Ubiquitous Wireless Smart Sensing & Control

Pumps & Pipes JSC: Uniquely Houston

Raymond Wagner, Ph.D.
(NASA-JSC, Jacobs Technology)

NASA Johnson Space Center
July 29, 2013
Challenge Overview:

Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools). Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. **The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health;** and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.
Challenge Update:

• follow-up session held on May 16, 2013

• limited uptake so far from Pumps & Pipes partners

 • challenge going into “hibernation” for time being

• work continues on infusing industrial processing control standards into NASA applications:

 • Integrated Avionics, Power, and Software (iPAS) testbed

 • satellite test facilities (inc., ECLSS lab)

• work continues on adapting RFID technology to sensing

• partners still sought with

 • problems requiring wireless solutions

 • wireless solutions to problems
Contact

Raymond Wagner
NASA Johnson Space Center
Avionic Systems Division
(Jacobs Technology)

email: raymond.s.wagner@nasa.gov
tel: (281) 244-2428
Backup
Benefits and Drawbacks Wireless Sensing

• Benefits:
 – removing wires/connectors reduces launch weight
 – sensors can be easily added, relocated during vehicle lifetime
 – sensors can be placed where running wires prohibitive
 – sensors can easily be relocated between vehicles (e.g., supply module to habitation module)
 – radio frequency (RF) links are single-fault tolerant (at the receiver)

• Drawbacks:
 – reliable RF comm. difficult with low-power radios due to:
 – co-existence with other wireless systems
 – time-varying multi-path interference
 – RF noise
 – truly wireless comm. requires self-contained power supplies
Families of Wireless Sensing

• Passive:
 – Radio Frequency Identification (RFID):
 – most commonly used for inventory management
 – uses harvested power to transmit its data
 – two main variants:
 – EPCglobal (e.g., Wal-Mart inventory management)
 – Surface Acoustic Wave (SAW)

• Active:
 – battery (or scavenged/stored) power enables transmission
 – much greater bandwidth at the expense of power consumption
 – many variants:
 – IEEE 802.15.4, ZigBee, ISA100.11a, WirelessHART
 – Ultra Wideband (e.g., IEEE 802.15.4a)
 – Bluetooth
 – IEEE 802.11 (e.g., Wi-Fi)
Problem Area: Maximizing Time Between Servicing

• Must maximize ease of installation, maintenance:
 – ideally “lick and stick”
 – cannot require significant crew time to replace batteries
 – sensor lifetime must be significant fraction of vehicle lifetime

• Must develop full-function (e.g., routing) networks capable of deep sleeping
 – allows increasing reliance on scavenged power

• Must investigate pushing completely passive (e.g., RFID) techniques into sensing roles
 – battery assisted (EPCglobal)
 – completely passive (SAW, EPCglobal)
Problem Area:
Coping with Flood of Data

• **Ease of installation encourages proliferation of sensing:**
 – more producers of data encourages more consumers of data
 – publish/subscribe middleware techniques must support ad-hoc addition of both

• **Data generation may exceed long-haul link capacity:**
 – lower bandwidth and/or unreliable ground links may not accommodate all new data
 – delay/disruption tolerant networking (DTN) techniques must allow for prioritized transmission of backlogged data

• **Scalable wireless solutions must be chosen:**
 – protocols should allow steady addition of radios up to bandwidth limits
 – “infrastructure” approaches should use common networks for diverse sensing tasks
Problem Area: Overcoming Institutional Bias

• Wireless viewed as unreliable for critical applications
 – RF interference main issue
 – users must become comfortable with interference mitigation techniques
 (must continue improve)

• Spectrum sharing viewed unfavorably
 – dedicated bandwidth will not support wide proliferation of wireless
 – users must become comfortable with co-existence techniques
 (must continue improve)

• Users reluctant to adopt low-bandwidth solutions
 – distributed compression greatly reduces bandwidth requirements, increases system
 lifetimes
 – users must be convinced that processing at sensor can still fulfill system
 requirements