Entry, Descent, and Landing Systems
Short Course

Subject: Modern Advances in Ablative TPS
Author: Ethiraj Venkatapathy
 NASA Ames Research Center

sponsored by
International Planetary Probe Workshop 10
June 15-16, 2013
San Jose, California
Outline

• Physics of Hypersonic Flow and TPS Considerations
• Destinations, Missions and Requirements
• State of the Art Thermal Protection Systems Capabilities
• Modern Advances in Ablative TPS
 – Entry Systems Concepts
 – Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators
 – Conformal TPS for Rigid Aeroshell
 – 3-D Woven TPS for Extreme Entry Environment
 – Multi-functional Carbon Fabric for Mechanically Deployable
• Concluding Remarks
Considerations: Mission and Destination

Destination (Entry Velocity)
- Earth Return from
 - Low Earth Orbit
 - Moon
 - Asteroids/Comets
 - Mars
 - Outer Planet Moons
- Mars:
- Venus
 - Orbiter with Aerocapture
 - Balloon and Landers
- Outer Planets
 - Jupiter (Galileo)
 - Saturn Probes
 - Neptune Orbiter and/or Probes
 - Uranus Orbiter and/or Probes
- Outer Planet Moons

TPS is a single string failure system
- Human vs Robotic
 - Human missions demand inherent robustness not required for robotic science
- Single, Dual and Multiple Entry Heating
 - Direct Entry: Ballistic vs Lifting
 - Ballistic is shorter heat pulse and relatively higher peak conditions (heat flux and pressure)
 - Lifting entries are longer pulse (higher heat load) and relatively lower conditions
 - Aerocapture
 - Entry conditions and benefit depend on the destination
 - Longer heat load than direct entry
 - Aerocapture followed by entry
 - Requires multi-use TPS
The Physics of High-Speed Entry and the Need for Thermal Protection

Flow Phenomena

- Bow shock
- Boundary layer
- Viscous interaction
- Surface recombination
- Radiation
- Dissociation-ionization (thermochemical non equilibrium)
- Transition to turbulent
- Ablation
- Shock-shock interaction
- Flow separation
- Shear layer
- Transition to turbulent
- Impingement (reattachment)
- Reaction control plumes
- Control surface

SPACE SHUTTLE

APOLLO

CEV
TPS, once developed and flown, will be the first choice

- Extrapolation to conditions not tested carried risk
 - SLA was the TPS of choice through CDR and the failure mode established during arc jet testing. Tiled PICA saved the day.
- Heritage argument and mission assurance are not synonymous
- Limitations in manufacturing and integration may add both risk and cost
 - Honeycomb systems – labor intensive
 - Curing time limitations;
 - Defects unavoidable due to humans in the loop
 - Super Light-weight Ablator (SLA) used on all Mars missions (except MSL)
 - Avcoat, the Apollo heat shield material (Choice for Orion)
 - Integration challenges
Ablative TPS Gap for Extreme Entry Environment

- Heritage Carbon Phenolic (CP) – Robust but not available
- PICA enabled Stardust and MSL. Avcoat enabled Apollo (and Orion)
- PICA and Avcoat are not capable of replacing heritage CP
Grand Challenge: Mars Human Missions
Architectures under Consideration

Need: Ablators capable of and efficient to handle dual pulse for both rigid and flexible architectures.
FLEXIBLE TPS FOR HYPERSONIC INFLATABLE AERODYNAMIC DECELERATOR

• Physics of Hypersonic Flow and TPS Considerations
• Destinations, Missions and Requirements
• State of the Art Thermal Protection Systems Capabilities
• Modern Advances in Ablative TPS
 – Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators
 – Conformal TPS for Rigid Aeroshell
 – 3-D Woven TPS for Extreme Entry Environment
 – Multi-functional Carbon Fabric for Mechanically Deployable
• Concluding Remarks
Flexible Thermal Protection System Development for Hypersonic Inflatable Aerodynamic Decelerators

9th International Planetary Probe Workshop
16-22 June 2012, Toulouse

NASA Langley Research Center

Aerothermal Ground Testing of Flexible Thermal Protection Systems for Hypersonic Inflatable Aerodynamic Decelerators

9th International Planetary Probe Workshop
16-22 June 2012, Toulouse

Walter E. Bruce III, Nathaniel J. Mesick, Paul G. Ferlemann, Paul M. Siemers, Joseph A. Del Corso, Stephen J. Hughes, Steven A. Tobin, and Matthew P. Kardell

