
the lubricant from inlet to outlet of the drive system and fling 
off temperatures (radially and axially). Also, all gear systems 
were tested with and without shrouds around the gears. The 
empirical data resulting from this study will be useful to the 
design of future helical gear train systems anticipated for next 
generation rotorcraft drive systems. 

Introduction 
Rotorcraft drive systems are critical to the high efficiency 

and lightweight requirements of the propulsion system. 
Tiltrotor aircraft, as currently designed, utilize the drive 
system as a means to fly even when one engine is inoperative 
through the use of shafting and other gearboxes to connect the 
two rotors together. A sketch of the entire propulsion system is 
shown in Figure 1 and a close up of the wing tipped nacelle 
propulsion system is shown in further detail in Figure 2 (Ref. 1).  

Also in a tiltrotor aircraft, the entire propulsion system is 
required to tilt from the vertical position (helicopter mode) to 
that of the horizontal position (forward flight—airplane 
mode). The unique capabilities allow this aircraft to fly at a 
high rate of speed in the airplane mode and land vertically, 
greatly enhancing the aircraft’s usefulness in fulfilling a 
number of military missions.  

The drive system contained within the prop-rotor gearbox 
connects the parallel shafts of the gas turbine engine to that of 
the propeller via a gear train of helical gears. The gear train 
operates at high rotational speeds that result in high pitch line 
velocity of the gears that can affect the overall drive system 
performance through an increase in windage power losses. It 
is of the utmost importance for drive system efficiency to 
make the transition from the gas turbine engine to the 
propeller with the minimum amount of power loss. High 
power loss is absorbed by the lubricant or expelled through the 
gearbox housing in the form of heat. Therefore improved 
performance of the gearbox can result in more power available 
to the rotor, increased load capacity, or extended range. 

The objective of this study is to experimentally determine 
how operating conditions, gear design, and gear shrouding can 
influence the performance of high-speed helical gear trains as 
used in a tiltrotor aircraft. 

Test Facility, Test Hardware, and Test 
Method 
Test Facility 

The test facility used in this study is the High Speed Helical 
Gear Train Test Facility located at NASA Glenn Research 
Center (Ref. 2). The test facility arrangement is shown in 
Figure 3 and a sketch of the key test system components is 
shown in Figure 4.  
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Figure 1.—Tilt rotor propulsion system components (Ref. 1). 

 
 

 
Figure 2.—Propulsion system components that reside within the aircraft 

nacelle. Tilt axis gearbox (TAGB), and prop-rotor gearbox (PRGB). 
 
 

 
Figure 3.—Test facility arrangement. 
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Figure 4.—Sketch of test facility primary components. 

 
Referring to Figure 3 for the discussion, the facility operates 

as a closed-loop test facility. Power is circulated from the test 
gearbox to the slave gearbox and then returns to complete the 
torque loop. A rotating torque actuator in the slave gearbox 
provides an adjustable loop torque while the drive motor must 
provide for all of the gear, bearing, and windage losses. With 
the current components, up to 5,000 hp can be circulated 
around the test to the slave gearbox loop. The high-speed 
shaft, simulating the power turbine shaft, can be rotated to 
15,000 rpm. Most of the test conditions that will be reported in 
this paper have to do with the hover and forward flight speed 
conditions. The drive system input shaft rotates at 15,000 and 
12,500 rpm, respectively at these conditions. Both gearboxes 
have separate lubrication systems that include supply and 
scavenge pumps, filters (3 µm), heaters, heat exchangers, etc. 
The test and slave gearboxes operate in a dry sump mode 
where the lubricant that is jet fed to the gears and bearings is 
removed immediately after lubricating and cooling via the 
scavenge pumps. For all the data presented in this report, the 
slave gearbox operating conditions were constant, at ~160 °F 
lubricant inlet temperature, and ~80 psi jet pressure.  

