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A systematic approach is presented for developing entropy stable (SS) formulations of any order for the
Navier-Stokes equations. These SS formulations discretely conserve mass, momentum, energy and satisfy a
mathematical entropy inequality. They are valid for smooth as well as discontinuous flows provided sufficient
dissipation is added at shocks and discontinuities. Entropy stable formulations exist for all diagonal norm,
summation-by-parts (SBP) operators, including all centered finite-difference operators, Legendre collocation
finite-element operators, and certain finite-volume operators. Examples are presented using various entropy
stable formulations that demonstrate the current state-of-the-art of these schemes.

I. Introduction

A current organizational research goal of the Revolutionary Computational AeroSciences sub-project (Aeronautical

Sciences Project) is to develop next generation high-order numerical algorithms for use in large eddy simulations (LES)

and hybrid Reynolds-averaged Navier-Stokes (RANS)-LES simulations of complex separated flow. These algorithms

must be suitable for simulations of highly nonlinear turbulence models across the subsonic, transonic and supersonic

speed regimes.

Most high-order techniques experience a loss of robustness when the solution contains discontinuities or even

under-resolved physical features. Although a variety of mathematically rigorous stabilization techniques have been

developed for second-order methods (e.g. total variation diminishing (TVD) limiters,1 and entropy stability2), ex-

tending these techniques to high-order formulations has been problematic. A typical consequence is loss of design

order accuracy at local extrema or insufficient stabilization. It is possible to achieve high-order design accuracy away

from captured discontinuities, and maintain sharp “nearly monotone” captured shocks. The schemes that deliver these

features are the essentially nonoscillatory (ENO)3, 4 and weighted ENO (WENO)5, 6 schemes. Unfortunately, nonoscil-

latory schemes experience instabilities in less than ideal circumstances (i.e., curvilinear mapped grids or expansion of

flows into vacuum). Because these schemes are largely based on stencil biasing heuristics rather than mathematical

stability proofs and the theory that does exist is not sharp,7, 8 there is little to guide further development efforts focused

on alleviating the instabilities; that is, until recently. A general procedure for developing entropy conservative and

entropy stable schemes of any order appears in reference 9, and is applicable for broad classes of spatial discretization

operators.

Entropy stability guarantees that the thermodynamic entropy is bounded for all time in L2, provided that density

and temperature remain positive and boundary data is well-posed and preserves the entropy estimate. Nearly three

decades ago, entropy conservative schemes that discretely satisfy an entropy conservation property were constructed

by Tadmor2, 10 for second-order finite-volume methods. These schemes were extended to high-order periodic domains

by LeFloch and Rhode.11 Finding a computationally efficient discrete entropy flux was a major obstacle, that was

alleviated recently for the Navier-Stokes equations through the work of Ismail and Roe.12 A methodology for con-

structing entropy stable schemes satisfying a cell entropy inequality and capable of simulating flows with shocks in

periodic domains was developed by Fjordholm et al.13 Recently, Fisher and Carpenter9 present multi-domain proofs
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of entropy conservation and stability based on diagonal norm summation-by-parts (SBP) operators, that yield en-

tropy stable methods on finite domains. Generalization to arbitrary Cartesian domains follows immediately using

simultaneous-approximation-term (SAT) penalty type interface conditions14 between adjoining domains.

A remarkable property of the work in reference 9 is the generality of the entropy stability proofs. Although the

primary focus therein is entropy stability of WENO finite-difference schemes, all proofs generalize to a broad class of

SBP-SAT operators applied to the conservation form of the equations. Indeed, any spatial discretization that can be

expressed as a non-dissipative, diagonal norm, SBP-SAT operator can be implemented in an entropy conservative and

stable fashion. Thus, now it is possible to construct entropy conservative and stable formulations of arbitrary order

for many popular discrete operators; centered finite-differences and Legendre spectral collocation being important

examples.

Entropy analysis of the Navier-Stokes equations appears in the early work of Hughes et al.15 in the context of

Galerkin and Petrov-Galerkin finite element methods. Entropy stability follows immediately if the equations are

rotated into symmetric (nonconservative) form and discretized using the FEM. Finite-element entropy stability proofs

for nonlinear equations written in conservation form, appear in many texts (e.g., see Hesthaven and Warburton16 for a

discussion of Burgers’ equation), and are valid for elements of arbitrary order. Extension to the compressible Navier-

Stokes equations in conservation form, however, has been difficult to achieve. Indeed, a fundamental obstacle in

finite-element method (FEM) proofs is the requirement for integral exactness, a property that is all but impossible to

satisfy for the compressible equations.a Entropy stability proofs that are based on diagonal norm, SBP-SAT schemes,

however, do not suffer this limitation.

The focus herein is a “high-level” overview of the mathematical concepts of entropy stability for diagonal norm,

SBP-SAT operators, including illustrative examples that support the theory. No attempt is made to develop new

concepts or present new SBP-SAT operators or entropy stability theory. The pivotal works (theorems) that facilitated

recent contributions are presented, supplemented with the citations necessary to aide further investigation by interested

readers. Only discretizations consistent with the Lax-Wendroff theorem are considered. In section II the Navier-Stokes

equations are introduced followed by a comprehensive introduction to diagonal norm SBP-SAT theory and operators.

The section concludes with a survey of important discrete operators that can be expressed as diagonal norm, SBP

operators. Section III introduces the concepts of entropy consistency and entropy stability at both the continuous and

semi-discrete level. Details of the implementation of entropy stable schemes are presented in section IV, including a

description of the comparative technique used to build an entropy stabilized conventional algorithm (e.g., SSWENO).

Results from several different discrete entropy stable operators are presented in section V followed by conclusions in

section VI. Appendices provide additional implementation details.

II. Theory: Diagonal Norm SBP-SAT Operators

A. Governing Equations

Consider the calorically perfect Navier-Stokes equations expressed in the form

qt +( f i)xi = ( f (v)i)xi , x ∈ Ω, t ∈ [0,∞),

Bq = gb, x ∈ ∂Ω, t ∈ [0,∞),

q(x,0) = g0(x), x ∈ Ω,

(II.1)

where the Cartesian coordinates, x = (x1,x2,x3)
T , and time, t, are independent variables, and index sums are implied.

The vectors q, f i, and f (v)i are the conserved variables, and the conserved inviscid and viscous fluxes, respectively.

Without loss of generality, a three dimensional box

Ω = [xL
1 ,x

H
1 ]× [xL

2 ,x
H
2 ]× [xL

3 ,x
H
3 ]

is chosen as our computational domain with ∂Ω representing the boundary of the domain. The boundary vector

gb is assumed to contain well-posed Dirichlet/Neumann data. We have omitted a detailed description of the three-

dimensional Navier-Stokes equations, that may be found elsewhere.17

a Recasting the equations in entropy variables or using non-conservation forms of the equations are not viable options when simulating high-

speed flows because the Lax-Wendroff (L-W) theorem is not applicable in these forms.

2 of 27

American Institute of Aeronautics and Astronautics



B. Summation-by-parts Operators

First derivative operators that satisfy the summation-by-parts (SBP) convention, discretely mimic the integration-by-

parts property
xR∫

xL

φqx dx = φq|xR
xL
−

xR∫

xL

φxqdx, (II.2)

with φ an arbitrary test function. This mimetic property is achieved by constructing the first derivative approximation,

Dφ, with an operator in the form

D = P−1 Q , P = P T , ζT P ζ > 0, ζ �= 0,

Q T = B −Q , B = diag(−1,0, . . . ,0,1) ,
(II.3)

with ζ an arbitrary vector. The matrix P can be thought of as a mass matrix (or integrator) much like in FEM, or

a volume that contains local grid information in the context of finite-volume or finite-differences. The nearly skew-

symmetric matrix Q , is an undivided differencing operator; all rows sum to zero, as do all columns save the first

and last which sum to −1 and 1, respectively. The special structure of Q guarantees conservation as is proven in the

following lemma. (The proof to this lemma can be found elsewhere.18)

Lemma 1. All differentiation matrices, D , satisfying the SBP convention given in equation II.3 are discretely conser-
vative in the P -norm.

While the matrix P need not be diagonal, only diagonal norm SBP operators are considered herein; only they can

be manipulated into the entropy stable SBP-SAT (SS-SBP-SAT) form.

The accuracy of the first derivative operator D , can be expressed as

φx(x) = Dφ+Tp+1, (II.4)

where Tp+1 is the truncation error of the approximation. Integration in the approximation space is conducted using an

inner product with the appropriate integration weights contained in the norm P ,

xR∫

xL

φqx dx ≈ φT P Dq, φT = (φ(x1),φ(x2), . . . ,φ(xN))
T , q = (q(x1),q(x2), . . . ,q(xN))

T , (II.5)

with φ and q the projections of continuous variables onto a grid x1, · · · ,xN (fully defined in the next subsection).

