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TECHNICAL PUBLICATION

THE GLOBAL LAND-OCEAN TEMPERATURE INDEX IN RELATION TO SUNSPOT 
NUMBER, THE ATLANTIC MULTIDECADAL OSCILLATION INDEX, THE MAUNA LOA 

ATMOSPHERIC CONCENTRATION OF CO2, AND ANTHROPOGENIC  
CARBON EMISSIONS

1.  INTRODUCTION

	 Global warming/climate change has been a subject of scientific interest since the early 19th 
century.1–7 In particular, increases in the atmospheric concentration of carbon dioxide (CO2) have 
long been thought to account for Earth’s increased warming,8–16 although the lack of a dependable 
set of observational data was apparent as late as the mid 1950s.17–20 However, beginning in the late 
1950s, being associated with the International Geophysical Year, the opportunity arose to begin accu-
rate continuous monitoring of the Earth’s atmospheric concentration of CO2.21–26 Consequently, it 
is now well established that the atmospheric concentration of CO2, while varying seasonally within 
any particular year, has steadily increased over time.27–29 Associated with this rising trend in the 
atmospheric concentration of CO2 is a rising trend in the surface-air and sea-surface temperatures 
(SSTs).30–36

	 This Technical Publication (TP) examines the statistical relationships between 10-year mov-
ing averages (10-yma) of the Global Land-Ocean Temperature Index (GLOTI), sunspot number 
(SSN), the Atlantic Multidecadal Oscillation (AMO) index, and the Mauna Loa CO2 (MLCO2) 
index for the common interval 1964–2006, where the 10-yma values are used to indicate trends in the 
data. Scatter plots using the 10-yma values between GLOTI and each of the other parameters are 
determined, both as single-variate and multivariate fits. Scatter plots are also determined for MLCO2 
using single-variate and bivariate (BV) fits, based on the GLOTI alone and the GLOTI in combina-
tion with the AMO index. On the basis of the inferred preferential fits for MLCO2, estimates for 
MLCO2 are determined for the interval 1885–1964, thereby yielding an estimate of the preindustrial 
level of atmospheric concentration of CO2. Lastly, 10-yma values of MLCO2 are compared against 
10-yma estimates of the total carbon emissions (TCE)37 to determine the likelihood that manmade 
sources of carbon emissions are indeed responsible for the recent warming now being experienced. 
(Parametric values used in this TP are those available prior to the end of 2012.)
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2.  RESULTS

	 Figure 1 displays the variation of the annual (thin line) and 10-yma (thick line) values of  
(a) GLOTI, (b) SSN, (c) AMO, and (d) MLCO2 for the common interval 1959–2011. Individual 
sunspot cycles are identified in subpanel (b). Inspection of figure 1 suggests that during the common 
interval 1959–2011, the GLOTI, AMO, and MLCO2 are all trending upwards, while SSN is trend-
ing downwards. Furthermore, because the 10-yma value of MLCO2 remains above its annual (same 
year) average during this common interval, it is apparent that the atmospheric concentration of CO2 
as measured at Mauna Loa, Hawaii, is presently increasing at an accelerated rate, as placement of  
a straight-edge along the curve clearly shows.

	 The GLOTI is a measure of the global land-ocean temperature relative to the base period 
of 1951–1980, where the data are taken from the Global Historical Climate Network, version 3, 
using elimination of outliers and homogeneity adjustment. The data, as used in figure 1(a), are the  
January–December averages, available online at <http://data.giss.nasa.gov/gistemp>.33,38

	 The SSN provides a measure of the strength of solar activity associated with the vari-
ation of solar irradiance over the solar cycle.39–42 Annual values of SSN are available online at  
<ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/INTERNATIONAL>.

	 The AMO is a temperature oscillation in the detrended SST of the North Atlantic Ocean 
(0–70° N.) having a period of about 65–70 years that fluctuates between warm (positive) and cool 
(negative) phases.43,44 The SST pattern has been suggested to be linked to variations in the strength 
of the Atlantic thermohaline circulation (THC), a density-driven, global circulation pattern that 
involves the movement of warm equatorial surface waters to higher latitudes and the subsequent 
cooling and sinking of these waters in the deep ocean.45 In particular, the warm phase of the AMO 
represents intervals of faster THC, while the cold phase represents intervals of slower THC. From 
figure 1(c), one surmises that the AMO was reflective of the cool phase between about 1964 and 
1994, but now is in the midst of a warm phase (since 1995) that began its rise to more positive values 
about 1975 (based on 10-yma values). The warm phase is expected to continue for at least another 
decade or more. Monthly values of the AMO index are available online at <http://www.esrl.noaa.gov/ 
psd/data/correlation/amon.us.long.data>. 

