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Presentation Overview

• Introduction to the Topic
• Lithium-ion Battery (LIB) Charge/Discharge Heat 

Transfer Mechanisms
• Thermal Desktop Model Development
• Results:

– Case 1, final
– *Case 2 not presented
– *Case 3 presenting, still pending final review

• Conclusion and Future Work
• References
• Disclaimer Statements

– This work was inspired by, but is not affiliated with the NASA/Boeing ISS LIB 
replacement battery project

– All results are part of on-going research conducted for academic purposes with 
my graduate advisor (H. Ardebili, co-author)
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TFAWS Interdisciplinary Paper Session

Section 1:
Introduction to the Topic
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Introduction to the Topic

• The need for renewable energy, more efficient energy consumption, and the incorporation 
of advanced energy storage technologies escalates each year with the increasing 
consumption of non-renewable resources and decreasing availability of said resources

• The need to survive in space environments where fuel sources are not readily available 
also leads to a high dependence on advanced energy storage capabilities

• Advanced energy storage devices are compared on a Ragone plot

Image retrieved belongs to the US Defense Logistics Agency
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Introduction to the Topic Cont…
• LIBs are increasing in popularity and were chosen as replacement batteries for some of the ISS 

Ni-H2 batteries because of their superior performance in:
– Energy density and power density
– Ionic conductivity
– Operating and storage temperature ranges
– Life cycles and shelf life

• The selection of LIBs for use in satellites and now the ISS exemplifies the need to predict thermal 
performance in orbital environments; for batteries, thermal performance is a function of 
environment and local heating rates 

• Note that the thermal analysis of LIBs is not new:
– Sophisticated numerical methods began in 1985
– Presently it is well known that the optimal way to perform this type of analysis is through a coupled (or multi-

physics) methodology which combines the effects of:
• Heating through electrochemical reactions
• Heating through environmental factors

– This type of analysis is easily conducted for simple thermal environments in multi-physics software like 
COMSOL; however,

• Implementing orbital environments requires more specialized software (Thermal Desktop) 
• The problem is that TD is not readily set up to incorporate the complexities of local heating from thermo-electrochemical 

reactions

• Research seeks to develop a coupled thermo-electrochemical model in thermal orbital analysis 
software of a Lithium-ion battery whose local heat generation rate is a function of the environment 
(orbital or sink based), local temperature, and depth of discharge 

– Rather than a power profile that is provided prior to analysis
– Essentially, the power profile should be a function of the model itself
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Section 2:
LIB Charge/Discharge Heat Transfer 

Mechanisms
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LIB Charge/Discharge Heat Transfer Mechanisms

• LIB Basics:
– LIBs store and provide energy through a series of 

charge/discharge processes that occur through the 
simultaneous electrochemical reactions between the 
electrodes and the flow of electrons through a completed 
circuit

– Typical LIB components: Anode, Cathode, Electrolytic 
Material, Separator, and Current Collectors

• As with any object, the three modes of heat transfer 
apply: convection, conduction, radiation

• In 1985 Bernardi et. al. developed a basic equation to 
represent the local heat generated in the cells of a 
LIB as a result of electrochemical processes 
(captures heat due to Ohmic losses, charge-transfer 
at the interface, and mass transfer limitations):

– I is the total current
– EOC is the open circuit potential
– E is the working voltage
– T is the local temperature

ࡽ ൌ ࡵ ࡯ࡻࡱ െ 	ࡱ െ ࢀ ࡯ࡻࡱࣔ
ࢀࣔ

(1)

Images retrieved from electronics.howstuffworks.com 
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Section 3:
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Thermal Desktop Model Development

• Before conducting an orbital analysis, development of a 
simple non-orbital (sink temperature based) TD model of 
a LIB with Bernardi’s equation for local heating was 
needed

• Chose a convection/radiation numerically based 
assessment of a 185 Ah LIB conducted by Chen et. al. 
(primary source) who also utilized Bernardi’s equation for 
local heating

• In short, recreated a previously conducted numerical 
analysis in TD to determine if TD had the ability to be 
coupled with thermo-electrochemical math models (i.e. 
Bernardi’s equation)
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Thermal Desktop Model Development

Variable

Density 

(kg/m3)

Heat Capacity 

(J/kg/K)

Thermal Conductivity 

(W/m/K)

Aluminum (Encasement) 2770 875 170

Liquid Electrolyte (Contact Layer) 1130 2055 0.60

Core Region (Cells) 3264 1194 1.04, 24.8, 24.8

Variable Magnitude Unit

Size of Core Region 19.08 x 10.00 x 10.00 cm*cm*cm

Thickness of Encasement 0.07 cm

Thickness of the Contact Layer 0.05 cm

Ambient Temperature 300 K

Theoretical Capacity 185 Ah

Change in EOC vs. Time 0.00022 V/K

Encasement Emissivity 0.25 N/A

• Thermal Definition:
– Geometries and material properties provided in table
– Convection represented through a 300 K boundary

node connected to the exterior encasement surfaces
with a natural convection conductor (4.3-10 W/m2K
depending on location and DoD)