Substituting equation II.3 into II.5, the mimetic SBP property is demonstrated,

φT P P−1Q q = φT (
B −Q T )q = φNqN −φ1q1 −φT DT P q. (II.6)

1. Complementary Grids

Define on the interval −1 ≤ x ≤ 1, the vectors of discrete solution points

x = [x1,x1, · · · ,xN−1,xN ]
T ; −1 ≤ x1,x2, · · · ,xN−1,xN ≤ 1 (II.7)

Since the approximate solution is constructed at these points, they are referred to as solution points. It is useful to

define a set of intermediate points prescribing bounding control volumes about each solution point. These (N + 1)
points are referred to as flux points as they are similar in nature to the control volume edges employed in the finite-

volume method. The distribution of the flux points depends on the discretization operator. The spacing between the

flux points is implicitly contained in the norm P ; the diagonal elements of P are equal to the spacing between flux

points,

x̄ = (x̄0, x̄1, . . . x̄N)
T , x̄0 = x1, x̄N = xN ,

x̄i − x̄i−1 = P(i)(i), i = 1,2, . . . ,N.
(II.8)

In operator notation, this is equivalent to

Δx̄ = P 1 ; 1 = (1,1, . . . ,1)T , (II.9)

and Δ is as defined in equation II.12. Note that in equation II.8, the solution and flux coincide at the first and last points

and thus

f̄0 = f (q1), f̄N = f (qN). (II.10)

This duality is needed to define unique operators and is important in proving entropy stability.
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2. Telescopic Flux Form

All SBP derivative operators D can be manipulated into the telescopic flux form,

fx(q) = P−1Q f+Tp+1 = P−1Δf+Tp+1. (II.11)

where the N × (N +1) matrix Δ is defined as

Δ =

⎛⎜⎜⎜⎜⎜⎜⎝
−1 1 0 0 0 0

0 −1 1 0 0 0

0 0
. . .

. . . 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎠ , (II.12)

that calculates the undivided difference of the two adjacent fluxes. The existence of a telescopic form for all SBP

operators is reiterated in the following lemma, presented without proof. (The original proof appears elsewhere.18)

Lemma 2. All differentiation matrices that satisfy the SBP convention given in equation II.3 are telescoping operators
in the norm P and can be expressed as in equation II.11.

This telescopic flux form admits a generalized SBP property. All SBP operators defined in equation II.3 can be

manipulated to transfer the action of the discrete derivative onto a test function with an equivalent order of approxi-

mation. The telescopic flux form defined in equation II.11 combined with the flux consistency condition results in a

more generalized relation,

φT P P−1Δf = φT (B̃ − Δ̃)f = f (qN)φN − f (q1)φ1 −φΔ̃f, (II.13)

where

Δ̃ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 −1 0 0 0 0

0 1 −1 0 0 0

0 0
. . .

. . . 0 0

0 0 0 1 −1 0

0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ , B̃ =

⎛⎜⎜⎜⎜⎜⎜⎝
−1 0 0 0 0 0

0 0 0 0 0 0

0 0
. . .

. . . 0 0

0 0 0 0 0 0

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and
1

δx
φT Δ̃ = φT

x +O(N−1) ,

with δx the local grid spacing. This is equivalent to the commonly used explanation of summation-by-parts in indicial

form,
N

∑
i=1

φi
(

f̄i − f̄i−1

)
= f (qN)φN − f (q1)φ1 −

N−1

∑
i=1

f̄i (φi+1 −φi) . (II.14)

The action of the derivative is still moved onto the test function but at first order accuracy. Note that although this

generalized property is used herein to construct entropy conservative fluxes, it is also instrumental for satisfying the

Lax-Wendroff theorem19 in weak form.

3. Variable Coefficient Second Derivative Approximation

The viscous approximations for regularized conservation laws, written in general as

(ϑ(x)vx(x))x = D2(ϑ)v+T (v)
p+1, (II.15)

must also satisfy the SBP condition. (The discrete second derivative D2(ϑ) operators on the vector v.) Integration by

parts yields
xR∫

xL

φ(ϑvx)x dx = φϑvx|xR
xL
−

xR∫

xL

φxϑvx dx. (II.16)
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It is trivial to show that two applications of the first derivative operator satisfy the SBP condition. This is the preferred

method for forming the viscous terms in spectral collocation. The double application of the first derivative is not

advisable when dealing with finite difference or finite-volume operators, as the approximation using two first derivative

operations requires a much wider stencil, is less accurate, and only leads to neutrally stable approximations.20–22 A

finite-difference narrow stencil viscous operator is defined as

D2(ϑ) = P−1 (−M (ϑ)+B[ϑ]D) , M (ϑ) = M (ϑ)T , [ϑ] = diag(ϑ(x)) ,

ζT M (ϑ)ζ ≥ 0, ζT [ϑ]ζ ≥ 0, ∀ζ.
(II.17)

Either approach can be used to discretize equation II.1 and leads to an expression of the form

(ϑqx(x))x ≈ P−1
(−DT P [ϑ]D +B[ϑ]D

)
q = P−1Δf(v). (II.18)

Note that this form satisfies a telescoping conservation property that is identical to that of the inviscid terms.

4. The Semi-Discrete Operator

Based on the previous discussion of SBP operators and their equivalent telescoping form, the semi-discrete form of

equation II.1 becomes

qt = −Di[fi(q)]+Di[c]i jD jq+P−1gb, = P−1Δi

(
−fi

+ f(v)i
)
+P−1gb,

q(x,0) = g0(x), x ∈ Ω,
(II.19)

with gb containing the enforcement of boundary conditions. Full implementation details, including the viscous Jaco-

bian [c]i j tensors are included in previous work18 and elsewhere.23–27

Remark. It is not necessary to implement an SBP scheme in flux form, but this is the natural form to add dissi-

pation while retaining consistency with the Lax Wendroff theorem.18 Furthermore, the semi-discrete entropy analysis

presented in Section B relies on the existence of the flux form.

C. SAT Penalty Boundary and Interface Conditions

The method of imposing boundary data is critical in all numerical methods. The manner in which these conditions are

imposed greatly affects the stability and accuracy of solutions. Accurate, stable, and conservative interface coupling

techniques are also essential in a multi-domain (element) setting.

A straightforward method that permits formal analysis and maintains design-order accuracy is the Simultaneous

Approximation Term (SAT) penalty method.23–27 The approximate spatial integration of the semi-discretization in

equation II.19,
d
dt

1T P q = f̄0 − f̄N + f̄ (v)N − f̄ (v)0 +1T (gb +gI) , (II.20)

illustrates the purpose of the penalty (gI are the SAT interface penalty terms), that may be thought of as a technique

for replacing some of the computed data in the approximation with known data from the boundary condition. This

technique is mathematically well-posed for all SBP operators.

D. SBP Operators of Different Flavors

The foundational concepts of summation-by-parts spatial operators were introduced in the landmark paper by Kreiss

and Scherer.28 Since then, all three commonly used discretization approaches: finite-difference, finite-element, finite-

volume, have developed their version of a diagonal norm SBP operator.

1. Finite-Difference: Centered Operators of Order 2p.

The first to take full advantage of the SBP formalism was the finite-difference community. High-order diagonal norm,

central difference operators with formal SBP boundary closures were first derived by Strand.29 For example, the
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classical operator that is fourth-order in the interior of the domain and is closed at the boundaries with second-order

operators (i.e., D2-4-2) can be expressed in matrix form asb

D =
1

δx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 24
17

59
34 − 4

17 − 3
34 0 0 0 0 0 0 0

− 1
2 0 1

2 0 0 0 0 0 0 0 0
4

43 − 59
86 0 59

86 − 4
43 0 0 0 0 0 0

3
98 0 − 59

98 0 32
49 − 4

49 0 0 0 0 0

0 0 1
12 − 2

3 0 2
3 − 1

12 0 0 0 0

0 0 0
. . .

. . .
. . .

. . .
. . . 0 0 0

0 0 0 0 1
12 − 2

3 0 2
3 − 1

12 0 0

0 0 0 0 0 4
49 − 32

49 0 59
98 0 − 3

98

0 0 0 0 0 0 4
43 − 59

86 0 59
86 − 4

43

0 0 0 0 0 0 0 0 − 1
2 0 1

2

0 0 0 0 0 0 0 3
34

4
17 − 59

34
24
17

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(II.21)

The diagonal matrix P for this case is

P = δx diag
(

17
48

59
48

43
48

49
48 1 · · · 1 49

48
43
48

59
48

17
48

)
The skew-symmetric matrix Q follows immediately from the manipulation P D .

Countless perturbations to this operator have been developed. Examples include optimized boundary closure

coefficients,30 and boundary closures for the dispersion-relation-preserving (DRP) interior operator.31

A noteworthy extension that significantly contributes to the development of entropy stable SBP operators appears in

the works of Yamaleev et al.8, 18, 32–34 A general strategy is presented to construct Energy Stable Weighted Essentially

Non-Oscillatory (ESWENO) finite-difference schemes, including boundary closures that maintain, wherever possible,

the WENO stencil biasing properties and satisfy the SBP operator convention. Stability is guaranteed in the P norm.

The ESWENO schemes are constructed using the following four steps

1. Develop a finite-domain target scheme that is stable, conservative, and accurate for smooth flows by using the

SBP framework.

2. Recast the target scheme in the “dual grid” conservative framework of the conventional WENO approach: the

solution is stored and advanced at the grid points while the interface fluxes are constructed at “half points”. A

special set of flux points and interpolants are required near the boundaries to accomplish this task.

3. Develop a finite-domain WENO biasing strategy that allows all stencil weights to deviate from their target

values. Precise control of the the biasing mechanics ensures design-order accuracy for smooth solutions and

essentially non-oscillatory properties at discontinuities.

4. Test and stabilize the scheme by using a design-order, nonlinear damping term that ensures linear L2-stability of

the WENO operator.