	 The MLCO2 is a measure of the atmospheric concentration of CO2 as measured at the 
Mauna Loa Observatory on the Big Island of Hawaii, located on the northern slope of the volcano 
Mauna Loa at an elevation of 3,400 m above sea level and 800 m below its summit at 19.5° N. and 
155.6° W.24,46 Annual averages of the MLCO2 measurements, expressed in ppm, are available online 
for the interval 1959–2011 at <ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_annmean_mlo.txt>.
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Figure 1.  Variation of annual (thin line) and 10-yma (thick line) values of (a) GLOTI,  
(b) SSN, (c) AMO, and (d) MLCO2 for the common interval 1959–2011.
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	 Figure 2 depicts the scatter plots of the 10-yma values of GLOTI versus (a) SSN, (b) AMO, 
and (c) MLCO2 for the interval 1964–2006. The diagonal lines in the subpanels represent the inferred 
preferential linear regressions. The small arrows in each subpanel (and in succeeding figures) indicate 
the last available 10-yma values for the parameters (i.e., for the year 2006). The 10-yma values in each 
subpanel generally track smoothly from lower to higher GLOTI values over the interval 1964–2006. 
Given in each subpanel are the inferred regression equation (y), the coefficient of correlation (r), 
the coefficient of determination (r2) (a measure of the amount of variance explained by the inferred 
regression), the standard error of estimate (se), and the confidence level (cl) of the inferred regres-
sion, where cl > 90% indicates a marginally statistically important result, cl > 95% indicates a statisti-
cally important result, and cl > 99% indicates a highly statistically important result.
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Figure 2.  Scatter plots of the 10-yma values of GLOTI versus (a) SSN,  
(b) AMO, and (c) MLCO2 for the interval 1964–2006. 
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	 For GLOTI versus SSN, the inferred regression based on the limited time interval 1964–2006 
is one found to be only of marginal statistical importance, having cl > 90%, se = 0.2 °C, and r2 = 0.072, 
meaning that the inferred regression explains only about 7% of the variance in the 10-yma values of 
GLOTI during the interval 1964–2006. Also, the inferred regression is found to be one that varies 
inversely (r = –0.27) rather than directly, in contrast to that found when using the much longer inter-
val 1885–2006, one that clearly shows an upward-trending SSN.47

	 For GLOTI versus AMO, the inferred regression (r = 0.87) is one that is highly statistically 
important, having cl > 99.9%, se = 0.09 °C, and r2 = 0.762, meaning that the inferred regression 
explains about 76% of the variance in the 10-yma values of GLOTI. Current values of AMO and 
GLOTI are positive, indicative of the warm phase and the occurrence of a warm anomaly, respec-
tively. The implication then is that the continuing warm phase as indicated by the AMO suggests  
a continuing positive (warm) global land-ocean temperature anomaly for the near term foreseeable 
future.

	 For GLOTI versus MLCO2, the inferred regression (r = 0.99) is the strongest of all the 
inferred regressions, having cl > 99.9%, se = 0.06 °C, and r2 = 0.988, meaning that the inferred regres-
sion explains nearly 99% of the variance in the 10-yma values of GLOTI for the interval 1964–2006. 
The implication then is that the continuing unabated increase in the atmospheric concentration of 
CO2 as measured at Mauna Loa strongly suggests a continuing increase in the positive (warm) global 
land-ocean temperature for the long term foreseeable future.
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	 Figure 3 shows the scatter plots of the 10-yma values of GLOTI versus selected BV fits for 
GLOTI, including (a) BV1, based on SSN and AMO, (b) BV2, based on SSN and MLCO2, and 
(c) BV3, based on AMO and MLCO2. The BV fit BV1, having Ry12 = 0.895 and Sy12 = 0.086 °C,  
represents a slight improvement over using AMO alone, while the BV fit BV2, having Ry12 = 0.994 
and Sy12 = 0.021 °C, and especially BV fit BV3, having Ry12 = 0.999 and Sy12 = 0.01 °C, represent sig-
nificant improvements over using MLCO2 alone (by virtue of their inferred reduced standard error 
of estimates). (In figure 3, subscripts 1 and 2 refer to parameters 1 and 2, where 1 is SSN and 2 is 
AMO in BV1; SSN and MLCO2 in BV2; and AMO and MLCO2 in BV3.)
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	 Figure 4 displays the scatter plot of the 10-yma values of GLOTI versus a trivariate (TV) fit 
for GLOTI (TV1), based on SSN, AMO, and MLCO2. Essentially, the TV1 fit is insignificantly dif-
ferent from that of the BV3 fit (i.e., the r and se are essentially the same for both fits).
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	 Figure 5 depicts the scatter plots of the 10-yma values of MLCO2 versus (a) GLOTI and  
(b) BV4, the BV fit based on both GLOTI and AMO. Of the two fits, the one between MLCO2 
and GLOTI alone is the stronger, having r = 0.994 and se = 2 ppm, as compared to Ry12 = 0.992 and 
Sy12 = 2.4 ppm for BV4. The diagonal line in figure 5(a) is the inferred preferential linear regression 
line for MLCO2 versus GLOTI. The regression equations and other statistical parameters are identi-
fied in the subpanels.

