Vibration Testing of Electrical Cables
To Quantify Loads at Tie-Down Locations

Joseph D. Dutson
Loads and Environments
435-863-8233
Joseph.Dutson@atk.com

Spacecraft and Launch Vehicle Dynamic Environments Workshop
June 4-6, 2013
Introduction – Background

Electrical cables are used extensively in rockets for power and data transfer.

Cables are required to survive exposure to all flight loading environments, random vibration typically being the dominant environment.

Connections between electrical cables and components (avionics boxes, data recorders, batteries, etc.) are typically certified by test as part of component qualification.

Cables must be tied down to structure at regular intervals to prevent large displacements and loads during flight.

Hardware used at cable tie-down locations (cable ties, P-clamps) are typically certified by analysis.

Standard methods (Mile’s equation with amplification factor (Q) of 10) for defining static equivalent component loads are overly conservative for electrical cables.

- Cables are highly damped with low natural frequencies.
- Conservative loads result in negative structural margins on cable tie-down hardware.

Certification of electrical cable tie-down hardware requires a unique approach for developing design loads that account for cable dynamic characteristics (damping and frequency).
Purpose: This presentation summarizes vibration testing of electrical cables and the methodology for calculating loads at cable tie-down points that was developed from this test data. This effort was performed under contract number NNM07AA75C with NASA-MSFC.

Outline

• Test objectives
• Test configurations
• Test instrumentation
• Test run matrix
• Test fixture survey
• Data processing
• Cable natural frequency and damping
• Development of load methodology
• Load methodology at cable tie-down points
• Conclusions and forward work
Objectives of preliminary cable vibration testing:

- Check out test fixture and instrumentation in preparation for final cable testing
- Identify most significant variables (from list below) that should be included in final cable testing
 - Temperature
 - Cable thermal jacketing
 - Cable tautness
 - Cable diameter
 - Cable mass
 - Cable stiffness
 - Cable tie-down spacing
 - Cable orientation relative to excitation
 - Type of attach hardware (P-clamp, triple P-clamp, zip tie, rigid connection, etc.)
Test Configurations

Longitudinal and tangential directions tested on vibration slip table (left photo)
Radial direction tested in vertical direction with expander head installed (right photo)
Up to 5 cable configurations tested simultaneously
Fixture allows tie-down spacing adjustments
Test Instrumentation

Two control accelerometers on blocks attached to fixture side plates

- PCB Piezotronics 353B04 accelerometer
- Amplitude: ±500 g
- Frequency: 1 to 7,000 Hz

Load cells used to measure load transmitted through cable attach

- PCB Piezotronics 261A01 force sensors
- Amplitude: ±1,000 lbf axial, ±500 lbf lateral
- Frequency: 0.01 to 10,000 Hz

Accelerometer mounted to top of load cell to measure acceleration level at input to cable

- PCB Piezotronics 356A33 accelerometer
- Amplitude: ±500 g
- Frequency: 2 to 7,000 Hz

Small accelerometer mounted to each cable approximately halfway to end point

- PCB Piezotronics 352A72 accelerometers
- Amplitude: ±500 g
- Frequency: 0.5 to 4,500 Hz
Run matrix included 19 test setups (suites) with up to 5 cable configurations per setup

Input vibration spectrum shown below

- Vibration levels ramped up from -8 dB to full level in steps of 1 dB with data collected at each step
Random vibration fixture survey (no cables installed) was conducted in each direction

- Surveys showed that table / fixture frequencies begin to affect data in 400 to 600 Hz range
Data Processing

Load and acceleration RMS plots (filtered and unfiltered) show that table / fixture dynamics produce significant high-frequency levels as well as variation in levels at different locations on the table.

6-pole, 600 Hz, low-pass Butterworth filter applied to focus analysis on lower frequency data where cable natural frequencies are observed.
Cable accelerometer / load cell accelerometer transfer functions used to identify natural frequencies

- Transfer function “smoothed” using polynomial fit then natural frequency and dynamic amplification (Q) were based on peak value of smoothed function
 - Natural frequency = frequency at smoothed peak; Q = amplitude of smoothed peak
- Natural frequency and Q plotted – grouped by parameters with strongest influence
- Test did not identify longitudinal cable modes

Cables have low natural frequencies, especially as tie-down spacing increases, and high damping
Development of methodology for calculating loads at cable tie-down points

- Measured frequency, damping, and load information used to guide development of load calculation methodology
- Methodology tested by comparing calculated loads against measured loads
- Methodology adjusted until comparison with measured loads was adequately conservative
- Plot compares calculated and measured loads for all tested cable configurations
 - Ratio < 1.0 indicates conservative methodology
 - Red boxes group radial / tangential direction configurations
 - Green boxes group longitudinal direction configurations

Load methodology developed which is conservative for all tested configurations
Methodology for developing design loads at cable tie-down points

- Cable longitudinal direction:
 - Static equivalent cable load is proportional to g-rms of random vibration environment
- Cable radial / tangential directions:
 - Use Mile’s equation with lower Q and cable frequencies that are a function of tie-down spacing
 - G-loads at cable tie-down points are applied to the cable mass half-way to the adjacent tie-down points

Mile’s equation:

\[
Load[g] = 3 * \sqrt{\frac{\pi}{2}} * Q * f_n * ASD
\]

Q = dynamic amplification factor
\(f_n\) = component natural frequency
ASD = acceleration spectral density at natural frequency
Conclusions and Forward Work

Conclusions

• Preliminary testing of cables was successful
 • Fixture and instrumentation are adequate for final testing
 • Most significant variables affecting loads were identified for final testing
 • 1) Attach hardware, 2) cable orientation, 3) cable size, and 4) tie-down spacing
 • Preliminary test data was used to justify significant reduction in cable loads
 • Reduction due to higher damping assumption (reduced Q)
 • Additional reduction due to understanding of cable natural frequencies

Forward work

• Follow-on cable testing planned for summer of 2013
 • Testing to include more cable sizes, cable bundles, and additional tie-down spacing levels, based on designs
 • Test results will be used to re-evaluate cable load generation methodology
 • Testing expected to justify removal of additional loads conservatism