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Localized plasma structures, such as thin current sheets, generally are associated with localized

magnetic and electric fields. In space plasmas localized electric fields not only play an important

role for particle dynamics and acceleration but may also have significant consequences on larger

scales, e.g., through magnetic reconnection. Also, it has been suggested that localized electric

fields generated in the magnetosphere are directly connected with quasi-steady auroral arcs. In this

context, we present a two-dimensional model based on Vlasov theory that provides the electric

potential for a large class of given magnetic field profiles. The model uses an expansion for small

deviation from gyrotropy and besides quasineutrality it assumes that electrons and ions have the

same number of particles with their generalized gyrocenter on any given magnetic field line.

Specializing to one dimension, a detailed discussion concentrates on the electric potential shapes

(such as “U” or “S” shapes) associated with magnetic dips, bumps, and steps. Then, it is

investigated how the model responds to quasi-steady evolution of the plasma. Finally, the model

proves useful in the interpretation of the electric potentials taken from two existing particle

simulations.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747162]

I. INTRODUCTION

Thin current sheets with a thickness of the order of typi-

cal ion scales (gyroradius or ion inertial length) or smaller

play a key role in the structure and dynamics of space plas-

mas. Ample evidence in support of this fact is available from

in-situ magnetospheric observations1–11 and from numerical

simulations and theory.12–27 Thin current sheets are thought to

be relevant for magnetic reconnection5,7,9,10,12,14,15,18,20,22,24

and possibly as the magnetospheric cause of thin quasi-steady

auroral arcs.21,28,29 It is characteristic of thin plasma structures

that they contain significant electric fields. They are based on

the difference between the properties of the relevant particle

species, particularly, the small electron/ion mass ratio. They

occur on scales on which the effects of finite gyroradii or

inertial lengths cannot be ignored. Their full understanding

requires kinetic considerations. Magnetohydrodynamics

(MHD), which frequently provides reasonable results on

larger scales, is widely unable to resolve thin magnetic struc-

tures, although often MHD indicates the presence of a thin

current sheet by a singularity of the electric current density.22

On scales exceeding the Debye-length, typical space

plasmas are quasi-neutral with ion and electron densities

being kept approximately equal by electric forces. Those

tend to become larger for smaller length scales. As already

indicated above, the electric signature associated with a

localized magnetic structure is of particular interest for

magnetosphere-aurora connection. Indeed, several regions in

the magnetotail are possibly associated with quasi-steady (or

“monoenergetic”) auroral arcs.21,28,30–35 More diffuse arcs

presumably are associated with magnetospheric Alfv�en
waves. Details are given in a recent review.29 In the present

paper, the focus is on the former class. Typically, above the

acceleration region of a quasi-steady arc the electric field is

directed perpendicular to the magnetic field. The correspond-

ing electric potentials are often described to be of “U” shape

or of “S” shape.36–41 In this paper, we develop a model that

associates the electric potential profile directly with the mag-

netic field and density profiles of the local structure.

In the investigation of localized structures in plasmas,

two main areas can be distinguished. The first is concerned

with the question of how they are generated. In this area,

most studies apply numerical simulations. For example, par-

ticle simulations have shown that the slow externally driven

evolution of a wide plasma structure under a variety of cir-

cumstances leads to the formation of thin embedded current

sheets.24,26 We will return to the electric signature of such

sheets in Section VI.