A key contribution from Yamaleev’s work8 is the recognition that a novel set of nonuniform flux interpolation points

is necessary near the boundaries to simultaneously achieve: 1) accuracy, 2) the SBP convention, and 3) WENO stencil

biasing mechanics. As shown in section B it is the existence of the flux-point representation of the SBP operator that

enables the proof of entropy stability. Details about the WENO operator in general and specifically entropy stable

WENO operators is given in appendix B.

2. Finite-Element: Spectral Collocation

Summation-by-parts operators also exist for nonuniform point distributions. Reference 35 proves that Legendre spec-

tral collocation schemes can be implemented on any distribution of points in the element, provided that appropriate

boundary conditions (or interface conditions) are implemented to guarantee conservation and stability. A brief sum-

mary of the mechanics of diagonal norm spectral collocation operators35 is included herein.
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x1 x2 x3 x4 x5

x̄0 x̄1 x̄2 x̄3 x̄4 x̄5

u0 u1 u2 u3 u4

f1 f2 f3 f4 f5

f̄0 f̄1 f̄2 f̄3 f̄4 f̄5

−1 −9
10

−
√

3
7

−16
45

0−16
45

+16
45

+
√

3
7

+9
10

+1

Figure 1. The one-dimensional discretization for p = 4 Legendre collocation is illustrated. Solution points are denoted by • and flux points
are denoted by ×.

Consider numerical methods collocated at the Legendre Gauss-Labotto (LGL) points, which include the end points

of the interval. The complete discretization operator for the p = 4 element is illustrated in Figure 1. Define the

Lagrange polynomials relative to the discrete points, x, as

L̄(x) = (x− x2)(x− x3)...(x− xn−2)(x− xN−1)

L1(x) =
(1−x)L̄(x)

2L̄(−1)
; Ln(x) =

(1+x)L̄(x)
2L̄(+1)

; L j(x) =
(1−x2)L̄(x)
(x−x j)L̄

′
(x j)

2 ≤ j ≤ N −1

.

(II.22)

Assume that a smooth and (infinitely) differentiable function f (x) is defined on the interval −1 ≤ x ≤ 1. Reading

the function f and derivative f ′ at the discrete points, x, yields the vectors

f(x) = [ f (x1), f (x2), · · · , f (xN−1), f (xN)]
T ; f′(x) = [ f ′(x1), f ′(x2), · · · , f ′(xN−1), f ′(xN)]

T (II.23)

The interpolation polynomial fN(x) that collocates f (x) at the points, x, is given by the contraction

f (x) ≈ fn(x) = [L(x)]T f(x) (II.24)

Theorem 3. The derivative operator that exactly differentiates an arbitrary pth-order polynomial at the collocation
points, x, is

D = [L
′
j(xi)] (II.25)

The proof appears in any common text on spectral methods. An equivalent representation of the differentiation

operator can also be used, which satisfies all the requirements for being an SBP operator.

Theorem 4. The derivative operator that exactly differentiates an arbitrary pth order polynomial (p = N −1) at the
collocation points x can be expressed as

D = P−1 Q (II.26)

Only an outline of the proof is presented. First note that in addition to the equation II.25, the exact derivative
d f (x)

dx
of the function f (x) may be approximated by

f ′(x) ≈ d fn(x)
dx

= [L(x)]T f′(x) (II.27)

A Galerkin statement demands that the integral error between the two expressions be orthogonal to the basis set, which

in this case are the Lagrange polynomials, L(x). This statement may be expressed as

1∫

−1

L(x)
(
[L(x)]T f′(x) − [L

′
(x)]

T
f(x)

)
dx = 0 (II.28)

bThe nomenclature (2-4-2) signifies that boundaries/interior stencils are second- and fourth-order accurate, respectively. The resulting operator

is globally third-order accurate in L2.
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or equivalently

P̂ f′(x) = Q f(x) (II.29)

with
P̂ =

∫ 1
−1 L(x)[L(x)]T dx

Q =
∫ 1
−1 L(x)[L′

(x)]
T

dx
(II.30)

Equation (II.26) follows immediately when P̂ is symmetric positive definite (SPD), and therefore invertible. (The

proofs that P SPD and Q +Q T = B appear elsewhere.35)

A diagonal norm Legendre collocation operator can be constructed by approximating the integrals in equations

II.30 by the LGL quadrature formula. Let η = (η1,η2, · · ·ηN−1,ηN) be the nodes of the LGL quadrature formula (i.e.,

the zeroes of the polynomial P
′
n−1(x)(1− x2)),36 and let ωl , 1 ≤ l ≤ N be the quadrature weights.

The mass and stiffness matrices, P and Qc, are defined by the expressions

P = ∑l L(ηl ;x)[L(ηl ;x)]T ωl dx

Qc = ∑l L(ηl ;x)[L′
(ηl ;x)]

T
ωl dx

(II.31)

The matrix P is SPD for any x.35

Theorem 5. The matrix P is diagonal for the case when the collocation points are the LGL quadrature points, i.e.,
x = η. Furthermore the diagonal coefficients of P are the integration weights, ωl , 1 ≤ l ≤ N used in the quadrature.

The proofs for all theorems presented in this section appear elsewhere.35 The discrete operators are provided for

polynomial orders one through four in appendix A.

3. Finite-Volume: Cell Vertex Methods

Finite volume operators are not the focus of this work. Note, however, that SPB operators for the commonly used edge-

based finite volume approximation of the Laplacian is developed in the work of Svärd and Nordström37, 38 in which

accurate and stable boundary conditions are constructed for general unstructured grids. The boundary conditions are

imposed weakly in a stable and accurate manner, using a penalty formulation. The approach is valid for general

unstructured grids.

E. Split-form Operators: The Remarkable Q Matrix

The breadth of section B (defining and describing the SBP operators), is testament to the remarkable properties em-

bedded within the matrix operators P and Q . The Q matrix has another property that is instrumental in developing

the general proofs of entropy stability. A brief summary of “split-form” operators that appears elsewhere18, 39 is now

presented.

Consider the Navier-Stokes equations. The nonlinear product in the convective terms can be manipulated using

the chain rule into many forms: 1) conservative (a.k.a. divergence), 2) primitive, 3) skew-symmetric, as well as others,

with each form exhibiting its own semi-discrete characteristics (e.g. conservation, accuracy, and nonlinear stability).

Some splittings of nonlinear conservation laws (e.g. the splitting proposed by Honein and Moin40) deliver enhanced

discrete robustness.

Lax and Wendroff41 rigorously established that simulations of conservation law equations must be performed using

the conservative form of the equation with a conservative discrete operator to approximate a weak solution. It would

appear at first glance that split-form discrete operators are not discretely conservative because they are not derived

strictly from the divergence form of the continuous equations. Remarkably, this is not the case for discrete operators

constructed from diagonal norm SBP operators.

References 18 and 39 prove that any linear splitting of the divergence and product-rule forms of nonlinear conser-

vation laws, if discretized using any diagonal norm, summation-by-parts (SBP) operator, can be cast as a telescoping

operator consistent with the divergence form of the conservation law. As such, any of these combinations is suitable

for simulation of the conservation law, even in the presence of shocks.

The split-form conservation property is demonstrated in a simple example. Consider the nonlinear equation

∂u
∂t +

∂ f (u)
∂x = 0, t ≥ 0, 0 ≤ x ≤ 1,

u(x,0) = u0(x) , u(0, t) = bc0(t) , u(1, t) = bc1(t)
(II.32)
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where u = u(x, t) is the continuous solution vector, f = f (u) is a nonlinear flux vector of the form f (u) = v(u)w(u).
Because the flux f in equation II.32 is the product of two functions, the divergence term

∂ f (u)
∂x , may be approximated

using a split operator.

ut +α f (u)x +(1−α)(v(u)w(u)x +w(u)v(u)x) = 0. (II.33)

The resulting semi-discrete equation is

ut +αD(W v)+(1−α)(V Dw+W Dv) = 0,

v = (v(u1),v(u2), . . . ,v(uN))
T , V = diag(v),

w = (w(u1),w(u2), . . . ,w(uN))
T , W = diag(w).

(II.34)

Although the split operator is a combination of a conservation part, D(W v), and a product rule part, (V Dw+W Dw),
no explicit smoothness constraints are placed on f .

With these definitions (and because the diagonal norm P commutes with V and W ), the discrete approximation

of equation II.34 takes the form

ut +αP−1Q f+(1−α)P−1 (V Q w+W Q v) = 0 . (II.35)

Reference 39 proves that all split-form SBP operators have the following properties.

Theorem 6. The discrete split-form operator (see equation II.34) can be manipulated into the telescoping form

αP−1Q W v+(1−α)
(
V P−1Q w+W P−1Q v

)
= P−1Δf

for any diagonal norm SBP operator that can be expressed in the form of equation II.3 and for any value of the
parameter, α.

The first term is already in conservation form and therefore satisfies the telescoping form. Manipulating the chain

rule term produces the following expression.

P−1
(
V P−1Q w+W P−1Q v

)
= P−1Δ

[
B̃V w +

N−1

∑
i=1

r(i)

∑
l=1

qi,i+l f̃ i,i+l1i,l

]
= P−1Δfc (II.36)

with the coefficient q(i,i+�) corresponds to the (i, i+ �) row and column in Q , respectively. Note that the bracketed

term is the manipulated flux fc. Further manipulation of equation II.36 produces a more insightful expression for the

telescoping flux

f̄ j =
r

∑
k=1

k

∑
l=1

q( j+l−k, j+l)(w j+lv j+l−k +w j+l−kv j+l),

1 ≤ j+ l, j+ l − k ≤ N, 1 ≤ j ≤ N −1,

f̄0 = w1v1, f̄N = wNvN .

