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Single HZE ions in cells

And DNA breaks

Cucinotta and Durante, Lancet Oncology (2006)

The space radiation problem

 Space radiation is comprised 
of high-energy protons and 
heavy ions (HZE’s) and 
secondary protons, neutrons, 
and heavy ions produced in 
shielding

 Unique damage to bio-
molecules, cells, and tissues 
occurs from HZE ions that is 
qualitatively distinct from X-
rays and gamma-rays on Earth

 No human data to estimate risk 
from heavy ions, thus requiring 
use of biological models and 
theoretical understanding to 
assess and mitigate risks

 Shielding has excessive costs 
and will not eliminate galactic 
cosmic rays (GCR)



Page No. 3

Single HZE ions in cells

And DNA breaks

Radiation tracks and energy deposition
 The energy deposition by heavy ions is highly heterogeneous and 

dependent on the type and energy of the ion
 The interactions of radiation with matter are stochastic in nature and 

therefore often studied by Monte-Carlo simulations

~100 Å

A. Mozumder and J.L. Magee (1966) Radiat. Res. 28, 203

~100 to 500 eV 
blobs

>5 keV

s
~500 eV to 5 
keV 

s

C. Ferradini (1979) J. Chim. Phys. 76, 636

Penumbra
Track core

Delta rays

Primary energy loss events in
high-LET tracks

Primary energy loss events in 
low-LET tracks
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Physical

Time (s) Stage Events Modeling

Physico-

chemical

Chemical

Biological

Energy absorption
Particle transport

Cross sections

Green’s functions

10-15

10-12

10-9

10-3

10-6

Reorganization

Electron thermalization

Radical diffusion

Chemical reactions

DNA repair Kinetics models

Molecular dynamics

Radiation effects: time sequence of events
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Single HZE ions in cells

And DNA breaks

H2O

eaq

(~240-600 fs)

OH + H3O+

H2O  +

H2O*

+   H2O

H2O


H + OH
H2O

H2 + OH

Physical 

stage

(<1015 s)

Physico-

Chemical

stage

(~1015 –

1012 s)

H + OH

2 H + O(3P)

H2 + O(1D)

H2O*

H2O
+  +   e

Radiation effects: time sequence of events
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Particle transport basics

 The trajectory of a particle and all its interactions is followed 
in the medium

 Many other particles are generated by the interactions of the 
“primary” particle. The trajectories of these secondary 
particles should also be followed. 

 A particle is followed until 
• Its energy decrease below a threshold
• It disappears by a physical process (e.g. absorption of a photon during 

a photo-electric effect
• It leaves the volume of interest

Plante, I. and Cucinotta, F.A. (2011) Monte-Carlo Simulation of Ionizing Radiation Tracks. In: Mode, C.J. (Ed.) Applications of
Monte Carlo Methods in Biology, Medicine and Other Fields of Science. InTech, Rijeka, Croatia. www.intechopen.com

e-
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Single HZE ions in cells

And DNA breaks

Particle transport basics

 Particles
• Position (x,y,z)
• Energy (E)
• Direction (,)

 Cross sections
• Probability of interaction between radiation and matter

• Cross sections (units: cm2)
• Mean free path  (units: cm)

Plante, I. and Cucinotta, F.A. (2011) Monte-Carlo Simulation of Ionizing Radiation Tracks. In: Mode, C.J. (Ed.) Applications of
Monte Carlo Methods in Biology, Medicine and Other Fields of Science. InTech, Rijeka, Croatia. www.intechopen.com

dx-IndI 
I: Incident fluence

n: Density of targets

dx: Width

: Cross section
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Single HZE ions in cells

And DNA breaks

Cross sections

 For electrons:
• Ionization
• Excitation
• Elastic collisions
• Dissociative electron attachment
• Bremsstrahlung

 For ions:
• Ionization
• Excitation

 For photons:
• Compton effect
• Coherent diffusion
• Photoelectric effect
• Pair production

Plante, I. and Cucinotta, F.A. (2011) Monte-Carlo Simulation of Ionizing Radiation Tracks. In: Mode, C.J. (Ed.) Applications of
Monte Carlo Methods in Biology, Medicine and Other Fields of Science. InTech, Rijeka, Croatia. www.intechopen.com

 Cross sections (total and differential in energy, angle,… i.e. d/dW, 
d/d,  d2/dWd,…) are needed for particle transport

 RITRACKS includes accurate cross section models for all ions and 
secondary electrons or photons
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Single HZE ions in cells

And DNA breaks

Cross sections

Plante, I. and Cucinotta, F. A. (2009). New J. Phys. 11, 063047

 Cross sections used in RITRACKS

Ions Electrons

dW
)v(d

Z
dW

)v(d proton2
eff

ion 




)Z/125exp(1Z/Z 3/22
eff 

The cross sections for ions are scaled with Zeff:

v: velocity of the ion

: relativistic v/c
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Heavy ion track structure simulation
Simulation fo 1H+, 12C6+, 28Si14+ and 56Fe26+ tracks, 100 MeV/amu
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Radial dosimetry

