Strain- The Heart of the Matter

Wendy R. Gapinski
Texas A&M University

Dr. Lori Ploutz- Snyder, Dr. Jessica Scott & Dr. Meghan Downs
Exercise Physiology & Countermeasures Project (B.261)
Introduction:

Originally from beautiful Northing Michigan

Graduated in 2007 from Central Michigan University with a Bachelors in Health Fitness In Preventative and Rehabilitative medicine

Graduated in 2010 from Texas A&M University with a Masters in Exercise Science
Summer Objectives

- Become overall knowledgeable in echocardiography

- Identify basic cardiac structures and function measures
 - Novel cardiac function measures (tissue Doppler, speckle tracking)

- View ultrasound acquisition during bed rest

- Analysis of echocardiography images
 - Demonstrate reliability in analyzing longitudinal strain
 - Setup spreadsheet for speckle tracking data
 - Analyze longitudinal strain bedrest data in Q-lab at 7 timepoints (BR-2, BR7, 21, 31, 70, +0, +3)
 - Analyze Q-lab output in Matlab
 - Compile longitudinal strain results
 - Twist analysis (time permitting)
Background: Space Flight & Cardiovascular Effects

- Fluid Shift towards the head
- Decrease in overall blood & plasma volume
- Atrophy of the LV
- Reduction of LV chamber size
- Decrease LV end diastolic volume (EDV)
- Reduction of LV chamber size
Study Background:

Objective: Identify how much exercise is needed to maintain pre-bedrest / pre spaceflight strength, minimize any flight complications and reduce time required to reacclimate to Earth’s gravity.

Subjects volunteered to participate in a 70 day 6° head down tilt (HDT) study at UTMB hospital in Galveston.

HDT are used to study microgravity for several reasons:

1. Allows subjects to experience atrophy of lower extremities from disuse
2. Allows scientists to study the fluid shifts and the subject’s cardiovascular & physiological effects
3. Allows several studies to be measured & conducted simultaneously in a safe and monitored environment

Throughout those 10 weeks, subjects were either in an exercise or control group.
Exercise Modalities
N= 19

Each subject had a total of 7 echoes over a span of 75 days, 70 of which were spent in HDT

Phillips Q-Lab Cardiac Analysis was used to analyze all 133 echoes

4 Chamber echoes were used to measure strain and track the movement of the LV
Longitudinal Strain: The change in the sarcomere length within the walls of the left ventricle (LV)
Why is this important?

- Never before has cardiac strain been monitored at set time points throughout spaceflight or bed rest study.
- Once we clearly understand this technique, protocols can be formulated for astronauts to use on the ISS as both a diagnostic and monitoring tool.
- Echoes could have the possibility to predict & monitor heart health, cardiac strength, endurance, and overall rate of muscle degradation.
- Also, echoes can act as an additional factor in determining exercise prescriptions and effectiveness.
Acknowledgements

- National Space Biomedical Research Institute via NASA Cooperative Agreement NCC 9-58

- Exercise & Countermeasures Project (ExPC) Group
 - Lori Ploutz-Snyder, PhD
 - Meghan Downs, PhD
 - Jessica Scott, PhD
 - Roxanne Buxton, MS
 - Galen Kruetzberg, BS

- NSBRI
 - Ron McNeel, PhD
 - Amanda Hackler, PhD

- SLSSI
 - Lauren Merkle, EdD
 - Jackie Reeves

- Texas A&M University