Test Hardware 
The gearing components used in the test program included 

four different gear designs. There is the baseline (currently 
used aircraft design), baseline with isotropic superfinishing 
(ISF), double helical, fine pitch, and increased helix angle 
designs. The design information for all four cases are provided 

in Table 1. The same gear material, Pyrowear 53, was used in 
all gearing components and all were manufactured with the 
same surface finish and gear quality. A photograph of the 
input gear designs is shown in Figure 5. The gearing 
components are shown during their installation into the 
gearbox housing as shown in Figure 6 (baseline design). 

 
TABLE 1.—BASIC GEAR DESIGN INFORMATION 

  
Baseline 
design 

Double 
helical 
design 

Fine pitch 
design 

Increased 
helix angle 

design 
Number of teeth, input 
and 2nd idler/1st and 
3rd idler/ bull gear 

50/51/139 50/51/139 70/73/196 50/51/139 

Normal module, mm, 
(diametral pitch, (1/in.)) 

3.033 
(8.375) 

2.540 
(10.000) 

2.142 
(11.858) 

2.9136 
(8.7177) 

Face Width, mm (in.) 66.68 
(2.625) 78.23 (3.08) 66.68 

(2.625) 
66.68 

(2.625) 
Normal pressure angle, 
deg. 20 20 20 20 

Transverse helix angle 
at pitch diameter, deg. 12 35 12 20 

Test Method 
The test facility was operated at all conditions long enough 

to establish steady state conditions. This typically took ~ 5 
min to attain once the first test condition was reached. An 
example of this will be presented later in this paper. Data 
taken was stored remotely for playback if needed. The rate of 
data acquisition for all tests was 0.5 or 1.0 Hz. 
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Figure 5.—Photograph of input gear designs. Baseline, baseline 

+ ISF, double helical, fine pitch, and increased helix angle. 
 

 
Figure 6.—Baseline test hardware during installation. 

 

 
Figure 7.—Rake probes (a) and array probe (b). 

Test Gearbox Instrumentation 
The test facility provided for five operational condition 

measurements: drive motor power, drive motor speed, test 
system loop power, lubricant pressure and all the facility 
temperatures. Drive motor power to the facility is monitored 
via a commercially available torquemeter. Loop power is 
measured using a torque-bridge-telemetry system attached to 
the Bull Gear connect shaft between the test and slave 
gearboxes. A plethora of thermocouples monitor the lubricant, 
gearbox housing, bearings, and fling-off temperatures. Fling-
off temperatures are found via two different probe types. 

Rake and array thermocouple probes were designed and 
fabricated to indicate the lubricant temperature radially flung 
off and axially pumped respectively (Ref. 3). The two 
different probe types are shown in Figure 7. The rake probes 
had five thermocouples across the face width of the gear (six 
for double helical design) and the array probe had nine 
thermocouples in a 25.4- by 25.4-mm (1- by 1-in.) substrate.  

Both probes were located very close to the mesh position of 
the gears. The rake and array probes were located within the 
test gearbox as shown in Figure 8. 

Test Data 
Test Operation 

Test operation was conducted in the following manner. First 
the rotational speed and applied load were established and 
then the temperatures of the facility were allowed to come to 
steady state once the oil inlet and outlet temperatures 
stabilized. An example of a typical time history of a test is 
shown in Figure 9 for the conditions given in Table 2 (Ref. 4). 
In the data to be presented, values from all important variables 
will be presented at a steady state operating point. 

 
 

TABLE 2.—CONDITIONS FOR FIGURE 9. GEARS 
WERE BASELINE DESIGN, SUPERFINISHED, 

AND 160 °F OIL INLET TEMPERATURE 
Condition Input shaft 

speed  
(krpm) 

Lower 
power 
(hp) 

Temperature 
increase across 

gearbox 
(°F) 

Drive 
motor 
power 
(hp) 

A Warm up    
B 12.5 1,379 50.6 138.0 
C 12.5 2,801 55.1 149.2 
D 12.5 4,170 59.7 160.1 
E 15.0 1,657 73.8 201.9 
F 15.0 3,366 79.1 213.2 
G 15.0 4,986 83.0 225.1 
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Figure 8.—Locations of the rake (a) and array (b) probes in the test gearbox. 