(a) 1H+ 1 MeV/amu, LET~33 
keV/m

(b) 20Ne10+ 377 MeV/amu, 
LET~31 keV/m

(c) 4He2+ 1 MeV/amu, 56Fe26+ 1 
GeV/amu, LET~150 keV/m

Plante, I. and Cucinotta, F.A. (2008), New J. Phys. 10, 125020
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Voxel dosimetry

1 GeV/amu 56Fe26+ ion

LET150 keV/m

Voxels: 40 nm x 40 nm x 40 nm

Plante I. et al. (2011). Radiat. Prot. Dosim. 143, 156-161. 
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DNA damage / H2AX foci studies
Nuclei only

Tracks only Tracks and nuclei

• Irradiation by 1 
GeV/amu Fe ions

• 100 cGy
• LET ~ 149 keV/µm

Experiments performed at the NASA Space Radiation Laboratory (2007)
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Single HZE ions in cells

And DNA breaks
Mukherjee, B. et al. (2008), DNA repair 7 1717-1730; Plante, I. et al. (2013), Phys. Med. Biol. 58, 6393-6405 

2700 x 1H+, 300 MeV (1 Gy)

Dose in voxels (20 nm)

Chromosomes (RW model)

Intersection voxels

H2AX foci experiments
Application of DSB probability

DNA damage

)t(QDe1 
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Single HZE ions in cells

And DNA breaks
Asaithamby, A. et al. (2008) Radiat. Res. 169, 437-446; Plante, I. et al. (2013), Phys. Med. Biol. 58, 6393-6405

6 x 56Fe26+, 1 GeV/u (1 Gy)

Dose in voxels (20 nm)

Chromosomes (RW model)

Intersection voxels

H2AX foci experiments
Application of DSB probability

DNA damage

)t(QDe1 
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DNA damage / H2AX foci studies

• Calculation of DSBs by low- and high-
LET radiation

Plante, I. et al. (2013), Phys. Med. Biol. 58, 6393-6405
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DNA damage / H2AX foci studies

• Calculation of DSBs by 1H+, 12C6+ and 56Fe26+

ions

Plante, I. et al. (2013), Phys. Med. Biol. 58, 6393-6405
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DNA damage / H2AX foci studies

• Calculation of DSBs vs LET by 1H+, 12C6+ and 
56Fe26+ ions

Plante, I. et al. (2013), Phys. Med. Biol. 58, 6393-6405
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 To better understand the formation of DSBs, a chromatin 
fiber is build from nucleosome units and linker DNA

Chromatin fiberNucleosome (DNA fragments) Nuclei

Nuclei simulations courtesy of Dr. Artem Ponomarev

DNA damage simulations
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 The Binary-Encounter-Bethe (BEB) model of ionization cross section

 The energies are expressed in units of ionization potential of the 
orbital (B):

• t=T/B is the kinetic energy of the incident electron
• w=W/B is the kinetic energy of the ejected electron
• u=U/B is the kinetic energy of the electron in the orbital

 The total cross section is obtained by integration
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Adapted from S. Edel, PhD Thesis, Université de Toulouse (2006)

DNA damage simulations
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 In the DNA bases, there are many internal and valence electrons. The BEB 
model allows to model the ionization for each electron of the molecule.  

No U (eV) B (eV) N

In
te
rn
al
 e
le
ct
ro
ns
 (1

8)

1 794.1 559.41 2
2 794.1 559.18 2
3 601.5 425.6 2
4 601.5 425.48 2
5 435.9 311.36 2
6 435.9 310.43 2
7 435.8 308 2
8 435.7 306.41 2
9 435.8 305.8 2

Va
le
nc
e 
el
ec
tr
on

s 
(4
4)

10 66.26 40.06 2
11 71.74 39.14 2.04
12 63.05 36.16 1.86
13 57.89 34.56 1.85
14 44.95 30 2.3
15 43.96 26.22 2.35
16 47.64 25.14 2.11
17 40.64 24.85 2.15
18 41.92 21.32 2.18
19 39.28 20.94 2.02
20 36.32 19.4 1.86
21 44.53 18.7 2.05
22 55.89 18.56 1.92
23 54.72 17.59 1.99
24 39.88 16.62 2.01
25 46.93 16.15 2.03
26 39.89 15.44 1.78
27 47.3 13.96 1.83
28 59.96 13.15 1.86
29 54.12 12.31 2.07
30 60.23 12.10 1.78
31 40.38 9.27 1.97

Thymine

Calculations of MO from the site www.chemeddl.org 

DNA damage simulations
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Single HZE ions in cells

And DNA breaks

 Cross sections can be calculated for the bases, sugars and phosphates.
 In this case, the medium is considered a succession of homogeneous 

media.
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DNA damage studies

Adapted from S. Edel, PhD Thesis, Université de Toulouse (2006)
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Single HZE ions in cells

And DNA breaks

 10-12 – 10-6 s
• Particles diffusion
• Chemical reactions

 The radiolytic species are not uniformly distributed. 
Therefore, an approach based on Green’s functions of 
the diffusion equation (DE) is used.