FTPS Requirements
– Flexible (Foldable)
– Handle Rigors of Packing and Stowage
– Handle Aerothermal Loads
– Light Weight
– Compact to Small Volume
HIAD – Flexible TPS Integration and Potential Mission Applications

Flexible TPS Development and Qualification

Sub-Orbital Flight Testing

System Demonstration

Future Missions

Robotic Missions

Crewed Earth Return

DoD Applications

Technology Development & Risk Reduction

2012 2013 2015

FTPS advances technologies supporting flight project needs

6/15-16/2013

International Planetary Probe Workshop 10 Short Course 2013
Flexible TPS Overview and Thermal Testing

• FTPS are designed to maintain structural component interface temperatures and survive reentry aerothermal loads
 – FTPS are designed to carry the entry mechanical and thermal loads

Flexible Thermal Protection Function

<table>
<thead>
<tr>
<th>Flexible Thermal Protection Function</th>
<th>Refractory Cloth</th>
<th>Insulator</th>
<th>Gas Barrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Load</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permeability</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modular design using functional layers
Combined Thermo-Structural Test Condition

Stagnation Model Holder

Wedge Model Holder for Combined Thermo-structural Testing

Test Conditions

<table>
<thead>
<tr>
<th>Heat Flux (W/cm²)</th>
<th>Surface Pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3.1</td>
</tr>
<tr>
<td>30</td>
<td>4.8</td>
</tr>
<tr>
<td>40</td>
<td>6.6</td>
</tr>
<tr>
<td>50</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Conformal Ablative TPS Development

- Physics of Hypersonic Flow and TPS Considerations
- Destinations, Missions and Requirements
- State of the Art Thermal Protection Systems Capabilities
- Modern Advances in Ablative TPS
 - Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators
 - Conformal TPS for Rigid Aeroshell
 - 3-D Woven TPS for Extreme Entry Environment
 - Multi-functional Carbon Fabric for Mechanically Deployable
- Concluding Remarks
What is a Conformal Ablator

- Flexible ablators are conformal but conformal ablators need not be flexible. Conformal can be rigid.
- A conformal ablator, which is rigid, has a high strain-to-failure compared to conventional rigid ablators
- Conformal ablator by definition
 - Starts with flexible reinforcement (felt)
 - Allows for large geometry segments (broad goods)
 - Can be carbon or other suitable felt
 - Drape-able or formable during processing for easy integration
 - Conformable naturally provides lower thermal conductivity - in complex curved regions
 - Favorable/improved strain-to-failure
 - Eliminates need for strain isolation pads (direct bond to substrate)
 - Simplifies gore-to-gore geometries and allows gore-to-gore bonding (gap fillers eliminated)
 - Can accommodate CTE mismatch between structure and TPS
Rigid vs Conformal Ablator

Standard low density ablators: rigid substrate impregnated with resin and heated

- **Carbon Fiber Substrate (RIGID)**
 + impregnation
 - Phenolic Resin
- **heat**
- **PICA (RIGID)**

Example process for making Phenolic Impregnated Ceramic Ablator (PICA)

Conformal ablators start with a flexible reinforcement (Carbon or Silica)
Conformal Ablator Development

• Conformal 250 project goal was to develop an ablator with 250 w/cm\(^2\) heat-flux, and pressure and shear levels similar to MSL PICA
 – began with 7 material variations
 – Started with ARMD conformal “recipe” as baseline
 – Varied felt type, resin loadings and additives
 – Plus included flexible PICA and Carbon felt/silicone variants
 – IHF arc jet stagnation data
 – Limited strain-to-failure

• Two materials down-selected to carry further and test in more representative conditions
 – Carbon felt – Phenolic (C-PICA)
 – Carbon felt – Silicone (C-SICA)
Arc jet and Structural Testing Results

C-PICA Flank heating: ~200 W/cm², 60 sec ~400 W/cm², 30 s

Nose-tips lost during retraction of models

4-point bend tests:
- PICA failure <750 lb, ROC ~145"
- C-PICA no failure at 1500 lb, ROC <65"

6/15-16/2013
• Improvement over PICA
 – Recession comparable
 – Thermal penetration much lower

Backface Temperature Response $q = 500 \text{ W/cm}^2$, 30-s

<table>
<thead>
<tr>
<th>Test Time sec</th>
<th>Standard PICA</th>
<th>Conformal PICA-1</th>
<th>Conformal PICA-2</th>
<th>Conformal PICA-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>

- Standard PICA $\Delta T = 318 \degree C$
- Conformal PICA $\Delta T = 145 \degree C$

Flank heating $\sim 500 \text{ W/cm}^2$, 30 s
Seam Design Evaluation

- All seams were well behaved, even 90° butt joints between test segments

- Flank heating
 - ~500 W/cm², 30 s
Arcjet Testing for Thermal Response Model Development and Seam Designs Assessment
• Physics of Hypersonic Flow and TPS Considerations
• Destinations, Missions and Requirements
• State of the Art Thermal Protection Systems Capabilities
• Modern Advances in Ablative TPS
 – Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators
 – Conformal TPS for Rigid Aeroshell
 – **3-D Woven TPS for Extreme Entry Environment**
 – Multi-functional Carbon Fabric for Mechanically Deployable
• Concluding Remarks
What is Woven TPS?