 
 

 
Figure 9.—Temperature data at mid-face of rake and at array probe center 

for all sensor locations (conditions shown in Table 2, one scan = 2 sec, 
160 °F oil inlet temperature) super-finished baseline design test results. 
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Spin Loss Data 
In order to understand the drive system losses, experimental 

tests were conducted to full speed (except in some unshrouded 
cases) at approximately 10 percent of the full torque of the 
facility. The data generated was for the various gear designs, 
with and without shrouding. The test gearbox (top cover 
removed) with the shrouding installed is shown in Figure 10(a) 
and shrouding removed in (b). 

The results from the shrouded and unshrouded tests are 
shown in Figure 11(a) and (b), respectively. The shrouded 
gear tests were run at ~ 160 °F lubricant inlet temperature. The 
unshrouded gear tests were run for most of the gear designs at 
two lubricant inlet temperatures (~160 and 200 °F).  

The non-linear increase in drive motor power requirement 
for these tests resembles the windage power loss curves 
generated in Reference 5. The data plotted in all the curves 
here, and those to come later with respect to “drive motor 
power”, refer to the entire test system (test and slave 
gearboxes). As shown in Figure 11(b), for the high helix angle 
gear design, the facility could not stably run at the 12,500 and 
15,000 rpm conditions in the unshrouded case. This is an 
indication of the windage from the gears interrupting the 
scavenging of lubricant from the test gearbox.  

A comparison of the double helical—outward pumping 
design, is shown in Figure 12. The data indicates the effect of 
having the shrouds installed. The drive system power 
requirement difference is a direct measurement of the shroud 
effectiveness at a given speed and torque combination. Note 
that rotational speed change is far more important than the 
level of applied load, meaning that the windage part of the 
losses is dominating the drive motor power requirements. 

Gear Design Effects 
An indication of how the different gear designs affect the 

performance for the same operating conditions for all four 
designs will be addressed in this section. In Figure 13 the 
design effect is shown at 160 °F lubricant inlet temperature 
and in Figure 14 at 250 °F lubricant inlet temperature as a 
function of applied bull gear torque at two different rotational 
speeds. Both figures were for shrouded gears.  

It is apparent from these two figures that the rotational 
speed had the largest effect on the results for a given design. 
Higher lubricant inlet temperature reduced the power 
requirement, and the baseline or high helix angle designs 
produced the largest power requirements. The fine pitch 
design produced the lowest power requirements for all 
conditions shown. This result must be tempered with the fact 
that the test and slave gearboxes had this type of gearing, 
therefore the power savings of an individual gearbox would be 
similar to that of the double helical gear design that were 
operated in the outward pumping arrangement. 

As an example of how the lubricant inlet temperature affects 
the power loss of a given configuration is shown in Figure 15. 
In this figure the drive motor power is plotted versus bull gear 
shaft torque for two input shaft speeds for the baseline design. 
Higher lubricant inlet temperature reduces the power loss of 
the gear train at all speed and load conditions. For the baseline 
design this resulted in a ~10 hp reduction in power loss by 
increasing the lubricant inlet temperature from 160 to 250 °F. 

 
 
 

 
Figure 10.—Test gearbox with the shrouding installed and 

removed. (a) Shrouding installed (baseline). (b) Shrouding 
removed (double helical inward pumping). 
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Figure 11.—Spin loss data for (a) shrouded and (b) unshrouded conditions. 
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Figure 12.—Effect of shrouding on drive motor power. Double 

helical gears, outward pumping 200 °F oil inlet temperature. 
 
 
 
 

 
Figure 13.—Effect of gear design shrouded on drive motor 

power, 160 °F lubricant inlet temperature.  
  
 
 
 
 
 
 
 
 

 
 
 

 
Figure 14.—Effect of gear design (shrouded) on drive motor 

power, 250 °F lubricant inlet temperature. 
 