ML
CO

2 (
10

-y
m

a)

400

350

300

(a)
–0.3 0 0.3

y

0.6
GLOTI (10-yma) (b)

300 350 400
MLCO2 (GLOTI, AMO)=BV4

F5

y=327.208 + 98.404x 

se=2.047, cl>99.9%  
r=0.994, r2=0.988  

BV4=322.309 + 115.027GLOTI – 25.038AMO
Ry12=0.992, Sy12=2.422

Figure 5.  Scatter plots of the 10-yma values of MLCO2 versus (a) GLOTI and (b) BV4,  
the BV fit based on GLOTI and AMO.
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	 Figure 6 shows the estimated and observed 10-yma values of MLCO2 for the interval 1885–
2006 based on the inferred regressions shown in figure 5. Thus, presuming the validity of the inferred 
regressions, one finds that, while both fits essentially mimic the observed 10-yma values of MLCO2 
(the filled circles) for the interval 1970–2006, slight differences are apparent in the values prior to 
1970. In particular, BV4 (the thick line) suggests slightly lower estimated values (by about 10 ppm) 
for the 10-yma values of MLCO2 during the interval 1885–1964, as compared to using the linear 
fit based on GLOTI alone. Both extrapolations suggest temporary slight increases in atmospheric 
concentration of CO2 near 1900 and the early 1940s, each increase lasting about 20 years in length. 
Values since about 1975 have been the highest on record and continue to increase with the passage of 
time.
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	 Figure 7 compares the estimated (based on BV4) and observed 10-yma values of MLCO2 
for the interval 1885–2006 with exponentials based on year (t). Fit y1 is based on the exponential 
determined using the 10-yma values from BV4 for t = 1890 and t = 1964, and fit y2 is based on the 
exponential determined using 10-yma values from BV4 for t = 1964 and t = 2006. For 1890, 1964, 
and 2006, the 10-yma values from BV4 equal 285.25, 320.08, and 380.39 ppm, respectively. The fits 
y1 and y2 are provided merely to demonstrate the approximate fitting to the observed and estimated 
MLCO2 based on using the BV4 fit and the apparent change that seems to take place in the trend-
ing of MLCO2 values relative to the exponential fits sometime around 1970, when the observed and 
estimated MLCO2 values appear to have transitioned from one following more closely the y1 fit to 
one following more closely the y2 fit. (Actual 10-yma values of MLCO2 are now found to be above 
the estimated values given by the y2 exponential fit, indicating that higher values of MLCO2 should 
be expected sooner rather than later, as given by the y2 exponential fit.)
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of MLCO2 for the interval 1885–2006 with exponentials based on year t.
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	 The expected 10-yma value of MLCO2 about 1880 is of interest because it is representative of 
the preindustrial level of the atmospheric concentration of CO2. Now, the record of GLOTI yearly 
values begins in 1880, having a value of –0.32 °C. Consequently, the first available 10-yma value 
of GLOTI occurs in 1885. However, the record of AMO yearly values begins in 1856, so that the 
10-yma value of AMO is known for 1880 (=0.075 °C). For the interval 1885–2006, the residual (i.e., 
the difference between the yearly value and the corresponding 10-yma value) for GLOTI is about 
± 0.1 °C, a range that captures about 80% of the residuals.47 Hence, one can estimate the 10-yma 
value for GLOTI for the year 1880 to be about –0.32 ± 0.1 °C. Using this value in conjunction with 
the 10-yma AMO value for 1880 in BV4 allows one to estimate the 10-yma value of MLCO2 for 
1880, a value computed to be about 283.6 ± 2.4 ppm, very close to that determined from polar ice 
cores for the preindustrial level (i.e., about 280 ± 5 ppmv; see Neftel et al.48).

	 As previously noted, the atmospheric concentration of CO2 as measured at Mauna 
Loa appears to be not only increasing over time, but also to be increasing at an accelerated rate.  
Figure 8 plots the (a) first and (b) second differences of the 10-yma values of MLCO2 for the interval 
1964–2006. From figure 8(a), one finds that the average 10-yma value of MLCO2 is growing at the 
rate of about 1.47 ± 0.31 ppm per year (i.e., the mean ± 1 standard deviation (sd) interval). However, 
as can be seen from figure 8(a), the average rate inadequately describes the actual year-to-year first 
difference values. The rate of growth in the 10-yma value of MLCO2 was always below 1.5 ppm 
prior to 1980 and, except for the brief  intervals 1987–1989 and 1991–1992, it always has been equal 
to 1.5 ppm or greater after 1980, measuring 2.03 ppm in 2005 (the last available first difference value 
and the largest rate of growth ever measured). Overall, the first difference values are better described 
using the linear fit given by y = –46.207 + 0.024t, where y is the expected first difference and t is the 
year, rather than using the mean and sd. The linear fit is found to explain about 88% of the variance 
in the first difference values. For 2006, one expects the first difference to be about 1.99 ± 0.3 ppm (the 
±1 se prediction interval), thereby inferring that the expected 10-yma of MLCO2 for 2007 should be 
about 381.6 + 1.99 ± 0.3 ppm or about 383.59 ± 0.3 ppm. Presuming the validity of the fit, one esti-
mates the 10-yma value of MLCO2 for 2015 and 2026 to be ≥400 ppm and ≥425 ppm, respectively. If  
these values prove true, then, from figure 2(c), one expects the 10-yma value of GLOTI to measure 
about 0.72 ± 0.06 °C in 2015 and about 0.97 ± 0.06 °C in 2026. (It should be noted that the 10-yma of 
MLCO2 for 2007 is now known to measure 383.67 ppm, thus confirming the prediction above that 
it would measure about 383.59 ± 0.3 ppm.)
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for the interval 1964–2006.