– External surfaces set to radiate to a 300 K sink
temperature

– Assumed 200 W/m2/K contact between the core, the
electrolytic layer, and the encasement

CORE

CASE
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Thermal Desktop Model Development

ࡽ ൌ ࡵ ࡯ࡻࡱ െ 	ࡱ െ ࢀ ࡯ࡻࡱࣔ
ࢀࣔ

(1)

• Local heating applied to the 125 “core” region nodes (load divided volumetrically)
• Applying Bernardi’s equation:

– Current was based on a 185 Ah battery and which discharge case was under consideration
• 1C = 60 Minutes Discharge Time @ I = 185 A
• 2C = 30 Minutes Discharge Time @ I = 370 A
• 3C = 20 Minutes Discharge Time @ I = 555 A

– Open Circuit Potential and Working Voltages for 1, 2, and 3 C discharge profiles provided in the image below
– Developed arrays of the voltage vs. DoD location for each discharge case
– Developed TD logic to update the local heating on the “core” region after every iteration in the solution process
– *Case 3 implemented logic to update the local T value of Bernardi’s equation after each iteration

3.0

3.2

3.4

3.6

3.8

4.0

4.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

V
ol

ta
ge

 (V
)

Depth of Discharge (DoD)

EOC and E vs. DoD

OCP

3C Working V

2C Working V

1C Working V

CORE 
REGION



TFAWS 2013 – July 29 – August 2, 2013 12

Thermal Desktop Model Development

Case ID Case Type Discharge Rate (C) Total Discharge Time (s) Current (A) Convection (W m-2 K-1)
C1-3C-NAT Case 1 3 1200 555 Natural
C1-2C-NAT Case 1 2 1800 370 Natural
C1-1C-NAT Case 1 1 3600 185 Natural
C1-3C-20 Case 1 3 1200 555 20 (Forced)
C1-3C-50 Case 1 3 1200 555 50 (Forced)
C1-3C-100 Case 1 3 1200 555 100 (Forced)
C1-3C-200 Case 1 3 1200 555 200 (Forced)
C1-3C-300 Case 1 3 1200 555 300 (Forced)
C2-3C-NAT Case 2 3 1200 555 Natural
C2-2C-NAT Case 2 2 1800 370 Natural
C2-1C-NAT Case 2 1 3600 185 Natural
C3-3C-NAT Case 3 3 1200 555 Natural
C3-2C-NAT Case 3 2 1800 370 Natural
C3-1C-NAT Case 3 1 3600 185 Natural
C3-3C-20 Case 3 3 1200 555 20 (Forced)
C3-3C-50 Case 3 3 1200 555 50 (Forced)
C3-3C-100 Case 3 3 1200 555 100 (Forced)
C3-3C-200 Case 3 3 1200 555 200 (Forced)
C3-3C-300 Case 3 3 1200 555 300 (Forced)

• Case 1: Exact Replication of Chen’s Study
– EOC and E update in the Q equation (Bernardi’s) after each iteration. I, T, and ࣔ࡯ࡻࡱ

ࢀࣔ
held constant 

• Case 2: No-Logic, Constant/Averaged Local Heating Applied
– Constant local heating applied based on average of entire DoD

• Case 3: Attempted Improvement to Chen’s Numerical Thermal Model
– EOC, E, and T update in Q equation (Bernardi’s) after each iteration. Updated thermophysical properties to include an 

electrolytic layer between the electrodes

Test Case Matrix
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Section 4:
Thermal Desktop Results
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Case 1 Natural Convection Results
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Case 1 Forced Convection Results
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Case 3 Natural Convection Results

*Case 3 results pending final review
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Case 3 Forced Convection Results

*Case 3 results pending final review
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Section 5:
Conclusion and Future Work
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Conclusion and Future Work
• The overall goal of this study was achieved:

– Replicated the numerical assessment performed by Chen et. al. (2005)
– Displayed the ability of Thermal Desktop to be coupled with thermo-electrochemical analysis techniques

such that the local heat generated on the cells is a function of the model itself using logic blocks and arrays

• Differences in the TD temperature vs. depth of discharge profiles and Chen’s was
most likely due to differences in two primary areas:

– Contact regions and conductance values
– Differences in density and specific heat values

• The model results are highly dependent on the accuracy of the material properties
with respect to the multiple layers of an individual cell

• Future work:
– Develop and contact a highly controlled test where all factors are known – replicate test in

Thermal desktop – compare to provide final validation of these new techniques
– Implement these techniques into an orbital scenario/model (ultimate goal) to investigate the

effects of this analysis technique combined with orbital analysis techniques
– Develop more detailed model to provide better definition of where the hot spots will occur

(similar to work being done in COMSOL)
– Could we then?

• Predict beta angles and solar conditions which could invoke a thermal run-away condition
• Make more accurate performance predictions to minimize necessary thermal control/protection
• Implement thermal considerations into the design of the battery rather than waiting until the battery is

complete and then adding passive/active thermal cooling/heating
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