The other area concentrates on the local structure of

quasi-steady plasma conditions, using analytical methods

where available. They are widely based on exploiting con-

stants of the motion,21,28,42–45 particularly when the depend-

ence on one or more coordinates can be ignored. Choosing

this method, we assume a steady-state collisionless plasma

that is translationally invariant with respect to the Cartesian

y-coordinate. Then the canonical momentum Py and the

Hamiltonian H given by

Py ¼ mvy þ qA; H ¼ m

2
ðvx2 þ vz

2Þ þ w (1)

with w ¼ 1

2m
ðPy � qAÞ2 þ q/

are constants of the motion. Here, m and q are particle mass

and charge, vx; vz are x and z components of particle velocity,

A and / are functions of x; z and denote the magnetic flux

function and the electric potential, respectively. The way in

which Eq. (1) is written emphasizes that due to the y
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invariance the motion can be understood as a planar motion

in a force field described by the potential w: Throughout this
paper, we assume that the electric and magnetic fields have

no y components, such that they are given by

~B ¼ rAðx; zÞ �~ey; ~E ¼ �r/ðx; zÞ: (2)

Under these conditions

fs ¼ FsðPy;HsÞ (3)

is a Vlasov equilibrium distribution function for arbitrary pos-

itive Fs. The subscript s denotes the particle species. We

choose singly charged ions ðqi ¼ eÞ and electrons ðqe ¼ �eÞ;
e being the elementary charge. (Py is used as an independent

variable and therefore does not carry a species label.)

Various choices of Fs have been used to describe the prop-

erties of thin current sheets. Schindler and Birn21 and Birn

et al.28 used local Maxwellians in the vx; vz plane, such that

Fs ¼ gsðPyÞexpð�Hs=TsÞ; (4)

where Ts is the temperature (with Boltzmann’s constant

being absorbed into Ts). It was found that in the range

Ti > Te, typical potential differences of the order of Ti=e
could be achieved for sufficiently different choices of giðPyÞ
and geð�PyÞ: For giðPyÞ ¼ geð�PyÞ, the potentials typically

were an order of magnitude smaller. The sensitivity of the

potential to the choice of gs suggests that it would be desira-

ble to put the Py dependence of Fs on a more physical basis.

This paper makes a step in that direction. We assume a

plasma structure in which the magnetic field strength

remains large enough for justifying a power expansion in

terms of the ratio of the ion gyroradius and the length scale

of the structure, truncated after the second order. Adopting

Eq. (4), we impose two conditions on the choice of gs: The
first is the familiar condition of quasi-neutrality. The second

condition (addressed as “P-condition”) requires that there is

a frame of reference where for every field line the number of

particles that have their generalized gyrocenters on that field

line is the same for electrons and ions. (In zeroth order, the

generalized gyrocenter reduces to the ordinary gyrocenter,

details are explained in the following section.) One may

imagine that the plasma has been generated in that way by

some kind of source process. As we will see, this model has

a number of interesting properties that seem worthwhile

exploring. It is favorably tested with earlier simulation

results (Section VI).

II. THE MODEL

Particle distribution functions of the form (4), written

explicitly, take the form

fsðvx; vz; x; z;PÞ ¼ gsðPÞ exp
 
�msðvx2 þ vz

2Þ
2Ts

�
�
P� qsAðx; zÞ

�2
2msTs

� qs/ðx; zÞ
Ts

!
: (5)

The variable Py was replaced by P; as there is no danger of

confusion.

The first condition that we impose on gs is the quasi-

neutrality condition

ne ¼ ni; (6)

where ns ¼
Ð
fsdvxdvzdP is the density of species s. The sec-

ond condition is the P-condition

ueðA�Þ ¼ uiðA�Þ; (7)

where

usðA�Þ ¼
ð
dðP� qsA

�ÞfsdvxdvzdPdxdz: (8)

This condition is based on a generalization of the gyrocenter

for gyrotropic motion, which under the present symmetry

would be located on the field line where vy ¼ 0 or, using

Eq. (1), where the condition is P� qsA ¼ 0 holds. We gener-

alize this notion to include systems that admit deviations

from gyrotropy. If P� qsA ¼ 0 holds we say that the particle

has its generalized gyrocenter on the field line with flux

value A: Thus, usðA�Þ is the number density of particles of

species s that in the present frame of reference have their

generalized gyrocenter located on the field line A ¼ A�:
Then the P-condition (7) postulates that this number is the

same for electrons and ions.