	 Figure 8(b) displays the variation of the second difference of the 10-yma values of MLCO2 
(i.e., the first difference of the first difference). It has a mean of 0.027 ± 0.047 ppm per year. Runs-
testing49 of the second difference values strongly suggests that they are distributed randomly, hav-
ing a normal deviate for the sample (z) = –0.467, based on the observed number of values above the 
median (na = 21), the number of values below the median (nb = 20), and the number of runs above 
the median (nra = 10), where the median second difference value is 0.03.
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	 Recently, Boden et al. reported on the yearly variation of global fossil fuel CO2 emissions.37 

They noted that approximately 356 billion metric tons of carbon have been released into the atmo-
sphere through the combustion of fossil fuels and cement production since 1751, with half  of the 
fossil fuel CO2 emissions having occurred since the mid 1980s. Furthermore, they noted that liquid 
and solid fuels accounted for about 76.6% of the emissions in 2009, while gas fuels (e.g., natural gas) 
and cement production accounted for 17.9% and 4.7% of the emissions, respectively.

	 Figure 9 plots the annual and 10-yma values of the TCE estimates for the interval 1959–
2009. For the overall interval 1964–2004, the trend in TCE has grown at the average rate of about  
118 million metric tons per year, although the intervals prior to 1975 and after about 1997 have 
had considerably higher average rates of growth, measuring about 157 and 169 million metric tons 
per year, respectively. Extrapolation of the 10-yma trend line beyond 2004 using the higher rate of 
growth in TCE suggests that TCE will measure about 10,000 million metric tons around the year 2017  
± 2 years, and it will measure about 12,000 million metric tons around 2029 ± 2 years. (The rightmost 
vertical axis gives the total CO2 emission in units of million metric tons.)
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Figure 9.  Annual and 10-yma values of the TCE estimates for the interval 1959–2009  
(taken from Boden, Marland, and Andres, 2012).37
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	 Figure 10 plots the 10-yma values of MLCO2 versus TCE, assuming a zero time lag. Clearly, 
as TCE increases, MLCO2 increases, strongly suggesting that the two parameters are highly statisti-
cally correlated, which they appear to be (r = 0.985 and cl » 99.9%). The lower-leftmost filled circle 
corresponds to the year 1964, and the upper-rightmost filled circle corresponds to the year 2004, with 
the intervening filled circles corresponding to the intervening sequential years. From the inferred 
regression (y), one finds that a 10-yma value of TCE = 10,000 million metric tons corresponds to  
a 10-yma value of about MLCO2 = 408.75 ± 3.79 ppm (the ±1 se prediction interval), while a 10-yma 
value of TCE = 12,000 million metric tons corresponds to about MLCO2 = 436.31 ± 3.79 ppm. Simi-
larly, from the inferred regression (x), one finds that a 10-yma value of MLCO2 of 400 ppm cor-
responds to a 10-yma value of about TCE = 9,246 ± 218 million metric tons, while 10-yma values of 
MLCO2 = 425 ppm and 440 ppm correspond to about TCE = 11,006 ± 218 and 12,062 ± 218 million 
metric tons, respectively. 
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Figure 10.  Scatter plot of the 10-yma values of MLCO2 versus TCE and TCE versus MLCO2.

	 As previously noted from figure 9, extrapolation of the 10-yma trend line beyond 2004 using 
the higher rate of growth in TCE suggests that TCE will measure about 10,000 million metric tons 
around the year 2017 ± 2 years, and it will measure about 12,000 million metric tons around 2029 
± 2 years, presuming the validity of the extrapolation. Furthermore, from figure 2(c), given the 
inferred 10-yma values of MLCO2 corresponding to 10-yma values of TCE equal to 10,000 metric 
tons and 12,000 million metric tons, being equal to about 409 ppm and 440 ppm, respectively, one 
estimates 10-yma values of GLOTI equal to about 0.82 ± 0.06 °C around 2017 ± 2 years and about 
1.13 ± 0.06 °C around 2029 ± 2 years, respectively. A faster (slower) rate of growth in the 10-yma 
values of TCE implies higher (lower) 10-yma values of MLCO2 and, consequently, higher (lower) 
10-yma values GLOTI. 
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3.  DISCUSSION AND CONCLUSION

	 This TP of the common interval 1964–2006 has revealed a close statistical coupling between 
the global land-ocean temperature anomaly as described by GLOTI and both the phase of the AMO 
and the increasing atmospheric concentration of CO2 as measured at Mauna Loa. On the basis of 
10-yma values, the GLOTI is found to be well described using the BV fit BV3 = –2.77 + 0.224552AMO 
+ 0.008615MLCO2, having Ry12 = 0.9986 and Sy12 = 0.01 °C, where BV3 represents the 10-yma of 
value of the GLOTI, and the subscripts 1 and 2 refer to the 10-yma parametric values of the AMO and 
MLCO2 indices, respectively. Likewise, the BV fit BV4 (=322.309 + 115.027GLOTI – 25.038AMO)  
is found to provide a very close fit for the observed 10-yma values of MLCO2, having Ry12 = 0.992 
and Sy12 = 2.42 ppm.