 
 
 
 
 

 
Figure 15.—Lubricant inlet temperature effects on drive motor 

power required (gears shrouded).  
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Lubrication Jet Pressure Tests 
Three lubricant jet pressure (flow rate) conditions are shown 

for the two speed conditions and one level of applied load 
(~33 percent of full torque). The drive motor power required is 
shown in Figure 16 and the lubricant temperature increase 
across the gearbox (exit temperature minus inlet temperature) 
is shown in Figure 17. In either figure the lower symbol for a 
given design is the 12,500 rpm data and upper symbol is the 
15,000 rpm data. As would be expected, higher flow rate of 
lubricant reduced the temperature change, but higher jet 
pressure (flow) increase the power loss for all conditions. The 
fine pitch design had the lowest drive motor required (note 
fine pitch gears were installed in both the test and slave 
gearbox) and minimum temperature increase for any rotational 
speed or loop torque requirement. 

Internal Gearbox Instrumentation 
The final comparison to be made in this paper is how the 

instrumentation inside the gearbox, fling off temperatures, 
were affected by gear designs and operation conditions. As 
described earlier, rake probes (radial) and array probes 
(axially) will be used to generate the data discussed here. The 
data presented was the maximum from any of the three rake 
probes or the four array thermocouple sensors. Generally 
speaking, the highest temperature locations were those at the 
idler gear positions.  

An example of the rake probe data is shown in Figure 18. 
The lubricant inlet temperature for this data was 200 °F. Six 
different test configurations are shown all with the gears 
shrouded. As with all the other data presented in this study, the 
fine pitch gear design performed the best and rotational speed 
was a larger factor than applied load on the results. The fling 
off temperature from the rake probes could be in excess of 
125 °F higher than the lubricant inlet temperature.  

An example of the array probe data is shown in Figure 19. 
This data was also taken at the same inlet lubricant 
temperatures as the data from Figure 18. This data requires a 
little more explanation than the rake data. The array probe data 
is influenced by the axially pumped air-lubricant mixture due 
to the helical gear meshing action. For the single helical gear 
designs, the air-lubricant mixture expended from the ends of 
the teeth impinge directly on the array sensor. Therefore the 
single helical gear design data is clustered at a higher 
temperature than either of the double helical results. The 
outward pumping helical gears have approximately one-half of 
the face width before the air lubricant mixture impinges on the 
array sensor. The distance that the air-lubricant mixture is 
pumped in a single helical gear is the complete face width. 
Therefore single helical results would be expected to have a 
higher axially pumped measured temperature. 

 

 
 
 
 

 
Figure 16.—Lubricant pressure effects on drive motor power 

requirements. Shrouded gears, ~19,000 in.*lb torque, 200 °F 
oil inlet temperature. 

 
 
 
 

 
Figure 17.—Lubricant pressure effects on temperature increase 

across the test gearbox, 200 °F oil inlet temperature. 
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Figure 18.—Rake probe lubricant fling-off data, maximum for a 

given speed and load condition, 200 °F oil inlet temperature. 
 
 
 

 
Figure 19.—Array probe fling-off data, maximum values for a 

given speed and load, 200 °F oil inlet temperature. (Note: 
Data at higher symbol is at 15,000 rpm and lower symbol 
12,500 rpm.) 

Conclusions 
Based on the results attained in this study the following 

conclusions can be made: 
 
1. High-speed gearing benefits from the use of shrouding 

when the pitch line velocity exceeds ~ 15,000 ft/min. At 
conditions above this pitch line speed, the windage 
losses can dominate those from other sources (gear 
meshing and bearing losses). 

2. Gear design characteristics can also impact the drive 
system power losses. For the tests conducted in this 
study, the fine pitch gear design had the least power loss 
and lowest temperature increase of the lubricant across 
the gearbox. 

3. Lubricant inlet temperature changes indicated that 
higher inlet temperature required less drive motor power 
for identical conditions for all designs. 

4. Lubricant jet pressure (flow) affects the power loss and 
temperature change from the inlet to exit of the gearbox. 
Lower flow resulted in less power required, but resulted 
in an increase in temperature across the gearbox.  

5. Special rake and array probes indicated that the 
temperature of the lubricant that is flung off radially and 
pumped axially far exceeds the bulk flow temperature 
exiting the gearbox. The temperature rise can exceed 
125 °F radially (rake probe) and 165 °F axially (array 
probe) depending on the speed, load, and other 
conditions applied. 
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