The only equation left to assure selfconsistency is

Ampère’s law

�DA ¼ l0JðAÞ; (9)

where JðAÞ is the electric current density, after eliminating /
via Eq. (6).

III. THE EXPANSION

Here, we introduce the expansion for small gyroradii.

The smallness parameter is the ratio of the ion gyroradius

and the local scale length L, represented by es ¼
ffiffiffiffiffiffiffiffiffiffi
msTs

p
=

ðeBLÞ; so that formally one expands in powers of
ffiffiffiffiffi
ms

p
:

Further below, the electrons will be set to the gyrotropic

limit me ! 0:
We start with density, which in an explicit form can be

written as

ns ¼ 2pffiffiffiffiffiffiffiffiffiffi
msTs

p exp �qs/
Ts

� �ð
GsðPÞexp � 1

2msTs
ðP�qsAÞ2

� �
dP;

(10)

where gs was replaced by Gs ¼ gsTs
3=2=ms which is treated as

finite for vanishing ms to ensure finite density. The Gaussian

kernel of the integral localizes the integrand near P ¼ qsA:
This suggests substituting P ¼ qsAþ dP and expanding Gs in

powers of dP; which gives after dP integration

ns¼ð2pÞ3=2exp �qs/
Ts

� �
GsðqsAÞþmsTs

2e2
GsðqsAÞ00

� �
þOðes4Þ;

(11)
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where the prime symbol denotes differentiation with respect

to A: Since odd powers of es do not contribute, truncation af-

ter the second order means that the error is of order es4: The
quasi-neutrality condition (6) can now be used to express /
in terms of A;

exp e/ðAÞ 1

Te
þ 1

Ti

� �� �
¼ UðAÞ; (12)

where

UðAÞ ¼ GiðeAÞ þ miTi
2e2 GiðeAÞ00

Geð�eAÞ þ meTe
2e2 Geð�eAÞ00 (13)

and the error term was suppressed. We now make use of the

smallness of the mass ratio me=mi by taking the limit

me=mi ! 0; obtaining

UðAÞ ¼ GiðeAÞ
Geð�eAÞ 1þ miTi

2e2
GiðeAÞ00
GiðeAÞ

� �
: (14)

From Eq. (12), we then find

e/ ¼ TeTi
T

lnU; T ¼ Te þ Ti: (15)

Let us now turn to the P-condition (7). Explicitly, the func-

tion us reads

usðA�Þ ¼ 2pffiffiffiffiffiffiffiffiffiffi
msTs

p GsðqsA�Þ

�
ð
exp � e2

2msTs
ðA� A�Þ2 � qs/ðAÞ

Ts

� �
VðAÞdA;

(16)

where VðAÞ ¼ Ð A ds=B is the differential flux tube volume,

ds being the arc length differential on field line A and B the

magnetic field magnitude. An expansion analogous to that

applied to density gives

usðA�Þ ¼ ð2pÞ3=2
e

GsðqsA�Þexp � qs/ðA�Þ
Ts

� �
VðA�Þ

þ ð2pÞ3=2
e

msTs
2e2

GsðqsA�Þ exp � qs/ðA�Þ
Ts

� �
VðA�Þ

� �00
;

(17)

where now the prime symbol denotes differentiation with

respect to A�:
After inserting / from Eq. (15) into Eq. (17) and

applying the limit of vanishing electron mass, we obtain

an explicit expression for the P-condition (7). Analyzing

that condition, we first find that in the zeroth order it is

satisfied identically. This is intuitively clear, because to

lowest order the gyrocenter and particle locations coincide

so that the P-condition is an automatic consequence of

quasi-neutrality. The next higher nonvanishing order terms

are linear in mi (order ei2). In that order, the P-condition

(7) gives

miTi
2e2

GiðeAÞ00
GiðeAÞ ¼ miTi

2e2VðAÞ VðAÞ GiðeAÞ
Geð�eAÞ
� ��Te=T

 !00

� Geð�eAÞ
GiðeAÞ

� �Te=T

: (18)