	 From an extrapolation of the BV4 fit backwards in time, prior to 1964, one finds evidence for 
two temporary slight increases in the atmospheric concentration of CO2, each of about 20 years dura-
tion—the first about 1900, having a local peak of about 296 ± 2.4 ppm, and the second in the early 
1940s, having a local peak of about 322 ± 2.4 ppm. While the interval prior to about 1970 appears to 
be better approximated using the exponential log y1 = 1.856 + 0.002t, where y1 is the 10-yma value of 
MLCO2 and t is the year, the interval after 1970 appears to be better described using the exponential 
y2 = –2.085 + 0.004t. However, current 10-yma values of MLCO2 now appear to be rising faster than 
described by the post-1970 exponential. Using the BV4 fit, one estimates the preindustrial value for 
the atmospheric concentration of CO2 to be about 283.6 ± 2.4 ppm, very close to that determined 
from polar ice cores (i.e., about 280 ± 5 ppmv).

	 The 10-yma value of MLCO2 measured about 382 ppm in 2006. On average, the 10-yma 
value of MLCO2 is found to be increasing at the approximate rate of about 1.47 ± 0.31 ppm per 
year. While true, the average rate of growth in the 10-yma values of MLCO2 does not appear to 
adequately describe the actual year-to-year increases in the 10-yma values. Instead, the rate of yearly 
increase is better described using the linear fit y = –46.207 + 0.024t, where y is the first difference in 
consecutive year-to-year 10-yma values of MLCO2 and t is the year. Hence, the 10-yma values of 
MLCO2 appear to be increasing at an accelerated rate, such that the 10-yma value of MLCO2 is 
expected to measure ≥400 ppm about the middle-to-latter half  of the present decade and ≥425 ppm 
about the middle-to-latter half  of the following decade. Likewise, because of the inferred close asso-
ciation between the 10-yma values of GLOTI and MLCO2, one expects 10-yma values of GLOTI to 
continue to increase over time, measuring about 0.72 ± 0.06 °C and 0.97 ± 0.06 °C, respectively, when 
10-yma values of MLCO2 measure ≥400 ppm and ≥425 ppm.

	 The rise in 10-yma values of MLCO2 appears to be directly linked to the increase in the 
10-yma values of the TCE as deduced from the yearly values of global fossil fuel CO2 emissions 
determined by Boden et al.37 In particular, the 10-yma values of MLCO2 are found to increase in 
step with increases in the 10-yma values of TCE, with the inferred correlation having r = 0.985 and 
cl » 99.9%. From the inferred regression between the 10-yma values of MLCO2 and TCE, one finds 
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that a 10-yma value of TCE equal to about 10,000 million metric tons suggests a 10-yma value of 
MLCO2 ≥400 ppm and GLOTI ≥0.76 °C, while a 10-yma value of TCE equal to about 12,000 mil-
lion metric tons suggests a 10-yma value of MLCO2 ≥440 ppm and GLOTI ≥1.07 °C.



17

REFERENCES

  1.	 Mitchell, J.F.B.: “The ‘Greenhouse’ effect and climate change,” Rev. Geophys., Vol. 27, No. 1,  
pp. 115–139, doi:10.1029/RG027i001p00115, February 1989.

  2.	 Jones, M.D.H.; and Henderson-Sellers, A.: “History of the greenhouse effect,” Prog. Phys. Geog., 
Vol. 14, No. 1, pp. 1–18, doi:10.1177/030913339001400101, March 1990.

  3.	 Rodhe, H.; Charlson, R.; and Crawford, E.: “Svante Arrhenius and the Greenhouse Effect,” 
Ambio, Vol. 26, No. 1, pp. 2–5, February 1997.

  4.	 Manabe, S.: “Early Development in the Study of Greenhouse Warming: The Emergence of Cli-
mate Models,” Ambio, Vol. 26, No. 1, pp. 47–51, February 1997.

  5.	 Solomon, S.D.; Qin, D.; Manning, M.; et al. (eds.): Climate Change 2007: The Physical Science 
Basis, Cambridge University Press, Cambridge, UK, 996 pp., 2007.

  6.	 Gray, L.J.; Beer, J.; Geller, M.; et al.: “Solar influences on climate,” Rev. Geophys., Vol. 48, No. 4, 
53 pp., doi:10.1029/2009RG000282, December 2010.