An approach to the design and manufacturing of ablative TPS by the combination of weaving precise placement of fibers in an optimized 3D woven manner and then resin transfer molding when needed

- Ability to design TPS for a specific mission
- Tailor material composition by weaving together different types of fibers and by exact placement using computer controlled, automated, 3-D weaving technology
- One-step process for making a mid density dry woven TPS
- Ability to infiltrate woven preforms with polymeric resins for highest density TPS to meet more demanding thermal requirements

Woven TPS Project Goals:
- Develop and prove feasibility of woven TPS manufacturing technique
- Demonstrate via testing low, mid and high-density WTPS in order to fill the mid-density gap as well as finding a superior replacement for the heritage carbon phenolic
WTPS Accomplishments

- Demonstrated the feasibility of manufacturing low, mid and high-density WTPS in order to fill the mid-density gap as well as a potential replacement for the highest density carbon phenolic.
Successfully Arc Jet Tested Woven TPS in IHF and AEDC Arc Jet Facilities

Stagnation testing evaluated:
- 17 different Woven TPS, low-to-High density variants
- chop molded and tape wrapped carbon phenolic tested

Testing to date indicates high density 3-D WTPS materials have comparable performance in terms of recession as CP
Highlights from Wedge Testing:
High Heat Flux, Shear and Pressure Conditions

Traditional Carbon Phenolic

[in images of traditional carbon phenolic materials: Shingled or (Tape Wrapped) and Chop Molded]

3-D Woven TPS

[In images of 3-D woven TPS materials]

12 different Woven TPS, Mid-to-High density variants, along with chop molded and tape wrapped carbon phenolic were tested
Impact of WTPS on Saturn Probe Mission Design

- Heatshield mass using CP is ~40% of Entry Mass for a EFPA of -20 deg at 60 deg heading angle

- **Minimal OML impact**: Zero-margin thickness estimate for carbon phenolic and WTPS is nearly identical for a wide range of entry conditions

- **Significant Mission Flexibility**: TPS mass savings of {30% - 40%} over a wide range of entry conditions provide a significant mission architecture flexibility; Mission design, with WTPS, can trade risk of certification, mass or lower entry load
Carbon Cloth as Ablative TPS and Structure

- Physics of Hypersonic Flow and TPS Considerations
- Destinations, Missions and Requirements
- State of the Art Thermal Protection Systems Capabilities
- Modern Advances in Ablative TPS
 - Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators
 - Conformal TPS for Rigid Aeroshell
 - 3-D Woven TPS for Extreme Entry Environment
 - Multi-functional Carbon Fabric for Mechanically Deployable
- Concluding Remarks
ADEPT can be scaled to deliver 40 MT payloads to the surface of Mars

- A rigid structural ring that reacts to the primary aerodynamic load and provides a simple interface to the delivered payload;
- A self-contained deployment system;
- Deployable “rigid” spokes for transmitting loads to the primary ring;
- Flexible thermal protection system (TPS) material;
- An ejectable nose heat shield for exposing the retro-propulsion system; and
- A primary gimbaled design for pivoting of the aeroshell and thereby enabling GN&C.
- A design that transforms the aeroshell into a lander configuration
• Adaptive Deployable Entry Placement Technology (ADEPT)-Venus Intrepid Tessera Lander\(^1\).

• Blunt entry system with dry woven carbon, 0.15 inch thick “skin” and Advanced Carbon-Carbon “ribs”.

• Low ballistic number and shallow entry flight angle gives \~10 X reduced deceleration and entry heating, enabling better science.

• Carbon fabric is taut, and must sustain combined entry heating and bi-axial mechanical loading.

ADEPT-VITaL Aerothermodynamic Hot Wall Environment
(Head on Plots for Convective Component at Peak Heating – D.K Prabhu)
Total heating, Accounting for Radiation ~ 32 Percent Higher)
1. Evaluate the capability of the weave to maintain structural integrity under combined, flight-like aero-thermodynamic heating and bi-axial tensile loads.