As this equation holds for arbitrary A� and there is no danger

of confusion, we replaced A� by A. After dividing by

miTi=ð2e2Þ and defining

Y ¼ VðAÞ Geð�eAÞ
GiðeAÞ

� �Te=T

; (19)

Eq. (18) assumes the form

GiðeAÞ00
GiðeAÞ ¼ Y00

Y
: (20)

For any Y; considered an arbitrary function of A,
Eq. (20) is read as a differential equation for GiðAÞ, which
has the general solution

GiðAÞ ¼ YðAÞ c þ c0

ðA
A0

d ~A

Yð ~AÞ2

0
B@

1
CA; (21)

where c; c0 are arbitrary constants for any fixed A0. From

Eqs. (11), (12), and (19), we find

GiðAÞ ¼ nðAÞVðAÞ
ð2pÞ3=2YðAÞ

: (22)

Equating (21) and (22) gives

n0V0

Y02
þ c0

ðA
A0

d ~A

Yð ~AÞ2 ¼
nðAÞVðAÞ
YðAÞ2 ; (23)

where the factor ð2pÞ3=2 was absorbed in the arbitrary con-

stants, and then the constant c was expressed by n0;V0; Y0;
the values of n;V; Y at A0: Further, introducing non-

dimensional quantities n̂ ¼ n=n0; V̂ ¼ V=V0; and Ŷ
¼ Y=Y0, Eq. (23) assumes the form

1þ d0

ðA
A0

dA0

ŶðA0Þ2 ¼
n̂V̂

Ŷ
2
; (24)

where d0 is an arbitrary constant replacing c0:
Equation (24), read as an integral equation for Ŷ , has a

unique positive solution (satisfying the boundary condition

at A ¼ A0) determined by

Ŷ
2 ¼ n̂V̂exp d0

ðA
A0

dA0

n̂ðA0ÞV̂ðA0Þ

0
@

1
A: (25)

Using the definitions of U (lowest order) and Y given by Eqs.

(14) and (19), we obtain the electric potential / from Eq. (15)
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eð/� /0Þ ¼ � Ti
2
ln

n̂

V̂
þ a

ðA
A0

dA0

n̂ðA0ÞVðA0Þ; (26)

where a is an arbitrary constant replacing d0 and

/0 ¼ /ðA0Þ:
This equation holds in the frame of reference where the

P-condition is satisfied. A transformation to a reference

frame that moves with velocity g in the y direction gives in

that frame

eð/�/0Þ¼�Ti
2
ln

n̂

V̂
þa
ðA
A0

dA0

n̂ðA0ÞVðA0Þ�gðA�A0Þ: (27)

Equation (27) is the desired result for two-dimensional con-

figurations. It is comforting that the knowledge of the ion

temperature, density, and flux tube volume suffices to find

the electric potential as a function of A.
In the special case of one-dimensional fields with trans-

lational invariance with respect to x and y, the magnetic flux

function A depends on z alone, such that the magnetic field

has an x component only. In the derivation of the expression

for /, the spatial integrations in the x; z plane is replaced by

z integrations with the flux tube volume V being replaced by

1/B. Accordingly, one finds

eð/� /0Þ ¼ � Ti
2
lnðn̂B̂Þ þ a

ðA
A0

B̂ðA0Þ
n̂ðA0ÞdA

0 � gðA� A0Þ:

(28)

Another difference in comparison with the 2D case is

the additional constant of the motion Px; which in the

absence of the x component of the vector potential can be

replaced by vx: Thus,

Fs ¼ gsðPyÞexp �msvx
2

2T1s
� hs
T2s

� �
; hs ¼ ms

2
vz

2 þ w (29)

is a Vlasov equilibrium distribution function. It takes into

account anisotropy by attributing different temperatures to

the motion in x and in y; z: Carrying out the same expansion

as above for that case, one recovers the expression (28) with

the only modification that Ti is to be replaced by T2i. The
temperature associated with the x motion does not enter ex-

plicitly. Although T1s appears in ns and us, it disappears after

defining gs ¼ ffiffiffiffiffi
ms

p
=ð ffiffiffiffiffiffi

T1s
p

T2sÞGs, where Gs plays the same

role as in the isotropic case.