(II.37)

Reference 39 extends the analysis further by showing that the split flux form given in equation II.37 is consistent with

the original conservative flux and has compact support. Thus, the combined term αQ W v+(1−α)(V Q w+W Q v)
can be expressed as a telescoping conservative flux, has compact support (if the Q is compact), and is consistent

with the original conservative flux in equation II.32. All of the sufficient conditions of the L-W Theorem are met, so

converged solutions using the above split operators are then weak solutions to the conservation law.

Remark. The conservative flux f̄ j in equation II.37 is composed of the weighted sum of local dyadic fluxes

(w j+lv j+l−k +w j+l−kv j+l), a form closely related the entropy conservative flux introduced later in the section C.

III. Entropy Consistent and Entropy Stable SBP Operators

A. Continuous Analysis

Consider a nonlinear system of equations (e.g. the Navier-Stokes given in equation II.1), and assume that the solution

is smooth for all time. The objective is to bound the solution as sharply as possible. A quadratic or otherwise convex

extension of the original equations is sought, that when integrated over the domain only depends on boundary data

and dissipative terms. Fortunately, the Navier-Stokes equations have a convex extension, referred to as the entropy

function that provides a mechanism for proving stability of the nonlinear system.
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Definition 1. A scalar function S = S(q) is an entropy function of equation II.1 if it satisfies the following conditions:

• The function S(q) is convex and when differentiated, simultaneously contracts all spatial fluxes as follows

Sq f i
xi
= Sq f i

qqxi = Fi
qqxi = Fi

xi
; i = 1, · · · ,d (III.1)

for each spatial coordinate, d. The components of the contracting vector, Sq, are the entropy variables denoted
as wT = Sq. Fi(q) are the entropy fluxes in the i-direction.

• The entropy variables, w, symmetrize equation II.1 if w assumes the role of a new dependent variable (i.e.,
q = q(w)). Expressing equation II.1 in terms of w is

qt +( f i)xi − ( f (v)i)xi = qwwt +( f i
w)wxi − (ĉi jwx j)xi

= 0 ; i = 1, · · · ,d (III.2)

with the symmetry conditions: qw = [qw]
T , f i

w = f i
w

T
, ĉi j = ĉT

ji.

Because the entropy is convex, the Hessian Sqq = wq is symmetric positive definite,

ζT Sqqζ > 0, ∀ζ �= 0, (III.3)

and yields a one-to-one mapping from conservation variables, q, to entropy variables, wT = Sq. Likewise, wq is SPD
because qw = wq

−1 and SPD matrices are invertible. The entropy and corresponding entropy flux are often denoted
an entropy–entropy flux pair, (S,F). Likewise, the potential and the corresponding potential flux (defined next) are
denoted a potential–potential flux pair, (ϕ,ψ).10

The symmetry of the matrices qw and f i
w, indicates that the conservation variables, q, and fluxes, f i, are Jacobians

of scalar functions with respect to the entropy variables,

qT = ϕw, [ f i]
T
= ψi

w, (III.4)

where the nonlinear function, ϕ, is called the potential and ψi are called the potential fluxes.10 Just as the entropy

function is convex with respect to the conservative variables (Sqq is positive definite), the potential function is convex

with respect to the entropy variables.

The two elements of Definition 1 are closely related, as is shown by Godunov42 and Mock.43 Godunov proves

that:

Theorem 7. If equation II.1 can be symmetrized by introducing new variables w, and q is a convex function of ϕ, then
an entropy function S(q) is given by

ϕ = wT q−S, (III.5)

and the entropy fluxes Fi(q) satisfy
ψi = wT f i −Fi. (III.6)

Mock proves the converse to be true:

Theorem 8. If S(q) is an entropy function of equation II.1; then wT = Sq symmetrizes the equation.

See reference 44 for a detailed summary of both proofs. Entropy analysis is now applied to the Navier-Stokes to

determine the limits of nonlinear stability.

Contracting equation II.1 with the entropy variables results in the differential form of the entropy equation,

Sqqt +Sq f (q)xi = St +Fxi = Sq f (v)xi =
(

wT f (v)
)

xi
−wT

xi
f (v)i =

(
wT f (v)

)
xi
−wT

xi
ĉi jwxi (III.7)

Integrating equation III.7 over the domain yields a global conservation statement for the entropy in the domain

d
dt

∫

Ω

Sdxi =
[
wT f (v)−F

]
∂Ω

−
∫

Ω

wT
x j

ĉi jwxi dxi. (III.8)

It is shown elsewhere9 that ĉi j in the last term in the integral are positive semi-definite. Note that the entropy can

only increase in the domain based on data that convects and diffuses through the boundaries. The sign of the entropy

change from viscous dissipation is always negative.

Thus, the entropy equation derived in equation III.8 is the convex extension of the original Navier-Stokes equations,

and the entropy function serves as an estimator of system stability.
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B. Semi-Discrete Entropy Analysis

The semi-discrete entropy estimate is achieved by mimicking term by term the continuous estimate given in equation

III.8. The nonlinear analysis begins by contracting the entropy variables, wT , with the semi-discrete equation II.19.

(For clarity of presentation, but without loss of generality, the derivation is simplified to one spatial dimension. Tensor

product algebra allows the results to extended directly to three-dimensions.) The resulting global equation that governs

the semi-discrete decay of entropy is given by

wT P qt +wT Δf = wT Δf(v) +wT gb, (III.9)

with

w =
(
w(q1)

T ,w(q2)
T , . . . ,w(qN)

T )T
,

the vector of entropy variables. Each semi-discrete term is now analyzed to demonstrate that it mimics the correspond-

ing term in continuous entropy estimate, provided that a diagonal norm SBP operator is used. The form of the penalty

terms is presented in a later section C.

1. Time Derivative

The time derivative is by definition in mimetic form for diagonal norm SBP operators. Arbitrary diagonal matrices

commute, so the pointwise definition of entropy

wT
i (qi)t = (Si)t , ∀i.

yields the expression

wT P qt = 1T P wT qt = 1T P Suqt = 1T P St .

2. Entropy Consistent Inviscid Fluxes

The inviscid portion of equation III.9 is entropy conservative if it satisfies

wT Δf = F(qN)−F(q1) = 1T ΔF. (III.10)

Recall that w and f,F are defined at the solution points and flux points, respectively. One plausible solution to equation

III.10 is a pointwise relation between solution and flux-point data, which telescopes across the domain and produces

the entropy fluxes at the boundaries. Tadmor10 developed such a solution based on second-order centered operators.

Herein, this solution is generalized to diagonal norm SBP operators of any order.

Theorem 9. The local conditions,

(wi+1 −wi)
T f̄i = ψ̃i+1 − ψ̃i, i = 1,2, . . . ,N −1 ; ψ̃1 = ψ1, ψ̃N = ψN (III.11)

when summed, telescope across the domain and satisfy the entropy conservative condition given in equation III.10.
The potentials ψ̃i+1 and ψ̃i need not be the pointwise ψi+1 and ψi, respectively. A flux that satisfies this condition
given in equation III.11 is denoted f(S).

Proof. Substituting the definition for generalized summation-by-parts in section 2, Δ = B̃ − Δ̃, into the global entropy

conservation condition in equation III.10 yields

wT B̃f−wT Δ̃f−1T B̃F+1T Δ̃F = wT B̃f−1T B̃F−wT Δ̃f = 0. (III.12)

The boundary terms in equation III.12 can be reorganized as

wT B̃f−1T B̃F = (wT
N fN −FN)− (wT

1 f1 −F1) = ψN −ψ1 = ψ̃T B̃ 1̄, (III.13)

where ψ1 and ψN represent the potential flux defined in equation III.6. Defining [f] as a diagonal (N + 1)× (N + 1)
matrix containing the elements of f, and substituting equations III.12 and III.13 into III.10 yields(

ψ̃T B̃ −wT Δ̃[f]
)

1̄ = 0.
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Substituting the equality ψ̃T B̃ 1̄ = ψ̃T Δ̃1̄ into the left hand side of the equation yields(
ψ̃T Δ̃−wT Δ̃[f]

)
1̄ = 0. (III.14)

This is satisfied by the vector sufficient condition,

ψ̃T Δ̃ = wT Δ̃[f], ψ̃1 = ψ1, ψ̃N = ψN . (III.15)

A pointwise examination of the vector condition yields the desired result.

3. Entropy Stable Viscous Terms

Using the formalism introduced in section 3, viscous terms are now defined such that the continuous entropy properties

are mimicked by the semi-discrete equation. This requires that the discrete viscous fluxes are written in terms of the

discrete gradients of the entropy variables,

(ĉwx)x = P−1Δf(v) = D2(ĉ)w+Tp2p p,

D2(ĉ)w = P−1 (−M (ĉ)+B[ĉ]D)w,

M (ĉ) = DT P [ĉ]D +R (ĉ), R (ĉ) =
nr

∑
k=1

N T
k [̃ĉ]kNk.

(III.16)

The accuracy requirements are automatically satisfied. The coefficient matrices [ĉ] and [̃ĉ] are positive semi-definite

because they are constructed using block-diagonal combinations of positive semi-definite matrices.