2. Evaluate the rate of layer loss as a function of different aerothermal and biaxial loadings.

Secondary: Provide arcjet tested fabrics to:
- Evaluate the residual load-bearing capacity of post-heated samples
- Examine the microstructure of arcjet tested fabric

3 D Dry Woven Carbon Fabric that is specially designed to withstand the combined thermal and mechanical loads

8 layer “TPS”

4 layer “Structure”
ADEPT is an Entry Architecture that delivers for Game Changing Science and Exploration Missions in the Near, Mid, and Long term!

ADEPT Technology Maturation and Mission Infusion Timeline

- **ADEPT Full-Scale Demonstrator Project FY’2014-16**
- **Human/Heavy Mass Mars Mission and Design Studies FY’2011**
- **ADEPT Project TRL Maturation GCD Project FY’12 – FY’13**
- **Ballistic Robotic Venus Lander (~2017)**
- **Ballistic Robotic Mars (1-5mT)(~2026)**
- **Total Global surface access No supersonic chutes**
- **Venus Balloon (ASRG)**
- **ADEPT Lifting (FY’16 – FY’18)**
- **Lifting Concept Flight Demos (> FY’2026)**
- **Human Mars (~2035)**
Summary

We started with

– State-of-the art thermal protection system, their limitations and the challenges ahead for future missions

Emerging TPS technologies

– Flexible TPS for inflatable or low ballistic coefficient entry systems
– Conformal ablative TPS for rigid or high ballistic coefficient entry systems
– 3-D Woven ablative TPS for extreme entry environment
– Flexible ablative TPS for mechanically deployable, low ballistic coefficient entry system

Each of the above emerging technologies have the potential to enable future missions and are game changers
BACKUP
Need for Conformal Ablator

• Current NASA ablative heatshield materials require either high part count or extreme touch labor
• NASA has made some progress in light weight ablators like PICA flown on the recent Mars Science Laboratory, but that design required 123 tiles with complicated gap filler.
• Is conformal better? If so, in what way?
 – Material that isn’t constrained to current manufacturing dimensions of 50x100 cm… but now can be made 150x100 cm or even larger – this significantly reduces part counts
 – Material that can deliver the same or better performance but with less weight where every pound saved can be added to more science
 – Material that is more compliant - this makes it more robust to loads and deflections and can save weight as well
 – Material that, because of it’s compliance, can be directly bonded to an aeroshell and installed without gap filler – this saves integration time, cost and complexity
ARC Recent History of Conformal and Flexible Ablative Materials Development

• 2007-2011 Funded by ARMD Fundamental Hypersonics to develop improvements to PICA in toughness
 – Initial research into baseline conformal PICA based on carbon felt with phenolic impregnation

• 2009-2011 Funded by ESMD Entry Descent and Landing Technology Development Project (EDL TDP) to develop flexible TPS
 – Developmental versions of several families of materials based on carbon, organic, and silica felts impregnated or mixed with phenolic or silicone resins
 – Results showed silica-based materials very capable q<130 W/cm², carbon-based materials capable to at least 500 W/cm²

• NOW: 2+ year project funded by Space Technology Mission Directorate Game Changing Division (STMD GCDP) to develop conformal ablators with the capability of at least 250 W/cm² and MSL-level shear
Small Probe (SPRITE 250) Arcjet Test Details

- Test conditions based on CFD of the flank section of a 55, 7.5" base diameter Small Probe (SPRITE) model
- Example: CFD plots for the 200 W/cm² test condition
 - Heat flux decreases slightly
 - Pressure and shear nearly constant on flank
Woven Thermal Protection System (WTPS) a Novel Approach to Meet NASA’s Most Demanding Reentry Missions

Ronald Chinnapongse, Donald Ellerby, Margaret Stackpoole and Ethiraj Venkatapathy
NASA Ames Research Center

Adam Beerman, Jay Feldman, Keith Peterson and Dinesh Prahbu
ERC Inc.

Robert Dillman and Michelle Munk
NASA Langley Research Center
Woven TPS Development and Missions

Woven TPS CIF
Idea Explored

Woven TPS GCT
BAA
(Competitively Selected)
Range of possibilities Explored

3-D Woven Multifunctional Ablative TPS (3D-MAT)
Enabling Orion and Providing a Material solution for Compression Pad (Lunar Return)

Heatshield for Extreme Entry Environment Technology (HEEET)
Tech. Maturation to enable Venus and outer planets missions

April 2011
Jan. 2012
June, 2012
Oct., 2013

2017
2020 - 2022

6/15-16/2013
International Planetary Probe Workshop 10 Short Course 2013