  7.	 Archer, D.; and Pierrehumbert, R. (eds.): The Warming Papers: The Scientific Foundation for the 
Climate Change Forecast, Wiley-Blackwell, Oxford, UK, 432 pp., 2011.

  8.	 Tyndall, J.: “On the Absorption and Radiation of Heat by Gases and Vapours, and on the Physi-
cal Connexion of Radiation, Absorption, and Conduction,” Philos. T. R. Soc. Lond., Vol. 151, 
pp. 1–36, 1861.

  9.	 Chamberlin, T.C.: “An Attempt to Frame a Working Hypothesis of the Cause of Glacial Peri-
ods on an Atmospheric Basis,” J. Geol., Vol. 7, No. 6, pp. 545–584, 1899.

10.	 Arrhenius, S.: “On the Influence of Carbonic Acid in the Air upon the Temperature of the 
Ground,” Philos. Mag., Vol. 4, No. 251, pp. 237–276, April 1896.

11.	 Arrhenius, S.: Lehrbuch der kosmischen Physik 2, Verlag von S. Hirzel, Leipzig, Germany, 1903. 

12.	 Callendar, G.S.: “The artificial production of carbon dioxide and its influence on temperature,” 
Q. J. Roy. Meteor. Soc., Vol. 64, No. 275, pp. 223–240, doi:10.1002/qj.49706427503, April 1938.

13.	 Callendar, G.S.: “Variations of the amount of carbon dioxide in different air currents,” Q. J. 
Roy. Meteor. Soc., Vol. 66, No. 287, pp. 395–400, doi:10.1002/qj.49706628705, October 1940.



18

14.	 Callendar, G.S.: “Can carbon dioxide influence climate?” Weather, Vol. 4, No. 10, pp. 310–314, 
doi:10.1002/j.1477-8696.1949.tb00952.x, October 1949.

15.	 Callendar, G.S.: “On the Amount of Carbon Dioxide in the Atmosphere,” Tellus, Vol. 10, No. 2, 
pp. 243–248, doi:10.1111/j.2153-3490.1958.tb02009.x, May 1958.

16.	 Callendar, G.S.: “Temperature fluctuations and trends over the earth,” Q. J. Roy. Meteor. Soc., 
Vol. 87, No. 373, pp. 435–437, doi:10.1002/qj.49708737316, July 1961.

17.	 Slocum, G.: “Has the amount of carbon dioxide in the atmosphere changed significantly since 
the beginning of the twentieth century?” Mon. Weather Rev., Vol. 83, No. 10, pp. 225–231,  
October 1955.

18.	 Fonselius, S.; Koroleff, F.; and Wärme, K.-E.: “Carbon Dioxide Variations in the Atmosphere,” 
Tellus, Vol. 8, No. 2, pp. 176–183, doi:10.1111/j.2153-3490.1956.tb01208.x, May 1956.

19.	 Revelle, R.; and Suess, H.E.: “Carbon Dioxide Exchange Between Atmosphere and Ocean 
and the Question of an Increase of Atmospheric CO2 during the Past Decades,” Tellus, Vol. 9,  
No. 1, pp. 18–27, doi:10.1111/j.2153-3490.1957.tb01849.x, February 1957.

20.	 Bray, J.R.: “An Analysis of the Possible Recent Change in Atmospheric Carbon Dioxide 
Concentration,” Tellus, Vol. 11, No. 2, pp. 220–230, doi:10.1111/j.2153-3490.1959.tb00023.x,  
May 1959.

21.	 Bolin, B.; and Eriksson, E.: “Changes in the Carbon Dioxide Content of the Atmosphere and 
Sea due to Fossil Fuel Combustion,” in The Atmosphere and Sea in Motion, The Rockefeller 
Institute Press, New York, NY, pp. 130–142, 1959.

22.	 Keeling, C.D.: “The Concentration and Isotropic Abundances of Carbon Dioxide in the Atmo-
sphere,” Tellus, Vol. 12, No. 2, pp. 200–203, doi:10.1111/j.2153-3490.1960.tb01300.x, May 1960.

23.	 Bolin, B.; and Keeling, C.D.: “Large-scale atmospheric mixing as deduced from seasonal and 
meridional variations of carbon dioxide,” J. Geophys. Res., Vol. 68, No. 13, pp. 3899–3920, 
doi:10.1029/JZ068i013p03899, July 1963.

24.	 Pales, J.C.; and Keeling, C.D.: “The concentration of atmospheric carbon dioxide in Hawaii,”  
J. Geophys. Res., Vol. 70, No. 24, pp. 6053–6076, doi:10.1029/JZ070i024p06053, December 1965.

25.	 Brown, C.W.; and Keeling, C.D.: “The concentration of atmospheric carbon dioxide in Antarc-
tica,” J. Geophys. Res., Vol. 70, No. 24, pp. 6077–6085, doi:10.1029/JZ070i024p06077, December 
1965.