The contribution of the viscous terms to the semi-discrete entropy decay rate is

wT Δf(v) = wB[ĉ]Dw− (Dw)T P [ĉ](Dw)−
nr

∑
k=1

(Nkw)T [̃ĉ]k(Nkw), (III.17)

with the last two terms negative semi-definite.c Note that definite properties are not obvious if the discrete viscous

fluxes are constructed based on gradients of primitive or conservative variables. While at the continuous level, wx =
wqqx, at the discrete level in general we must assume Dw �= wuDu. As in equation III.8, only the boundary term will

result in growth of the entropy, and thus this approximation of the viscous terms is entropy stable.

Remark. Equation III.16 is specific to a finite-difference SBP operator. The truncation term for a spectral colloca-

tion operator is of the form Tp+1, and the numerical dissipation is R (ĉ) = 0.

The three semi-discrete terms in the entropy estimate, mimic the continuous estimate.

C. Entropy Consistency of Inviscid Burgers Equation

An entropy analysis of one-dimensional Burgers’ equation is presented before that of the Navier-Stokes equations.

Conventional energy estimates exist for Burgers’ equation for all diagonal norm SBP operators.16 Furthermore, an

entropy estimate exists for the second-order diagonal norm operator.10 The goal herein is to express Tadmor’s second-

order entropy proof of Burgers’ equation in terms of diagonal norm SBP operators.

Consider the inviscid Burgers’ equation given by

ut + (1/2 u2)x = 0

with suitable initial and boundary data, discretized with a diagonal norm SBP operator. Alpha split the equation as

described in equation II.33 to obtain the form

ut = −αP−1Q W v− (1−α)
(
V P−1Q w+W P−1Q v

)
= −P−1Δf . (III.18)

Now assign the flux splitting w = u/2, v = u to the chain rule terms, and assign the splitting parameter α = 2/3, which

is known to be the value required for a canonical splitting of Burgers’ equation.16 Form the semi-discrete energy by

left multiplying with the norm P and contracting the result with the discrete vector u to yield the energy equation

uT P ut = −1

3
uT (Q U + UQ )u = −1

3
uT (BU)u = −1

3
(uN

3 −u1
3) = −(FN −F1) (III.19)

cThe last term is design-order small for finite-difference discretizations that use a narrow stencil viscous discretization22 and vanishes for viscous

terms constructed from two first-order operators (e.g. spectral collocation).
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valid for any diagonal norm SBP operator.

An alternative approach uses the mechanics of entropy analysis.10 An entropy-entropy flux pair, a potential-

potential flux pair, and the entropy variable, w, for Burgers’ equation are

(S,F) =

(
u2

2
,

u3

3

)
; (φ,ψ) =

(
u2

2
,

u3

6

)
; u = w . (III.20)

Note that the entropy is guaranteed convex (Suu = 1) for all u, and that the entropy is (chosen) equivalent to the energy

used in the SBP analysis.d

The semi-discrete entropy estimate begins by left multiplying by the norm P and contracting the result with the

discrete entropy variable, u, to yield the entropy equation

uT P ut = −uT Δf = −1T UΔf = −1T ΔF = −(FN −F1) (III.21)

where f is given by the expression

f̄i = 2
N

∑
k=i+1

i

∑
l=1

q(l,k)
(u2

l + uluk + u2
k)

6
,1 ≤ i ≤ N −1,

f̄0 =
1

2
u2

1, f̄N =
1

2
u2

N .

(III.22)

Equation III.22 follows immediately by expanding both the conservation and chain-rule operators in equation III.18

using equation II.37 (and using a change of variables on the summation indices).

Consider the tridiagonal second-order central operator D1-2-1 for which an entropy flux is known to exist.2 This

implies that the vector relation, 1T [UΔf − ΔF] = 0, is satisfied. Define the dyadic flux in equation III.22 to be

f̄s(k,l) =
u2

k +ukul +u2
l

6
,

and solve the vector equation, [UΔf − ΔF] = 0, for the variables, F. The resulting fluxes, f and F, for the second-order

D1-2-1 operator are shown in Table C. Note that the entropy fluxes F in Table C can be expressed in the form

Table 1. Pointwise fluxes, f and F, for the second-order SBP operator.

f F
u2

1
2 f̄s(1,1)

u3
1

3 F̄s(1,1)
1
6

(
u2

1 +u1u2 +u2
2

)
f̄s(2,1)

1
6 u1u2(u1 +u2) + u1+u2

2 f̄s(2,1)− u3
1+u3

2
12

1
6

(
u2

2 +u2u3 +u2
3

)
f̄s(3,2)

1
6 u2u3(u2 +u3) + u2+u3

2 f̄s(3,2)− u3
2+u3

3
12

1
6

(
u2

3 +u3u4 +u2
4

)
f̄s(4,3)

1
6 u3u4(u3 +u4) + u3+u4

2 f̄s(4,3)− u3
3+u3

4
12

u2
4

2 f̄s(4,4)
u3

4
3 F̄s(4,4)

Fi =
N

∑
k=i+1

i

∑
l=1

q(l,k)[(ul +uk) f̄s(l,k) −
1

6
(u3

l +u3
k)] ;1 ≤ i ≤ N −1,

f̄0 =
1

3
u3

1, f̄N =
1

3
u3

N .

(III.23)

The pointwise relation which facilitates a telescoping cancellation necessary to satisfy the vector relation [UΔf −
ΔF] = 0 is the local consistency condition

(ui+1 − ui) f̄si,i+1 =
1

6
(u3

i+1 − u3
i ) ;1 ≤ i ≤ N −1 . (III.24)

which is demonstrated next by a simple pointwise decomposition.

dThe entropy is not unique.
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Consider the term ui(fi − fi−1) in the vector relation [UΔf − ΔF] = 0. Adding and subtracting equivalent terms

yields the expression

ui(fi − fi−1) = [ 1
2 [ui+1 +ui] fi − 1

2 [ui +ui−1] fi−1]

− [ 1
2 [ui+1 −ui] fi +

1
2 [ui −ui−1] fi−1] .

(III.25)

The first two terms on the RHS of equation III.25 are already in telescoping form. The last two terms telescope if they

satisfy a relationship of the form

(ui+1 − ui) f̄si,i+1 = ψi −ψi−1 ;2 ≤ i ≤ N

which for Burgers’ equation is satisfied pointwise by equation III.24 (modulo slight changes at the end points of the

domain). A decomposition of the fourth-order operator given in equation II.21 yields a similar result.

Equation III.23 relies on an alpha-splitting of Burgers’ equation into canonical form suitable for entropy analysis.

The Navier-Stokes equations, however, do not support a canonical decomposition based on the alpha-split flux tech-

nique. Nevertheless, it is shown next that pointwise shuffling conditions similar in form to those used in equations

III.24 and III.25 are sufficient to achieve a generalized telescoping entropy flux for the Navier-Stokes equations.

D. Entropy Consistency of the Euler Equations

A general strategy for constructing high-order entropy conservative fluxes is presented elsewhere9 and utilizes linear

combinations of qi, j-weighted, two-point entropy conservative fluxes. This approach follows immediately from the

structural properties of diagonal norm SBP operators and the generalized SBP given in section 2. Because the ap-

proach only relies on the existence of a two-point entropy conservative flux formula (e.g. equation III.24) and on the

coefficients of the Q , it is valid for any SBP operator which satisfies the constraints given in equation II.3.

The proofs of this alternative approach for building entropy conservative operators of any order are quite involved.

For brevity only two of the theorems are included herein. Interested readers should consult the reference 9 for details.

The first theorem establishes the accuracy of the new fluxes. Specifically, that a high-order flux constructed from a

linear combination of two-point entropy conservative fluxes, retains the design order of the original discrete operator

for any diagonal norm SBP matrix Q .

Theorem 10. A two-point entropy conservative flux can be extended to high order with formal boundary closures by
using the form

f̄ (S)i =
N

∑
k=i+1

i

∑
�=1

2q(�,k) f̄S (q�,qk) , 1 ≤ i ≤ N −1, (III.26)

when the two-point non-dissipative function from Tadmor10 is used

f̄S (qk,q�) =
1∫

0

g(w(qk)+ξ(w(q�)−w(qk))) dξ, g(w(u)) = f (u). (III.27)

The coefficient, q(k,�), corresponds to the (k, �) row and column in Q , respectively.

