Modeling the Fragmentation of Hypervelocity Impacts on a Dual-Wall Shield

Joshua E. Miller
NASA JSC/KX[JETS]
July 12, 2013
Survivability assessments of space hardware require the use of ballistic performance models to predict the performance of a structure over a broad range of impact conditions and configurations.

Hypervelocity impact experiments, hydrodynamic simulations, and analytical model development have been performed to improve the dual-wall shield models over a variety of impact conditions:

- Data from over 500 hypervelocity impact experiments on dual-wall shield configurations have been collected and analyzed.
- Hydrodynamic simulations have extended some of these configurations to above the 7-10 km/s threshold of low temperature launches.
- Empirical ballistic performance models have been developed that approximate the data, but extrapolation of the models can lead to incorrect conclusions.

A solution-based ballistic performance modeling approach has been developed here that improves the reliability of the extrapolations.
Survivability Assessment Process

Spacecraft Configuration (I-DEAS)

I-DEAS Finite Element Model
- Describes spatial relationships of spacecraft components
- Defines spacecraft orientation (velocity and zenith directions)
- Defines MM/OD shield regions

Meteoroid & Debris Environments (GEOMETRY)
- Threat directions
- Velocity distribution
- Shadowing

Critical Particle Diameter Calculation (RESPONSE)
- Protection capability

- Whipple Shield Ballistic Limit (failure above lines)

<table>
<thead>
<tr>
<th>System</th>
<th>Loss of Crew</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMEX</td>
<td>LOC</td>
</tr>
<tr>
<td>GM Handheld</td>
<td>50.0</td>
</tr>
<tr>
<td>IM Vandalism</td>
<td>50.0</td>
</tr>
<tr>
<td>LEAD</td>
<td>50.0</td>
</tr>
<tr>
<td>IM HEP</td>
<td>50.0</td>
</tr>
<tr>
<td>GM Vandalism</td>
<td>50.0</td>
</tr>
<tr>
<td>IM rp</td>
<td>50.0</td>
</tr>
<tr>
<td>IM Other - Toret de</td>
<td>50.0</td>
</tr>
<tr>
<td>IM Other - Toret de</td>
<td>50.0</td>
</tr>
<tr>
<td>IM Other - Toret de</td>
<td>50.0</td>
</tr>
</tbody>
</table>
Hypervelocity Impacts Database

- Spherical projectile launches performed by:
 - UDRI with maximum velocities of ~10 km/s
 - WSTF with maximum velocities of ~8.5 km/s
 - Many others at JSC, MSC, ARC and by contract companies to ~7.5 km/s
- ~500 double wall impacts have been performed
 - Impactors include Cadmium, Copper, Nylon, Glass, Aluminum, Alumina and Steel
 - Impact obliquities from normal to 75° to normal
 - Impact velocities from 3 to 10 km/s
Empirical Ballistic Performance Models Can Lead to Discrepancies

Aluminum dual-wall shows non-linear scale effects
Hydrodynamic Simulations Extend Impact Conditions Beyond Limits

Steel

Impact Velocity km/s

Critical Diameter cm

NASA TM-2009-214785
Dashed $V_{hi}=7$ km/s
Dot-Dashed $V_{hi}=9.1$ km/s
First Wall Interaction

\[u_o = \frac{m_W}{m_i + m_W} \left(1 + \frac{\rho_i (s_i (u_i - u_\infty) + c_i)}{\rho_W (s_W u_\infty + c_W)} \right) u_\infty \]

\[+ \frac{m_i}{m_i + m_W} \left(1 - \frac{m_W \rho_i (s_i (u_i - u_\infty) + c_i)}{m_i \rho_W (s_W u_\infty + c_W)} \right) u_i \]
Expansion Gap

\[\omega = \frac{x-x_0}{Z} = \frac{c_s}{c_s + u} \frac{\varepsilon_T}{\varepsilon_i} = \frac{c_s}{c_s + u_0} \left(1 - \frac{u_o^2}{u_i^2} - \frac{E_d}{\rho_i u_i^2} \left(\frac{\sigma}{\kappa} \right)^2 \right) \]

\[c_s \approx \sqrt{\frac{4G}{3 \rho} + \sqrt{(2s-1)u((s-1)u + c)}} \]

\[m_o = m_i \left(\frac{r_i}{r_i + \omega_i S} \right)^{2/3} + m_W \left(\frac{r_i}{r_i + \omega_W S} \right)^{2/3} \]
Second Wall Interaction

\[u_e = \left(u_\infty' + \frac{c_W'}{s_{W'}} + 1 \right) \left(\frac{m_0}{m_0 + m_W} \left(1 + \frac{\rho_W u_\infty'}{\rho_i (s_i u_o - u_\infty') + c_i} \right) \right)^{\frac{s_{W'} + 1}{2}} - \left(u_F' + \frac{c_W'}{s_{W'}} + 1 \right) \]

\[u_F'^2 = \frac{2}{\rho_W'} \int_0^{\varepsilon_F} \sigma(\varepsilon, \varepsilon) d\varepsilon \approx \frac{2}{\rho_W'} \left(a' + \frac{b' \varepsilon_F^n}{n + 1} \right) \left(1 + c' \log \left[\frac{\rho_i u_o}{2m_W} \right] \right) \]

\[d_i = \frac{3}{2} \left(\frac{m_W'}{\rho_i} \left(\sqrt{\rho^* / \rho_i + \omega_i S / r_i} \right)^{\frac{2}{3}} \frac{\hat{u}'}{1 + \hat{R}_W'} - \hat{u}' \right) \]

\[\hat{u}' = \left(\frac{u_F' + c_W'}{u_\infty' + c_W'} \right)^{\frac{2}{s_{W'} + 1}} \]

\[\hat{R}_W' = \frac{\rho_W' (s_{W'} u_\infty' + c_W')}{\rho_i (s_i (u_o - u_\infty') + c_i)} \]

Obliquity addressed by correcting lengths to flight path
Solution-Based Ballistic Performance Model Corrects Scale Discrepancies

Simplified solution of hydrodynamic equations resolves scaling effects

Solid-This Paper
Dashed-NASA TM-2009-214785
Removal of empirical quantities allows extrapolation to other conditions.
Summary/Conclusions

- Survivability assessments of space hardware require the use of ballistic performance models to predict the performance of a structure over a broad range of impact conditions and configurations.
- Hypervelocity impact experiments, hydrodynamic simulations and analytical model development have been performed to improve the dual-wall shield models over a variety of impact conditions:
 - Data from over 500 hypervelocity impact experiments on dual-wall shield configurations have been collected and analyzed.
 - Hydrodynamic simulations have extended some of these configurations to above the 7-10 km/s threshold of low temperature launches.
 - Empirical ballistic performance models have been developed that approximate the data, but extrapolation of the models can lead to incorrect conclusions.
- A solution-based ballistic performance modeling approach has been developed here that improves the reliability of the extrapolations.