26.	 Bolin, B.; and Bischof, W.: “Variations of the carbon dioxide content of the atmosphere in 
the northern hemisphere,” Tellus, Vol. 22, No. 4, pp. 431–442, doi:10.1111/j.2153-3490.1970.
tb00508.x, August 1970.



19

27.	 Keeling, C.D.; Bacastow, R.B.; Bainbridge, A.E., et al.: “Atmospheric carbon diox-
ide variations at Mauna Loa Observatory, Hawaii,” Tellus, Vol. 28, No. 6, pp. 538–551, 
doi:10.1111/j.2153-3490.1976.tb00701.x, December 1976.

28.	 Bacastow, R.B.; Keeling, C.D.; and Whorf, T.P.: “Seasonal amplitude increase in atmospheric 
CO2 concentration at Mauna Loa, Hawaii, 1959–1982,” J. Geophys. Res., Vol. 90, No. D6,  
pp. 10,529–10,540, doi:10.1029/JD090iD06p10529, October 1985.

29.	 Thoning, K.W.; Tans, P.P.; and Komhyr, W.D.: “Atmospheric carbon dioxide at Mauna Loa 
Observatory 2. Analysis of the NOAA GMCC data, 1974–1985,” J. Geophys. Res., Vol. 94,  
No. D6, pp. 8549–8565, doi:10.1029/JD094iD06p08549, June 1989.

30.	 Paltridge, G.; and Woodruff, S.: “Changes in Global Surface Temperature from 1880 to 1977 
Derived From Historical Records of Sea Surface Temperature,” Mon. Weather Rev., Vol. 109, 
No. 12, pp. 2427–2434, December 1981.

31.	 Wigley, T.M.L.; and Raper, S.C.B.: “Natural variability of the climate system and detection of 
the greenhouse effect,” Nature, Vol. 344, pp. 324–327, doi:10.1038/344324a0, March 1990.

32.	 Cline, W.R.: “Scientific Basis for the Greenhouse Effect,” Econ. J., Vol. 101, No. 407, pp. 904–
919, July 1991.

33.	 Hansen, J.R.; Sato, M.; Ruedy, R.; et al.: “Global temperature change,” P. Natl. Acad. Sci. USA., 
Vol. 103, No. 39, pp. 14,288–14,293, doi:10.1073/pnas.0606291103, September 2006.

34.	 Hansen, J.; Ruedy, R.; Sato, M.; and Lo, K.: “Global surface temperature change,” Rev. Geo-
phys., Vol. 48, No. 4, 29 pp., doi:10.1029/2010RG000345, December 2010.

35.	 Beck, E.-G.: “180 years of atmospheric CO2 gas analysis by chemical methods,” Energy & Envi-
ronment, Vol. 18, No. 2, pp. 259–282, 2007.

36.	 Wilson, R.M.: “Solar Cycle and Anthropogenic Forcing of Surface-Air Temperature at Armagh 
Observatory, Northern Ireland,” NASA/TP—2010–216375, Marshall Space Flight Center, AL, 
28 pp., March 2010.

37.	 Boden, T.A.; Marland, G.; and Andres, R.J.: “Global, Regional, and National Fossil-Fuel CO2 
Emissions,” 2012, <http://cdiac.ornl.gov/trends/emis/overview_2009.html>.

38.	 Smith, E.M.: “Summary report on v1 vs v3 GHCN,” June 20, 2012, <http://chiefio.wordpress.
com/2012/06/20/summary-report-on-v1-vs-v3-ghcn/>.

39.	 Willson, R.C.; and Hudson, H.S.: “The Sun’s luminosity over a complete solar cycle,” Nature, 
Vol. 351, No. 6321, pp. 42– 44, doi:10.1038/351042a0, May 1991.

40.	 Willson, R.C.: “Total Solar Irradiance Trend During Solar Cycles 21 and 22,” Science, Vol. 277, 
No. 5334, pp. 1963–1965, doi:10.1126/science.277.5334.1963, September 1997.



20

41.	 Willson, R.C.; and Mordvinov, A.V.: “Secular total solar irradiance trend during solar cycles 
21–23,” Geophys. Res. Lett., Vol. 30, No. 5, pp. 21–23, doi:10.1029/2002GL016038, March 2003.

42.	 Foukal, P.; Fröhlich, C.; Spruit, H.; and Wigley, T.M.L.: “Variations in solar luminosity and 
their effect on the Earth’s climate,” Nature, Vol. 443, pp. 161–166, doi:10.1038/nature05072, 
September 14, 2006.

43.	 Schlesinger, M.E.; and Ramankutty, N.: “An oscillation in the global climate system of period 
65–70 years,” Nature, Vol. 367, No. 6465, pp. 723–726, doi:10.1038/367723a0, February 1994.

44.	 Dijkstra, H.A.; te Raa, L.; Schmeits, M.; and Gerrits, J.: “On the physics of the Atlantic Multi-
decadal Oscillation,” Ocean Dynam., Vol. 56, No. 1, pp. 36–50, doi:10.1007/s10236-005-0043-0, 
May 2006.