The expressions (27) and (28) are the results of power

expansions and break down when the formal values of /
become too large. This can pose a limitation to the choice of

the free constants a and g: For instance, if one considers a

one-dimensional plasma structure where n and B assume

nonvanishing constant values for z ¼ 61, the constants a
and g have to vanish so that we find

eð/� /0Þ ¼ �Ti
2
ln ðn̂B̂Þ ¼ �Ti

2
lnðp̂B̂Þ (30)

instead of Eq. (28). On the right hand side of Eq. (30), den-

sity n is replaced by pressure p associated with the x; z plane,
such that n̂ ¼ p̂. In the 1D cases, one can then take into

account Eq. (9) (in integrated form) by introducing the pres-

sure balance

pþ B2

2l0
¼ pc; (31)

where pc is a constant. Thus, for one-dimensional fields, /
can be expressed in terms of the magnetic field alone.

IV. EXAMPLES

Here, we apply the findings of the previous section to

simple one-dimensional structures. Where appropriate, we

use z as the independent variable instead of A; note that AðzÞ
is monotonic as B does not vanish (the expansion breaks

down if B becomes too small). The plasma is assumed to

reach asymptotically homogeneous states for z ¼ 61: We

use quantities �B ¼ B=B2; p ¼ p=p2, etc., where the quanti-

ties labeled by the subscript “2” are taken at z ! 1 (or at

the right boundary for finite systems), so that �Bð1Þ ¼
1; �pð1Þ ¼ 1: The pressure balance (31) then gives

�p ¼ 1þ 1

b2
ð1� �B

2Þ; b2 ¼
B2

2

2l0p2
: (32)

Using Eq. (32) in Eq. (30) and setting /ð1Þ ¼ 0, we find for

u ¼ e/=Ti the expression

uðzÞ ¼ � 1

2
ln �BðzÞ þ 1

b2

�
1� �BðzÞ2

�
�BðzÞ

� �
: (33)

As the first group of examples, we consider magnetic dips

and bumps, assuming that �BðzÞ is symmetric with respect to

z ¼ 0 and has a single extremum (at z ¼ 0Þ: In that case,

uðzÞ has either a single extremum or three extrema. The

number of extrema, as well as the extreme values, are deter-

mined by the parameters �Bð0Þ and b2 alone. Thus, for �Bð0Þ
kept fixed, two otherwise different choices of �BðzÞ provide

different potentials uðzÞ, but if b2 is fixed also they have the

same qualitative shape, as defined by the number of extrema

and by the extreme values. This is illustrated by Figure 1.

Figure 2 gives the qualitatively different regimes of the

uðzÞ profiles in �Bð0Þ; b2 space. As the figure indicates, for

suitable parameters a magnetic dip ð �Bð0Þ < 1Þ can be associ-

ated with either an electric dip (or “U-shape”) or an electric

bump. More complex u profiles with additional side minima

also occur. The same applies to magnetic bumps ð �Bð0Þ > 1Þ:
Next, we consider magnetic steps with monotonically

increasing �BðzÞ and again �Bð1Þ ¼ 1: Here, the parameters

that determine the qualitative shape of the electric potential

are �B1 ¼ �Bð�1Þ (or for finite systems the value at the left

boundary) and b2: Correspondingly, the two different mag-

netic profiles of Figure 3 (with same parameters) have the

same qualitative potential shape.

Figure 4 gives the different regions where qualitatively dif-

ferent u shapes occur. The figure shows the presence of S

shaped potentials of different orientation with and without
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modification involving a minimum. Note that on the red line, u
becomes U-shaped although the magnetic profile is S-shaped.