Proof. To show the accuracy of approximation, the flux difference is expressed as

f̄ (S)i − f̄ (S)i−1 =
N

∑
k=i+1

i

∑
�=1

2q(�,k) f̄S (u�,uk)−
N

∑
k=i

i−1

∑
�=1

2q(�,k) f̄S (u�,uk) , 2 ≤ i ≤ N −1.

that may be manipulated into the form (see reference 9)

f̄ (S)i − f̄ (S)i−1 =
N

∑
j=1

2q(i, j) f̄S(ui,u j), 1 ≤ i ≤ N. (III.28)

This form facilitates an analysis by Taylor series at every solution point using the expression for the two-point fluxes

given in equation III.27. The remainder of the proof is presented elsewhere.9

The second theorem establishes that the linear combination does indeed preserve the property of entropy stability

for any arbitrary diagonal norm SBP matrix Q .
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Theorem 11. A two-point high-order entropy conservative flux satisfying equation III.11 with formal boundary clo-
sures can be constructed using equation III.26,

f̄ (S)i =
N

∑
k=i+1

i

∑
�=1

2q(�,k) f̄S (q�,qk) , 1 ≤ i ≤ N −1,

where fS(q�,qk) is any two-point non-dissipative function that satisfies the entropy conservation condition

(w�−wk)
T f̄S (q�,qk) = ψ�−ψk. (III.29)

The high-order entropy conservative flux satisfies an additional local entropy conservation property,

wT P−1Δf(S) = P−1ΔF = Fx(q)+Td , (III.30)

or equivalently,
wT

i

(
f̄ (S)i − f̄ (S)i−1

)
= (F̄i − F̄i−1) , 1 ≤ i ≤ N, (III.31)

where

F̄i =
N

∑
k=i+1

i

∑
�=1

q(�,k)
[
(w�+wk)

T f̄S (q�,qk)− (ψ�+ψk)
]
, 1 ≤ i ≤ N −1. (III.32)

Proof. For brevity, the proof is not included herein, but is reported elsewhere.9

Remark. The existence of a local second-order entropy flux satisfying the two point shuffle relation given in

equation III.29 is a very strong constraint, and has until recently been a computation bottleneck.12

E. Entropy Stability of the Euler Equations

Tadmor10 identifies three “tools of the trade” in the analysis of entropy stability: comparison arguments, a homotropy

approach and kinetic formulations. Herein a comparison approach is used to establish entropy stability. In a com-

parison approach, the entropy dissipation generated by the primary scheme is compared with the baseline entropy of

a scheme known to be at least entropy conservative. If the dissipation is less than the entropy conservative datum,

then more dissipation is necessary. A popular example of schemes developed using a comparison approach, are the

E-schemes of Osher45 that use a Godunov scheme as the entropy datum. Conditions that guarantee entropy stability

are now established.

A condition analogous to equation III.10 that guarantees entropy stability is

wT P qt +F(qN)−F(q1)≤ wT gb, (III.33)

which is satisfied if the “baseline” entropy stable inviscid fluxes satisfy the comparison condition

wT Δf ≥ 1T ΔF. (III.34)

Using the result for the entropy conservative flux in equation III.10, this condition can be rewritten as

wT Δf ≥ wT Δf(S).

Substituting the generalized summation-by-parts property,e

wT (B̃ − Δ̃)(f(S)− f) = wT Δ̃(f− f(S)) = wT Δ̃([f]− [f(S)])1̄ ≤ 0, (III.35)

yields the sufficient local condition for entropy stability

wT Δ̃[f]≤ wT Δ̃[f(S)], (III.36)

or in indicial form,

(wi+1 −wi)
T ( f̄i − f̄ (S)i )≤ 0, i = 1,2, . . . ,N −1. (III.37)

The development of this condition relied heavily on the formalism introduced in Section II, including the generalized

SBP property, that made it possible to extend the entropy stability condition to finite domains and multiple blocks. The

entropy stability condition in equation III.37 can be used to find entropy stable conditions for any type of telescopic

flux operator.

Remark. The entropy stability condition is based on the global property given in equation III.34. It does not inform

how to add sufficient dissipation such that a non-oscillatory solution is obtained.

eThe bracket nomenclature around a vector denotes a diagonal matrix with vector elements injected on the diagonal.
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IV. Implementation Details

A. Three-Dimensional Curvilinear Navier-Stokes

All the analysis and proofs based on one-dimensional operators developed in sections II and III extend directly to

three dimensions using tensor product algebra. Entropy consistency extends directly to the equations in contravariant

form with the appropriate choice of metrics. The proofs of contravariant entropy consistency and the construction of

metrics that satisfy the geometric conservation laws and entropy consistency, can be found in the thesis of Fisher.17

The semi-discretization of the three-dimensional Navier-Stokes equation written in contravariant form is

q̂t +
3

∑
i=1

P−1
ξi

Δξi [f̂
i
ξi
− f̂

(v)i
ξi

] =
3

∑
i=1

P−1
ξi

(ĝi + ĝb) x ∈ Ω, t ∈ [0,∞),

Bq = gb, x ∈ ∂Ω, t ∈ [0,∞),

q(x,0) = g0(x), x ∈ Ω,

(IV.1)

with

q̂ = [J](I5 ⊗ Iξ1
⊗ Iξ2

⊗ Iξ3
) ; D̂ξ1

= (I5 ⊗ Dξ1
⊗ Iξ2

⊗ Iξ3
)

and similar tensor product expressions for the other three-dimensional derivative operators.

B. Entropy Consistent Euler Flux

The inviscid terms in the discretization of the Navier-Stokes equations are calculated according to equations IV.8,

III.26, and III.27, by using the two-point entropy conservative flux of Ismail and Roe,12

f̄ j
S (ui,ui+1) =

(
ρ̂υ̂ j, ρ̂υ̂ jυ̂1 +δ j1 p̂, ρ̂υ̂ jυ̂2 +δ j2 p̂, ρ̂υ̂ jυ̂3 +δ j3 p̂, ρ̂υ̂ jĤ)

)T
,

υ̂ =

υ̂i√
Ti
+

υ̂i+1√
Ti+1

1√
Ti
+ 1√

Ti+1

, p̂ =

p̂i√
Ti
+

p̂i+1√
Ti+1

1√
Ti
+ 1√

Ti+1

,

ĥ = R
log

( √
Tiρi√

Ti+1ρi+1

)
1√
Ti
+ 1√

Ti+1

⎛⎝ √
Tiρi +

√
Ti+1ρi+1(

1√
Ti
+ 1√

Ti+1

)(√
Tiρi −

√
Ti+1ρi+1

)
+

γ+1

γ−1

log
(√

Ti+1
Ti

)
log

(√
Ti

Ti+1

ρi
ρi+1

)(
1√
Ti
− 1√

Ti+1

)
⎞⎟⎠ ,

Ĥ = ĥ+
1

2
υ̂�υ̂�, ρ̂ =

(
1√
Ti
+ 1√

Ti+1

)(√
Tiρi −

√
Ti+1ρi+1

)
2
(
log(

√
Tiρi)− log(

√
Ti+1ρi+1)

) .

(IV.2)

This somewhat complicated explicit form is the first entropy conservative flux for the convective terms with low

enough computational cost to be implemented in a practical simulation code. Previously, Tadmor2 derived an entropy

conservative flux form that required integration through phase space, but this was deemed too expensive to be practical.

C. Multi-domain Operators

A multi-domain framework (hexahedral elements in context of spectral collocation) greatly simplifies the grid gen-

eration process for complex configurations by breaking the geometry into the union of piecewise smooth hexahedral

domains. High-order SBP techniques naturally extend to multi-domain discretizations.14, 46–48 Each domain (element)

is discretized with a stable tensor-product formulation and then connected to its adjoining neighbors by using interface

conditions that maintain the stability, accuracy, and conservation of the interior operators. Domain interfaces only

need be C0 smooth to maintain the stability, conservation and design accuracy.

The entropy stability proofs extend directly to a multi-domain (element) context for SAT inviscid and viscous

interface penalties. Contracting the three-dimensional Navier-Stokes equations against the entropy variables in a multi-

domain context, produces both inviscid and viscous boundary interface entropy flux terms in each spatial direction of

the following form

wT Δξ[ fξ − f(v)ξ ] = B̂ξ(F − F(v))
±
i . (IV.3)
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1. Inviscid Interface Dissipation

Inviscid interface penalties replace f±i with an entropy conservative flux fsr(q(−),q(+)) plus a dissipative stabilization

term. The interface flux fsr(q(−),q(+)) is constructed to satisfy the consistency relation

(w(−)−w(+))fsr(q(−),q(+)) = ψ(+)−ψ(−) .

Lax-Friedrichs dissipation is used to stabilize the interface. The resulting flux is expressed as

fssr(q(−),q(+)) = fsr(q(−),q(+)) + λmax
2 (w(−)−w(+)) ,

λ = [ 1
2 ((u

(−))
4
+(c(+))

4
+(u(−))

4
+(c(+))

4
)]

1
4

(IV.4)

The dissipation term is scaled by any positive number. The resulting term that appears in the entropy estimate is of the

form

−λ(w(−)−w(+))
2

(IV.5)

2. Viscous Interface Dissipation

Viscous penalties are constructed following the technique presented elsewhere.17

D. The Primary Scheme: WENO

A WENO scheme is used herein as the primary scheme. Note, however, that in principle any scheme may be used

as the primary operator in a comparative approach. WENO methods are well suited for high-fidelity simulations of

complex physics that contain discontinuities. An example of a typical application is a canonical simulation of sound

that is generated by a shock-vortex interaction.49, 50 The high-order nature of WENO efficiently resolves the subtle

details of the sound generation and propagation, while the stencil biasing mechanics ensures robust, high resolution

properties in the vicinity of the shock.