OH + H2O2 HO2
 + H2O

Examples of chemical reactions:

(More than 60 reactions...)

2H2Oe-
aq + e-

aq H2 + 2 OH-

OH + e-
aq OH-

H + H2O2
OH + H2O

OH + OH           H2O2

H+ + O2
- HO2



Number of chemical species created 

100 eV deposited energy
G(X)=

Radiation chemistry
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 DE for the propagation of particles A and B

 Transformation

  )t,,|t,p(DD

t)/t,,|t,p(

0
2

B
2

A

0

0B0ABABA

0B0ABA

rrr,r

rrr,r




p(rA,rB,t|rA0,rB0,t0): probability of 
particles A and B to be at positions rA
and rB at time t, given that they were at 
rA0 and rB0 at t0
DA, DB: Diffusion coefficients

BA rrR BAAB D/DD/D 

AB rrr 

RR  /
rr  /

   )t,,|t,p(DDt)/t,,|t,p( 0
22

BA0 00rR00 rRrR,rRrR, 

)t,|,t,()pt,|t,(p)t,,|t,p( 000 0
r

0
R

00 rrRRrRrR, 

  )t,|t,(pDDt)/t,|t,(p 0
2

BA0 0
R

R0
R RRRR 

  )t,|t,(pDDt)/t,|t,(p 0
2

BA0 0
r

r0
r rrrr 

Uncoupled equations

in r and R

Bimolecular reactions

Van Zon, J. S. et al. (2005) J. Chem. Phys. 123, 234910
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Single HZE ions in cells

And DNA breaks

 Free diffusive motion of the coordinate R

pR(R,t|R0,t0): probability distribution of the vector R at time t, given that it 
was located at position R0 at time t0

D=DA+DB: Sum of the diffusion coefficients

Van Zon, J. S. et al. (2005) J. Chem. Phys. 123, 234910
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(DE)

(Initial condition)

(Boundary condition)

(Solution)
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0 0
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Bimolecular reactions
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Single HZE ions in cells

And DNA breaks

 Free diffusive motion* of the inter-particle separation vector r

 For chemical reactions, we need the inter-particle distance r. 
• Therefore, the DE is written in spherical coordinates. 
• Only the radial component will be considered (angular dependency terms are neglected). 

This considerably simplifies the analytical solution.

p(r,t|r0,t0): probability distribution of the separation distance r at time t, given that it was r0 at time t0

)-()t,|t,(p 0 00
r rrrr 

(DE)

(Initial condition)

)t,|t,(pD
t

)t,|t,(p
0

20
0

r
r

0
r

rrrr





*We assume that there is no force interacting between particles. This is the case for most of 
the chemical reactions that we are interested in. 
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Bimolecular reactions
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Single HZE ions in cells

And DNA breaks

Single HZE ions in photo-emulsions

Leaving visible images

 Simple case: reaction with rate ka

(Reaction)

(Boundary condition)

(Green’s function)
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The probability of reaction P(t|r0) = 1 – Q(t|r0). At each time step, the probability of reaction is assessed. If 
the particles have not reacted, their relative distance is obtained by sampling the Green’s function.

Plante, I. et al. (2013) J. Comput. Phys. 242, 531-543

Bimolecular reactions
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Green’s function for radiation chemistry

 Partially diffusion-controlled ABC reaction

oductsPrC
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Plante, I. et al. (2013) J. Comput. Phys. 242, 531-543
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Green’s functions for radiation chemistry

 Partially diffusion-controlled reversible ABC reaction
• Time discretization equations for p(r,t|r0) and p(*,t|r0)

• Time discretization equations for p(r,t|*) and p(*,t|*)

 Proven numerically in Mathematica for all tested 
values of the parameters
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Plante, I. et al. (2013) J. Comput. Phys. 242, 531-543
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Single HZE ions in cells

And DNA breaks

oductsPrC
k

k
BA

e
k

d

a
 



Green’s functions Survival and binding probabilities

Green’s function for radiation chemistry

Plante, I. et al. (2013) J. Comput. Phys. 242, 531-543
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Green’s functions for radiation chemistry

 Partially diffusion-controlled ABCD reaction DC
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Popov, A.V. and Agmon, N. (2002). J. Chem. Phys. 117, 5770-5779
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Green’s functions for radiation chemistry