V. SLOW EVOLUTION

Steady state models are largely interpreted as snapshots of

slowly evolving systems, driven by a suitable boundary condi-

tion, such as addition of magnetic flux. This raises the follow-

ing question. Suppose our model applies to the electric

potential of a given initial snapshot of such a slowly evolving

system. Does it then remain valid during the subsequent

evolution? We will answer this question for the cases of mag-

netic dips/bumps and magnetic steps as considered in the previ-

ous section. Conveniently, we refer to earlier analytical studies

of quasistatic evolution of one- and two-dimensional systems in

the gyrotropic limit.24,26 There, it was demonstrated that in that

limit, the one-dimensional evolution is governed by simple sim-

ilarity transformations and can be expressed through a single

parameter, say bðtÞ; representing the external driving. We

found that for the quantities that are relevant in the present

context, the transformations are

Bðz; tÞ ¼ bðtÞB0ðbðtÞzÞ
nðz; tÞ ¼ bðtÞn0ðbðtÞzÞ
pðz; tÞ ¼ bðtÞ2p0ðbðtÞzÞ
/ðz; tÞ ¼ /0ðbðtÞzÞ;

(34)

where p is the zz component of the pressure tensor, summed

over species. The subscript 0 refers to the initial state.

FIG. 1. Two examples for magnetic dips. The solid and dashed curves

shown in the upper graph correspond to two different choices for �BðzÞ,
picked arbitrarily except that they have the same parameter �Bð0Þ (in addition
to symmetry, single extremum and �Bð1Þ ¼ 1). The lower graph shows the

corresponding electric potentials u given by Eq. (33) with b2 fixed also.

FIG. 2. Parameter space �Bð0Þ vs. b2 for magnetic dips and bumps as defined

in the text. Shown are the regions that correspond to different qualitative

shapes of the electric potential uðzÞ; sketched inside the boxes. Same quali-

tative shapes are indicated by the same color. The region above the black

curve is unphysical (negative plasma pressure), the green line separates

magnetic dips ( �Bð0Þ < 1) from magnetic bumps ( �Bð0Þ > 1), on the red

curve uð0Þ changes sign, on the blue curve the two side minima on one side

merge with the central extremum, and on the magenta line the side minima

on one side disappear when their u values reach 0.

FIG. 3. Two examples for magnetic steps. The solid and dashed curves

shown in the upper graph correspond to two different choices for �BðzÞ,
picked arbitrarily except that they have the same parameter �B1 (in addition to

monotonic increase with z and �Bð1Þ ¼ 1). The lower graph shows the corre-

sponding electric potentials u given by Eq. (33) with a fixed value of b2:
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Assuming constant asymptotic states (at z ¼ 61), we can

use Eq. (30) for the model potential, which we write as

/mðzÞ ¼ � Ti
2e

ln
�
�nðzÞ �BðzÞ

�
; (35)

where, as before, the bar symbol indicates normalization

with respect to the value at þ1; so that /mð1Þ ¼ 0: The
time variable is suppressed.

Within our approximations and by our assumption that

the model holds initially, the initial potential is given by

/0ðzÞ ¼ /m0ðzÞ ¼ �Ti0
2e

ln
�
�n0ðzÞ �B0ðzÞ

�
: (36)

According to Eq. (34) at some later time t, the potential is

/ðzÞ ¼ /0ðbzÞ ¼ � Ti0
2e

ln
�
�n0ðbzÞ �B0ðbzÞ

�
: (37)

Again using Eq. (34) we find �nðzÞ ¼ �n0ðbzÞ; �BðzÞ ¼ �B0

ðbzÞ such that the model at time t given by Eq. (35) becomes

/mðzÞ ¼ � Ti
2e

ln
�
�nðzÞ �BðzÞ

�
¼ b/ðzÞ; (38)

where we used that T scales as b:
Thus,

/ðzÞ ¼ 1

b
/mðzÞ: (39)

So, strictly speaking, the model is not conserved during the

evolution. However, the violation consists only in the pres-

ence of the constant factor 1=b. The adjusted model potential

/a ¼
1

b
/m (40)

would provide correct modeling (within the present

simplifications).