45.	 Knight, J.R.; Allan, R.J.; Folland, C.K.; et al.: “A signature of persistent natural thermo-
haline circulation cycles in observed climate,” Geophys. Res. Lett., Vol. 32, No. 20, 4 pp., 
doi:10.1029/2005GL024233, October 2005.

46.	 Price, S.; and Pales, J.C.: “The Mauna Loa high-altitude observatory,” Mon. Weather Rev.,  
Vol. 87, No. 1, pp. 1–14, January 1959.

47.	 Wilson, R.M.: “Estimating the Mean Annual Surface Air Temperature at Armagh Observa-
tory, Northern Ireland, and the Global Land-Ocean Temperature Index for Sunspot Cycle 24, 
the Current Ongoing Sunspot Cycle,” NASA/TP—2013–217484, Marshall Space Flight Center, 
AL, 60 pp., July 2013.

48.	 Neftel, A.; Moor, E.; Oeschger, H.; and Stauffer, B.: “Evidence from polar ice cores for 
the increase in atmospheric CO2 in the past two centuries,” Nature, Vol. 315, pp. 45–47,  
doi:10.1038/315045a0, May 1985.

49.	 Lapin, L.L.: Statistics for Modern Business Decisions, 2nd ed., Harcourt Brace and Jovanovich, 
Inc., New York, NY, 788 pp., 1978.



21



22

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining 
the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operation and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.  
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid 
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1.  REPORT DATE (DD-MM-YYYY) 2.  REPORT TYPE 3.  DATES COVERED (From - To)

4.  TITLE AND SUBTITLE 5a.  CONTRACT NUMBER

5b.  GRANT NUMBER

5c.  PROGRAM ELEMENT NUMBER

6.  AUTHOR(S) 5d.  PROJECT NUMBER
 

5e.  TASK NUMBER

5f.   WORK UNIT NUMBER

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.  PERFORMING ORGANIZATION
     REPORT NUMBER

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.  SPONSORING/MONITOR’S ACRONYM(S)

11.  SPONSORING/MONITORING REPORT NUMBER

12.  DISTRIBUTION/AVAILABILITY STATEMENT

13.  SUPPLEMENTARY NOTES

14.  ABSTRACT

15.  SUBJECT TERMS

16.  SECURITY CLASSIFICATION OF:
a.  REPORT             b.  ABSTRACT        c.  THIS PAGE

17.  LIMITATION OF ABSTRACT 18.  NUMBER OF 
       PAGES

19a.  NAME OF RESPONSIBLE PERSON

19b.  TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

The Global Land-Ocean Temperature Index in Relation to Sunspot 
Number, the Atlantic Multidecadal Oscillation Index, the Mauna 
Loa Atmospheric Concentration of CO2, and Anthropogenic 
Carbon Emissions

Robert M. Wilson

George C. Marshall Space Flight Center
Huntsville, AL  35812

National Aeronautics and Space Administration
Washington, DC  20546–0001

Unclassified-Unlimited
Subject Category 47
Availability: NASA CASI  (443–757–5802)

Prepared by the Science and Research Office, Science and Technology Office

M–1361

Technical Publication

NASA/TP—2013–217485

Global Land-Ocean Temperature Index, Atlantic Multidecadal Oscillation, atmospheric concentration 
of carbon dioxide, total carbon emissions, climate change

01–07–2013

UU 32

NASA

U U U

Examined are 10-year moving averages (10-yma) of the Global Land-Ocean Temperature Index (GLOTI) in relation to those of 
sunspot number, the Atlantic Multidecadal Oscillation (AMO) index, and the Mauna Loa carbon dioxide (CO2) (MLCO2) index 
and 10-yma of MLCO2 in relation to that of the total carbon emissions (TCE). Using inferred fits between 10-yma values of 
MLCO2 and GLOTI and between MLCO2 and GLOTI and AMO, estimates are determined for the atmospheric concentration 
of CO2 during the interval 1885–1964. The atmospheric concentration of CO2 is inferred to have risen by about 32 ± 2% between 
1890 and 2006. Comparison of 10-yma values of MLCO2 and TCE strongly suggests that manmade sources of carbon emissions 
are indeed responsible for the recent warming now being experienced. Based on the expected 10-yma values of MLCO2 for the 
years 2015 and 2026, 10-yma values of GLOTI are anticipated to measure about 0.72 ± 0.06 ˚C and 0.97 ± 0.06 ˚C, respectively, 
indicating continued warming for the foreseeable future. 

STI Help Desk at email: help@sti.nasa.gov

STI Help Desk at: 443–757–5802





NASA/TP—2013–

The Global Land-Ocean Temperature Index 
in Relation to Sunspot Number, the Atlantic 
Multidecadal Oscillation Index, the Mauna 
Loa Atmospheric Concentration of CO2,  
and Anthropogenic Carbon Emissions
Robert M. Wilson
Marshall Space Flight Center, Huntsville, Alabama 
 

July 2013

National Aeronautics and
Space Administration
IS20
George C. Marshall Space Flight Center
Huntsville, Alabama  35812