The WENO algorithm is quite involved and a brief description is included in appendix B. The algorithm is im-

plemented using a dual-grid approach with uniformly spaced solution points and flux points that receive interpolated

data. Multiple candidate fluxes are built at each flux point and then a convex combination of smooth components is

formed. The WENO flux is calculated using the formula

f̄ (W )
j =

ns

∑
k=1

ω̄k
j f̄ Ik

j , j = 1,2, . . . ,N −1. (IV.6)

The stencil biasing procedure ensures that stencils containing discontinuities result in high relative values of β̄ and

are assigned negligible weights. The WENO flux becomes an interpolation that only incorporates smooth data. Away

from discontinuities, the flux collapses to the target flux. Near discontinuities, the flux transforms into an upwind

operator. Note that the flux consistency condition on the first and last flux point in equation II.10 is enforced. The

WENO method as described has no provable stability properties. We employ a limiting procedure to ensure that it

satisfies entropy stability. From equation III.37, we require that

(wi+1 −wi)
T
(

f̄ (SSW )
i − f̄ (S)i

)
≤ 0, (IV.7)

where f (SSW ) is the entropy stable WENO flux and f (S) is the entropy conservative flux. The limiter that guarantees

entropy stability is chosen as

f̄ (SSW )
i = f̄ (W )

i +δ
(

f̄ (S)i − f̄ (W )
i

)
, δ =

√
b2 + c2 −b√

b2 + c2
,

b = (wi+1 −wi)
T
(

f̄ (S)i − f̄ (W )
i

)
, c = 10−12,

(IV.8)

where f (W )
i is the WENO flux without correction described above. The limiting process to get the entropy stable

property is not unique. It was chosen merely because it is smooth with respect to the solution. This same limiting

procedure works with fluxes other than WENO. It is shown in a later section that this minor correction to the WENO

operator has a large impact.
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V. Results: Accuracy and Robustness

The accuracy and robustness of the algorithms developed herein are tested using two smooth and two discontinuous

problems. The smooth problems are the propagation of an isentropic vortex and the propagation of the viscous shock.

Both problems demonstrate the design-order convergence of the new entropy conservative formulation and of the

SSWENO scheme. The final two problems (the Sod and Lax shock tube problems) have discontinuous solutions, and

test the efficacy of the entropy stable correction terms used in the SSWENO formulation. It is demonstrated that the

corrections do not adversely affect the desirable stencil biasing properties of the baseline WENO scheme.

A. Isentropic Vortex

The isentropic vortex is an exact solution to the Euler equations that is an excellent test of the accuracy and function-

ality of the inviscid components of a Navier-Stokes solver. It is fully described by

f (x,y,z, t) = 1−
[
(x− x0 −U∞ cos(α) t)2 +(y− y0 −U∞ sin(α) t)2

]
,

T (x,y,z, t) =
[
1− ε2

vM2
∞

γ−1

8π2 exp( f (x,y,z, t))
]
, ρ(x,y,z, t) = T

1
γ−1 ,

u(x,y,z, t) = U∞ cos(α)− εv
y−y0−U∞ sin(α)t

2π exp
(

f (x,y,z,t)
2

)
,

v(x,y,z, t) = U∞ sin(α)− εv
x−x0−U∞ cos(α)t

2π exp
(

f (x,y,z,t)
2

)
,

w(x,y,z, t) = 0.

(V.1)

In this study the values U∞ = M∞c∞, εv = 5.0, M∞ = 0.5, and γ = 1.4 are used.

1. Finite Domain Cartesian Grid Test

The finite domain Cartesian grid test is described by

x ∈ (−5,5), y ∈ (−5,5), (x0,y0) = (0,0), α = 0.0, t ≥ 0.

Three different grid resolutions are examined, and the vortex is halfway out of the domain when the error measure is

evaluated. This measures the effect of the boundary closure, the penalty boundary condition, and the interior scheme.

Both the (3-6-3) and (2-4-2) entropy stable WENO finite-difference schemes are evaluated. The designed order of

accuracy is observed in Tables 2 and 3. The error decay asymptotes towards the designed rate in each case (i.e., third-

order and fourth-order respectively). The reduction in design order relative to the periodic test case results from the

order p boundary closures.

Table 2. Error convergence is shown for the (2-4-2) simulation of the finite domain isentropic vortex.

Entropy Consistent FD Entropy Stable WENO FD

Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate

32×32 5.37e-02 - 3.17e-02 - 5.44e-02 - 3.49e-02 -

64×64 6.14e-03 3.13 3.51e-03 3.18 6.26e-03 3.12 3.51e-03 3.31

128×128 7.43e-04 3.05 4.63e-04 2.92 7.46e-04 3.07 4.72e-04 2.90

256×256 9.01e-05 3.04 5.95e-05 2.96 8.39e-05 3.15 5.52e-05 3.10

B. Viscous Shock

This problem tests the accuracy and functionality of the viscous terms in the solver by using an exact solution to the

Navier-Stokes equations. The nonlinear convection and viscous terms are perfectly balanced in this computation, and

thus the shock thickness remains constant and is simply advected. The derivation of this problem is available in the

thesis of Fisher.17

The convergence rate for the viscous shock is evaluated on a Cartesian grid, described by

x ∈ (−1,1)× (−0.5,0.5).
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Table 3. Error convergence is shown for the (3-6-3) simulation of the finite domain isentropic vortex.

Entropy Consistent FD Entropy Stable WENO FD

Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate

32×32 7.33e-02 - 3.65e-02 - 7.32e-02 - 3.73e-02 -

64×64 4.30e-03 4.09 2.10e-03 4.12 4.95e-03 3.89 3.03e-03 3.62

128×128 1.94e-04 4.47 2.08e-04 3.34 2.53e-04 4.29 3.80e-04 3.00

256×256 7.72e-06 4.65 1.79e-05 3.54 1.09e-05 4.54 3.09e-05 3.62

512×512 2.83e-07 4.77 1.01e-06 4.15 4.19e-07 4.70 1.71e-06 4.18

The shock flow is rotated α = 20◦ with respect to the x-axis. The shock profile is initially located at xs = −0.5 with

respect to the origin, and is simulated until t = 0.25. The Reynolds number was Re = 10 and the reference Mach

number was M = 2.5. The errors for the Cartesian grid are shown in Table 4. The errors for the (2-4-2) and (3-6-3)

operators asymptotically converge at the designed orders of 3 and 4, respectively.

Table 4. Error convergence is shown for (2-4-2) and (3-6-3) simulations of the viscous shock.

Entropy Stable(2-4-2) Entropy Stable (3-6-3)

Resolution L2 error L2 rate L∞ error L∞ rate L2 error L2 rate L∞ error L∞ rate

48×24 1.74e-03 - 5.60e-03 - 3.36e-04 - 1.57e-03 -

96×48 1.10e-04 3.97 4.24e-04 3.72 7.62e-06 5.46 6.51e-05 4.59

192×96 7.30e-06 3.92 3.38e-05 3.65 2.53e-07 4.91 3.42e-06 4.25

C. Shock Tube Problems

The shock tube problems below show that no adverse effects of the entropy correction are observed for flows that

admit shocks.
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(a) Sod Shock Tube, t = 0.2
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Figure 2. Shock tube solutions are plotted for the entropy stable WENO methods developed in this work and compared to reference
solutions.
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1. Sod Shock Tube

Sod’s shock tube problem evaluates how a numerical method behaves when a shock, expansion, and contact discon-

tinuity are present. Of particular note is how much smearing is observed in the shock and contact, and whether any

oscillations are present.

The domain is

x ∈ (0,1), y ∈ (−0.1,0.1), t ≥ 0,

and is initialized with,

ρ(x,y,z) =

{
1 x < 0.5,

1/8 x ≥ 0.5,
p(x,y,z) =

{
γ x < 0.5,

γ/10 x ≥ 0.5,

u(x,y,z) = 0, v(x,y,z) = 0, w(x,y,z) = 0,

(V.2)

where γ = 7/5. The problem is simulated with (3-6-3) and (2-4-2) entropy stable WENO operators with N = 100

uniform cells. The solution is plotted for t = 0.2 in Figure 2(a). The solutions do not exhibit oscillations and the shock

smearing is nearly equivalent between the two schemes, with slightly less diffusion observed in the (3-6-3) scheme.

2. Lax Shock Tube

Lax’s shock tube problem is used to show that no entropy problems are observed using the current methodology and

that the correct shock location is observed. The reference solution uses N = 800 points with the (2-4-2) WENO

operator.

The simulated domain is

x ∈ (−5,5), y ∈ (−0.5,0.5), t ≥ 0,

initialized with

ρ(x,y,z) =

{
0.445 x < 0.0,

0.5 x ≥ 0.0,
p(x,y,z) =

{
3.528γ x < 0.0,

0.571γ x ≥ 0.0,

u(x,y,z) =

{
0.698 x < 0.0,

0.0 x ≥ 0.0,
v(x,y,z) = 0, w(x,y,z) = 0,

(V.3)

where again γ = 7/5. The simulation used N = 200 uniform cells and the solution is plotted in Figure 2(b) for t = 1.3.

Again the solutions do not exhibit oscillations.

D. Applications

Two simulations of two-dimensional flows are presented to demonstrate the capability of the multi-block SSWENO

algorithm.

1. Multi-Element Airfoil

The first problem is a simulation of a multi-element airfoil. The Mach number is M = 0.3, the angle of attack is 20o,

and the Reynolds number is Re = 30,000 based on chord. The fourth-order SSWENO formulation is used and the

simulation time is taken to T = 30.0.

Although no experimental data is available for these flow conditions the complexity of the geometry tests the

flexibility of the multi-block SSWENO formulation. The grid contains 73 point-matched blocks constructed with the

Pointwise commercial grid generation package.51 The small size of the blocks (e.g., O (50×50) points) enable locally

analytic mesh generation in each, ensuring high-order smoothness of the mesh and thus differentiable metrics. Figures

3(a) and 3(b) show iso-contours of the magnitude of vorticity and the entropy, respectively. Simulations with the

SSWENO formulation are both more accurate and robust than either conventional WENO or ESWENO8, 32, 33 based

on the same fourth-order target operator.
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(a) Vorticity (b) Entropy

Figure 3. Two solutions for a multi-element airfoil are presented, demonstrating the feasibility of simulating complex flow features with
the entropy stable WENO formulation. Red and blue vorticity contours identify regions of positive and negative vorticity.