Thus, our model /m, if adjusted with a suitable multi-

plier 1=b, is relevant for an entire slow evolution if that evo-

lution contains a single state to which /m applies exactly. In

particular, the qualitative potential shape, within present

approximations, is correctly represented by the model. This

also follows from the fact that the parameters �Bð0Þ; b2 of

Figure 2 and �B1; b2 of Figure 4 are conserved under Eq. (34).

In the following, we will refer to our model as the “relaxed

model” if adjustment of the electric potential by a constant

multiplier is admitted.

VI. APPLICATION TO TWO EARLIER SIMULATIONS

To gain further insight into the usefulness of our model,

we applied it to two simulations carried out earlier.26 Sur-

prisingly, we found that in both cases Eq. (39) holds approxi-

mately for suitably adjusted values of the parameter b so that

the relaxed model proves applicable.

The results are shown in Figures 5 and 6 for the two

simulations. Plotted are the simulation magnetic field, the

simulation potential /, the model potential /m, and the

adjusted model potential /a.

Surprisingly, in both cases the relaxed model curves

(small-scale-broken lines) show fair agreement with the sim-

ulation (solid line), while the model /m (dashed curves)

deviates grossly from the simulation potential. The parame-

ter b was found by a best fit procedure, which gave b ¼ 3:6
for the first simulation (Fig. 5) and b ¼ 6:0 for the second

(Fig. 6).

It is instructive to confirm that the potential shapes of the

simulations can be identified with the corresponding model

shapes in Figures 2 and 4, respectively. The magnetic

step of Figure 5 has the (simulation) parameters �B1 ¼ 0:06;
b2 ¼ 0:10; which is close to the red curve in Fig. 4, on which

/m is exactly U shaped, consistent with the approximate U

shape of the simulation potential. The approximate U shape

of the simulation potential in Figure 6 has the parameters
�Bð0Þ ¼ 0:67; b2 ¼ 0:05; which in Figure 2 lie in the U shape

FIG. 4. Parameter space �B1 vs. b2 for

magnetic steps. Shown are the regions

that correspond to different qualitative

shapes of the electric potential uðzÞ; indi-
cated in the boxes. Steps where B
decreases with z (i.e., �B1 > 1) are left out,

because these shapes can be reduced to

corresponding shapes with �B1 < 1 by re-

versal of the z axis and a renormalization.
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regime between the blue and green curves. Alternatively, we

may consider the right flank of the U shaped / profile in Fig-

ure 6 as a step with parameters �B1 ¼ 0:67; b2 ¼ 0:05;
which, as expected, yields a step in Figure 4.

VII. SUMMARYAND DISCUSSION

This paper addresses properties of electric potentials

that exist in localized steady plasma structures, specifically

thin current sheets embedded in uniform or weakly varying

magnetic fields. A two-dimensional model is presented that

is based on finite ion gyro-radius effects and expresses the

potential in terms of ion temperature, density, and magnetic

flux tube volume (Eq. (27)). The model is valid for a particu-

lar class of distribution functions given by Eq. (4). Further, it

uses an expansion for small deviation from gyrotropy and

besides quasineutrality it assumes that electrons and ions

have the same number of particles with their generalized

gyrocenter on any given magnetic field line, the P-condition.

There is no magnetic field component in the invariant direc-

tion. The one-dimensional specialization gives the electric

potential in terms of density and magnetic field magnitude

(Eq. (28)) and if (via pressure balance) the density is elimi-

nated, the potential is expressed in terms of the magnetic

field alone. For homogeneous asymptotic states at large jzj,
the model assumes a particularly simple form (Eq. (30) or

Eq. (33)).