 Partially diffusion-controlled reversible ABCD reaction
• Time discretization equations for p1 and p2

• Time discretization equations for PAB→CD

 Similar equations for p3,p4 and PCD→AB

 Proven numerically in Mathematica for all tested values 
of the parameters
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Plante, I. et al. (2014), submitted to J. Comput. Phys.
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Green’s functions Survival and binding probabilities

Plante, I. et al. (2014), submitted to J. Comput. Phys.
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Single HZE ions in cells

And DNA breaks

Radiation chemistry
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Single HZE ions in cells

And DNA breaks

Single HZE ions in photo-emulsions

Leaving visible images

Primary yields of e-
aq, .OH, H., H2 and H2O2 as a function of the LET

Irradiation by 300-0.1 MeV protons

LET: 0.3-85 keV/m

Note: the primary yields (noted GX) are 
the yields at the end of spur expansion 
(10-6 s)

Plante, I. (2011), Radiat. Env. Biophys. 50, 405-415

Radiation chemistry
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And DNA breaks

 The radiation chemistry of DNA is very complex
 Many reaction rate constants are known

Cadet, J. et al. (1997) Reviews in Physiology, Biochemistry and Pharmacology 31, 1-87  

Reaction k 
(dm3.mol-1.s-1)

Radius 
(Å)

e-
aq+Thymine→Thy(+e) 1.79x1010 5.287

.OH + Thymine → 
TC5OH.+TC6OH.+TUCH2.

6.4x109 3.02

H.+Thymine→Thymine* 5.7x108 0.11

Radiation chemistry (DNA)
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And DNA breaks

The software RITRACKS

 The software RITRACKS comprises several parts
• The calculation part includes:

 The cross sections, which are necessary for particle transport
 The particle transport routines
 Post-simulation data management

• The Graphic User Interface (GUI), comprises several windows:
 The main window
 Incident radiation window
 Multi-CPU support
 Cross sections windows (electrons and ions)
 Results (events) details

• The 3D visualization window

• The help file

 All necessary files are included in an installer for 
Windows
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Single HZE ions in cells

And DNA breaks

Using RITRACKS

 The installer
• The necessary files are included in an installer created by the freeware 

InstallJammer
• The program is installed in the folder C:\Program Files (x86)\RITRACKS
• Simulations are stored the subfolder RITRACKS Simulations in the My 

Documents folder
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RITRACKS main window
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Rest mass energy: 

Total energy:

Relativistic :

Relativistic :

Momentum:

Maximum energy

Transfer to e-:

LET (MeV/cm):
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The following information is given in this window

Radiation info window
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Electron cross sections window
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Visualization window
Tools: - Rotation

- Translation

- Zoom

- Save to file

- Copy to clipboard

- Create a .avi file

- Open data folder

Visualization:

- Radiolytic species

- Events

- Dose (voxels)

Time evolution
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RITRACKS tools

 Calculation of tracks per cell in a cell culture for a 
given ion, energy and dose
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Release history

 RITRACKS was used by the 
students at the NASA Space 
Radiation Summer School at the 
Brookhaven National Laboratory, 
Upton, New York (June 6-24, 2011,  
May 28 - June 15, 2012, MIT ICED 
June 2012)(over 40 users)

 The release to international partners 
was approved in 2011

 RITRACKS was released to NASA 
space radiation community with 
over 20 users

 The software is now available for 
download on the web site 
http://spaceradiation.usra.edu/irMod
els/ (ITAR, authentication and 
password required) http://spaceradiation.usra.edu
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Release history

 An online version of RITRACKS will be available soon!

Left: Simulation of a 12C6+, 60 MeV/amu, on the projected RRAW site.  

Right: Calculation of the radial dose for the track depicted on the left

The track structure data and the radial dose are available for download after calculation
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Future plans for development and use

 Android/iPhone version
 For ions:

• LET
• Relativistic  and 
• Zeff and Zeff

2/2

• Maximum energy transfer to 
an electron

• Dose and fluence
• Radial dose
• Number of hits per cell
• in a cell culture

 For electrons:
• Relativistic  and 
• Range
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Future plans for development and use

 Implementation of the non-homogeneous chemistry
 Predictions of clustered and complex DNA damage 

yields in human cells for improving the 
understanding of DNA repair and signal 
transduction

 Use with chromosome models to study double-
strand breaks (DSB) in relation to cancer risks from 
space radiation 

 Web-based version 
 New GPU-CPU version to improve computational 

speeds by several orders of magnitude.
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And DNA breaks

Single HZE ions in photo-emulsions

Leaving visible images
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The software RITRACKS

 Multiple CPU computing (Windows)

Plante, I. and Cucinotta, F. A. (2013). Lecture Notes in Computer Sciences 7845, 12-25

RITRACKS V1

Use one CPU onlySelect the CPUs you want to use

RITRACKS V3