2. Supersonic Cylinder

A problem adapted from Chaudhuri et al.52 is used to simulate shock-vortex interactions in viscous supersonic flow

around a cylinder in a duct. The geometry is simple by multi-block standards, but the bow shock can create a stability

problem for multi-block interfaces if the treatment lacks sufficient robustness.

The cylinder is located at (x, y)/D = (0, 0). The duct inlet is located at x/D = 3 and the duct outlet is at x/D

= 21. The top and bottom duct walls are located along y/D = 3, respectively. An O-type multi-block configuration

is used to discretize the domain surrounding the cylinder. Five topological blocks are needed to fully discretize the

domain. The cylinder walls are treated as adiabatic no slip walls. The duct walls are treated as slip walls and the grid

spacing is approximately isotropic. The inflow is a uniform freestream condition at M = 3.5. The Prandtl number

used is Pr = 0.7 and the Reynolds number based on diameter is 104. The fourth-order SSWENO algorithm is used in

the study. A shock sensor is used to increase efficiency, by deactivating the stencil biasing mechanics in the WENO

algorithm in regions where the solution is smooth.

Iso-contours of the density, Mach number, entropy and the shock sensor are shown in figure 4. Note that shock-

vortex interactions pervade the entire wake region, and the shocks also propagate and interact throughout the domain.

Many modes of large scale unsteadiness are observed where the reflected shocks move back and forth downstream of

the cylinder and the vortex structures propagated through the domain exhibit different pairings for different times. It

is recognized that the true physical problem would be a three-dimensional turbulent flow. However, this simulation

suffices for the purpose of demonstrating the high Mach number capability of the multi-block SSWENO formulation.

VI. Conclusions

A “high-level” overview is presented of the mathematical concepts of entropy stability for the Navier-Stokes

equations. Recent contributions to the field are summarized that prove that all diagonal norm, SBP-SAT operators

may be implemented in an entropy conservative (Euler) or entropy stable (Navier-Stokes) fashion. Thus, entropy

stable operators of arbitrary order may be constructed for the Navier-Stokes equations, that guarantee an L2 bound on

the thermodynamic entropy, provided that density and temperature remain positive and boundary data is well-posed.

Many popular discrete operators may be represented as diagonal norm SBP operators, including all centered finite-

difference, and Legendre spectral collocation operators. Extension to three-dimensional geometries via a multi-block

approach with SAT interface coupling follows immediately. Some finite-volume operators also satisfy the necessary

constraints, but are not the focus of this overview.
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A comparative approach is used to combine an entropy conservative or entropy stable operator with a conventional

high-order operator, thereby guaranteeing an entropy bound for the combined operator. Herein, a conventional multi-

block WENO operator is the method of choice for simulating complex geometries with strong shocks. It is combined

with the entropy conservative formulation to produce a multi-block entropy stable WENO operator. (In principle, any

high-order dissipative scheme would suffice as a candidate for a comparative operator.) Important implementation

details of the combined algorithm are included.

Test cases demonstrate the efficacy of the multi-block, entropy stable WENO algorithm. Design order accuracy

is achieved for smooth flows using the Euler vortex and the viscous shock test cases. Sod’s and Lax’s shock tube

problems demonstrate the superior shock capturing capabilities of the entropy stable WENO scheme. A multi-element

airfoil simulation demonstrates the geometric flexibility of multi-block component of the algorithm. Finally, a cylinder

in a Mach 3.5 cross-flow demonstrates the shock capturing capabilities of the algorithm.
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A. Spectral Collocation operators

The discrete operators are provided for polynomial orders one through four in Table 5. Three quantities completely

define the discrete operators. They are the diagonal norm P , the nearly skew-symmetric Q , and the positions of the

collocation points, x. Recall the differentiation matrix is D = P−1Q . Only the upper triangular portion of Q is

provided. The full Q matrix can be reconstructed from the skew-symmetry property Q +Q T = B .

B. Entropy Stable WENO Finite Differences

Non-dissipative numerical methods cannot be used to simulate shocks. The primary reason for this is that shocks

dissipate energy and non-dissipative numerical methods have no mechanism to mimic this. To simulate problems with

shocks, dissipation needs to be added to the numerical method. There are a variety of mechanisms to achieve this, but

in this work Weighted Essentially Non-Oscillatory (WENO) finite-difference methods are used. The implementation

uses unique formal boundary closures from Fisher et al.33 that satisfy the SBP condition. Stencil biasing mechanics

follow two papers by Yamaleev and Carpenter.8, 32 The details of the generally applicable correction procedure are
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Table 5. Differentiation operators for polynomials of degree one through four.

P = 1 P = 2 P = 3 P = 4

x1 = -1 x1 = -1 x1 = -1 x1 = -1

x2 = +1 x2 = 0 x2 = -1/
√

5 x2 = -
√

3/7

x3 = +1 x3 = +1/
√

5 x3 = 0

x4 = +1 x4 = +
√

3/7

x5 = +1

p1 = +1 p1 = 1/3 p1 = 1/6 p1 = 1 / 10

p2 = +1 p2 = 4/3 p2 = 5/6 p2 = 49 / 90

p3 = 1/3 p3 = 5/6 p3 = 32 / 45

p4 = 1/6 p4 = 49 / 90

p5 = 1 / 10

q11 = -1/2 q11 = -1/2 q11 = -1/2 q11 = -1/2

q12 = +1/2 q12 = 2/3 q12 = (5/24 (1 +
√

5)) q12 = (7/120) (7+
√

21)

q22 = +1/2 q13 = -1/6 q13 = (-5/24 (-1 +
√

5)) q13 = -(4/15 )

q22 = 0 q14 = 1/12 q14 = -(7/120) (-7+
√

21)

q23 = 2/3 q22 = 0 q15 = - 1/20

q33 = +1/2 q23 = (5
√

5/12) q22 = 0

q24 = (5/24 (1 -
√

5)) q23 = (28
√

7/3)/45

q33 = 0 q24 = -(49
√

7/3)/180

q34 = (5/24 (1 +
√

5)) q25 = -(7/120) (-7+
√

21)

q44 = 1/2 q33 = 0

q34 = (28 (
√

7/3))/45

q35 = - 4/15

q44 = 0

q45 = (7/120) (7+
√

21)

q55 = 1/2
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detailed below. The full implementation details including the WENO stencil biasing algorithm throughout the domain

are available in Fisher et al.33 and Carpenter et al.34 The first step to construct a WENO finite-difference operator is

to cast the difference operator in flux form,

Q f = Δf.

These fluxes that recover the non-dissipative first derivative approximation are called target fluxes. The target fluxes

are broken into a sum of fluxes on smaller stencils of width, p, called candidate stencils,

f̄ j =
ns

∑
k=1

d̄k
j f̄ Ik

j , j = 1,2, . . . ,N −1, (B.1)

where ns is the number of candidate stencils needed to describe the target flux, f̄ Ik
j , are the candidate fluxes, and d̄k

j are

the target weights that recover the target flux. The candidate stencil width is held constant for all fluxes in the domain.

For example, fourth-order operators use p = 2 and sixth-order operators use p = 3. The fourth-order case is shown in

Figure 5. The number of candidate stencils needed to describe the fluxes, f̄ j, can vary, as the target fluxes do not all

have the same stencil size when approaching the boundary. The functional form of the candidate stencils depends on

the distribution of the flux points, and thus is fully described by the norm, P , and the desired order of accuracy.

WENO works by preventing the interpolated fluxes, f̄ j, from using data across discontinuities. This is done by

replacing the target weights, d̄k
j , with nonlinear weights,

ω̄k
j =

ᾱk
j

∑
�

ᾱ�
j
, ᾱ j

k = d̄k
j

(
1+

τ̄ j

β̄k
j + ε̄ j

)
, k = 1, . . . ,ns. (B.2)

The functional form of the nonlinear weights relies on the scaling parameter, ε̄, and dual stencil-biasing parameters, τ̄
and β̄. τ̄ is a measure of the smoothness over the full stencil,

τ̄ j =
nτ

∑
i=1

(
∂2p−1u(x̄ j)

∂x2p−1
(δx)2p−1

)2

, nτ = ns − p. (B.3)

β̄ is a measure of the smoothness over each individual candidate stencil,

β̄k
j =

p−1

∑
�=1

(δx)2�

(
∂�ϕk

j(x̄ j)

∂x�

)2

, (B.4)

where ϕk
j(x) is the unique order (p−1) polynomial fit of the solution over the candidate stencil, Ik.

The WENO flux is calculated using the formula.

f̄ (W )
j =

ns

∑
k=1

ω̄k
j f̄ Ik

j , j = 1,2, . . . ,N −1. (B.5)
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(a) Density

(b) Mach number

(c) Entropy

Figure 4. The density, Mach number, entropy, and shock sensor of a shock-cylinder interaction, demonstrating the shock capturing
capabilities of the entropy stable WENO formulation.
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Figure 5. The stencil for a WENO scheme with p = 2 and ns = 4 candidate stencils is shown.
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