One might wonder why the expressions for the electric

potential, which is the result of an expansion into ion non-

gyrotropy, do not involve the ion mass. The reason is that

the zeroth order of the P-condition is satisfied identically, so

that the next higher nonvanishing order determines the zer-

oth order of Gi. This property is carried over to the potential

/; so that it is determined by zero-order quantities alone.

The electron temperature drops out, because in the present

limit of me=mi ! 0, the electrons do not contribute to finite-

gyroradius effects.

The 1D model is employed to study the electric potential

forms of magnetic dips, bumps, and steps (Figures 1–4).

Each of these elementary magnetic structures can be associ-

ated with a variety of different potential profiles, their quali-

tative shape depending only on two parameters. A magnetic

dip can be associated either with a potential dip (“U” shape)

or a potential bump, transitional forms can also occur

(Figure 2). A magnetic step can have an electric potential

that is either “S” shaped or “U” shaped or of a transitional

shape (Fig. 4).

Electric potential shapes play a central role in observed

quasi-steady auroral arcs. U-shaped potentials above the

acceleration region corresponding to converging perpendicu-

lar electric fields are frequently observed to be associated

with downward acceleration of electrons and upward electri-

cal currents.34,39–41 S-shapes and transitional shapes have

been observed also. For instance, Marklund et al.34 presented
spacecraft data indicating a transition from a U-shaped to an

S-shaped potential.

If our model applies to an initial state of a slow evolu-

tion driven by external action, it remains to be applicable

during the evolution, however, only in its relaxed form

FIG. 6. This figure corresponds to Figure 5 for the second simulation

(Section V of Ref. 26). The parameter b ¼ 6:0 was determined by a mini-

mum variance fit.

FIG. 5. The figure provides an application of the present model to an earlier

particle simulation (Section IV of Ref. 26, interval 10 � z � 40). The upper

graph shows the magnetic field profile. The lower graph gives the electric

potential of the simulation (solid curve), the model curve /m based on simula-

tion data (dashed line) and the adjusted model potential /a (fine-scale broken

line). The parameter b ¼ 3:6 was determined by a minimum variance fit.
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allowing the potential to be adjusted by a constant multiplier.

This does not affect the qualitative potential shapes, which

are conserved in the entire evolution sequence.

Density and magnetic field strength have to be bounded

away from zero to avoid breakdown of the expansion. The

expansion can readily be extended to higher orders, should

this be required for particular applications. Our model does

not cover plasmas for which the mass ratio me=mi is not

small (e.g., electron-positron plasma), but the method can

easily be generalized to include such cases.

When, tentatively, we applied the model to two earlier

simulations (Figs. 5 and 6), it came as a pleasant surprise

that both cases were found to be covered by the relaxed

model. How is this possible, given the fact that our model is

subject to stringent or arbitrary assumptions such as the

weak gyrotropy condition and the P-condition? Weak gyro-

tropy means that ei, the ratio of the ion gyroradius over the

length scale of the magnetic field, must be small compared

to 1, but this condition is alleviated by the fact that the error

is of order ei4. In fact, the weak gyrotropy condition is rea-

sonably satisfied in the cases in question; the maximum error

amounts to 6% for the first simulation (Fig. 5) and is near

10�6 for the second (Fig. 6). Regarding the other assump-

tions, the situation is less clear. It might be significant that

the agreement between model and simulations applies only

to the relaxed version of the model which involves a fitting

parameter that widens the range of applicability of the

relaxed model compared with the non-relaxed model sub-

stantially. For example, the agreement could be explained if

the simulation state can be understood as a member of a set

of slowly evolving equilibria with one member being cov-

ered by the non-relaxed model (see Section V). It seems also

possible that the actual range of applicability is wider than it

might seem from our derivation. Investigations beyond the

present scope seem required to provide a firm answer.
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